Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.405
Filter
1.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893406

ABSTRACT

A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively.


Subject(s)
Anti-Infective Agents , Cucurbita , Plant Lectins , Cucurbita/chemistry , Animals , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Mice , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology
2.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730109

ABSTRACT

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Subject(s)
Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
3.
Parasite Immunol ; 46(5): e13035, 2024 May.
Article in English | MEDLINE | ID: mdl-38712475

ABSTRACT

Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.


Subject(s)
Carcinoma, Ehrlich Tumor , Larva , Trichinella spiralis , Animals , Trichinella spiralis/drug effects , Mice , Larva/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Antigens, Helminth/immunology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Ki-67 Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Immunohistochemistry
4.
Dokl Biochem Biophys ; 516(1): 111-114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795244

ABSTRACT

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.


Subject(s)
Carcinoma, Ehrlich Tumor , Gold , Metal Nanoparticles , Proton Therapy , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Proton Therapy/methods , Animals , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Mice , Cell Line, Tumor , Polyethylene Glycols/chemistry
5.
Invest New Drugs ; 42(3): 318-325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758478

ABSTRACT

Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients. In this study, we evaluate the antineoplastic activity of a parent compound based on a combretastatin A4 analogue. We test the compound at 0.01 mg mL- 1, 0.1 mg mL- 1, 1.0 mg mL- 1, 10.0 mg mL- 1, 100.0 mg mL- 1, and 1,000.0 mg mL- 1. To assess molecular antineoplastic activity, we conduct in vitro tests to determine the viability of Ehrlich cells and the blood mononuclear fraction. We also analyze the cytotoxic behavior of the compound in the blood and blood smear. The results show that the molecule has a promising antineoplastic effect and crucial anticarcinogenic action. The toxicity of blood cells does not show statistically significant changes.


Subject(s)
Stilbenes , Stilbenes/pharmacology , Animals , Cell Survival/drug effects , Mice , Leukocytes, Mononuclear/drug effects , Antineoplastic Agents/pharmacology , Humans , Carcinoma, Ehrlich Tumor/drug therapy
6.
J Exp Zool A Ecol Integr Physiol ; 341(6): 672-682, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38591238

ABSTRACT

Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G0/G1 phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.


Subject(s)
Carcinoma, Ehrlich Tumor , Mice, Inbred BALB C , Oxidative Stress , Selenium , Animals , Female , Mice , Selenium/pharmacology , Selenium/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Cytokines/metabolism
7.
Int J Biol Macromol ; 267(Pt 1): 131390, 2024 May.
Article in English | MEDLINE | ID: mdl-38582473

ABSTRACT

In recent decades, bio-polymeric nanogels have become a forefront in medical research as innovative in-vivo drug carriers. This study introduces a pH-sensitive chitosan nanoparticles/P(N-Isopropylacrylamide-co-Acrylic acid) nanogel (CSNPs/P(NIPAm-co-AAc)), making significant advancements. The nanogel effectively encapsulated doxorubicin hydrochloride (Dx. HCl), a model drug, within its compartments through electrostatic binding. Comparing nano chitosan (CSNPs) before and after integrating copolymerized P(NIPAm-co-AAc), highlighting an improved and adaptable nanogel structure with responsive behaviors. The intraperitoneal delivery of Dx-loaded nanogel (Dx@N.gel) to Ehrlich ascites carcinoma (Eh)-bearing mice at doses equivalent to 1.5 and 3 mg/kg of Dx per day for 14 days exhibited superiority over the administration of free Dx. Dx@N.gel demonstrated heightened anticancer activity, significantly improving mean survival rates in Eh mice. The nanogel's multifaceted defense mechanism mitigated oxidative stress, inhibited lipid peroxidation, and curbed nitric oxide formation induced by free Dx. It effectively countered hepatic DNA deterioration, normalized elevated liver and cardiac enzyme levels, and ameliorated renal complications. This pH-responsive CSNPs/P(NIPAm-co-AAc) nanogel loaded with Dx represents a paradigm shift in antitumor drug delivery. Its efficacy and ability to minimize side effects, contrasting sharply with those of free Dx, offer a promising future where potent cancer therapies seamlessly align with patient well-being.


Subject(s)
Carcinoma, Ehrlich Tumor , Chitosan , Doxorubicin , Drug Carriers , Nanogels , Polyethyleneimine , Animals , Chitosan/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Mice , Drug Carriers/chemistry , Nanogels/chemistry , Drug Liberation , Polyethylene Glycols/chemistry , Drug Delivery Systems , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Oxidative Stress/drug effects
8.
Protein Expr Purif ; 219: 106484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614377

ABSTRACT

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.


Subject(s)
Anti-Bacterial Agents , Carcinoma, Ehrlich Tumor , Animals , Mice , Humans , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Rhizome/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , A549 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Escherichia coli/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
9.
Int Immunopharmacol ; 132: 111957, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554441

ABSTRACT

This study investigated the antioxidant, anticancer, antibacterial properties of Dioon rzedowskii extract, which had not been previously explored. We aimed to determine the extract's effect on liver and breast cancer cell lines and on solid Ehrlich carcinoma (SEC) mouse model to investigate the underlying molecular mechanisms. Three female albino mice groups were established: a tumor control group, a group treated with 100 mg/kg of the extract (D100), and a group treated with 200 mg/kg of the extract (D200) for 16 days after tumor development. Results showed that the D. rzedowskii extract inhibited cell growth in both MCF-7 and HepG2 cells in a concentration-dependent manner. This was achieved by suppressing the cell proliferation and inducing apoptosis. The extract also improved liver, heart, and kidney functions compared to the tumor control. Furthermore, oral administration of the extract reduced tumor volume and alleviated oxidative stress in tumor tissue. The anticancer effects were associated with overexpression of p53 and Bax and downregulation of cyclin D1 expression, which was attributed to decreased phosphorylated MAPK kinases. Additionally, D. rzedowskii exhibited antibacterial activity against K. pneumoniae isolated from cancer patients. The extract inhibited bacterial growth and reduced the membrane integrity. The study suggests that D. rzedowskii has promising potential as an adjunctive therapy for cancer treatment. Further investigations are needed to explore its combined anticancer efficacy. These results emphasize the value of natural products in developing compounds with potential anticancer activity and support a paradigm shift in cancer management to improve patients' quality of life.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Apoptosis , Carcinoma, Ehrlich Tumor , Cell Proliferation , Plant Extracts , Signal Transduction , Animals , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Hep G2 Cells , MCF-7 Cells , Apoptosis/drug effects , Signal Transduction/drug effects , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
10.
Int J Pharm ; 655: 124000, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38493840

ABSTRACT

Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.


Subject(s)
Carcinoma, Ehrlich Tumor , Carnosine , Neoplasms , Mice , Animals , Female , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/metabolism , Vascular Endothelial Growth Factor A , Mice, Inbred BALB C , Lipids , Magnetic Phenomena
11.
Anticancer Agents Med Chem ; 24(6): 436-442, 2024.
Article in English | MEDLINE | ID: mdl-38305388

ABSTRACT

BACKGROUND: The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative. OBJECTIVE: The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice. METHODS: The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined. RESULTS: Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs. CONCLUSION: Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.


Subject(s)
Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Oxidative Stress , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Quinolines , Signal Transduction , TOR Serine-Threonine Kinases , Animals , PTEN Phosphohydrolase/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice , Oxidative Stress/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Structure , Cell Survival/drug effects , Apoptosis/drug effects , Indole Alkaloids
12.
Basic Clin Pharmacol Toxicol ; 134(4): 472-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368905

ABSTRACT

In this study, the impact of chitosan (CS) and maitake (GF) nanoparticles towards the renal toxicity induced by Ehrlich ascites carcinoma (EAC) in vivo model was conducted. Besides benchmark negative control group, EAC model was constructed by intraperitoneal injection (i.p.) of 2.5 × 106 cells. Alongside positive control, two groups of EAC-bearing mice received 100 mg/kg of CS and GF nanoparticles/body weight daily for 14 days. The kidney function was conducted by measuring urea, creatinine, ions, (anti)/oxidative parameters and DNA damage. Also, measuring immunoreactivity of P53, proliferating cell nuclear antigen (PCNA), and B-cell lymphoma 2 (Bcl-2) and apoptosis protein. The outcomes illustrated notable kidney toxicity, which indicated by elevations in urea, creatinine, oxidative stress, DNA damage and induction of apoptosis. These events were supported by the drastic alteration in kidney structure through histological examination. Administration of CS and GF nanoparticles was able to enhance the antioxidant power, which further reduced oxidative damage, DNA injury, and apoptosis. These results indicated the protective and therapeutic role of biogenic chitosan and maitake nanoparticles against nephrotoxicity.


Subject(s)
Carcinoma, Ehrlich Tumor , Chitosan , Grifola , Animals , Mice , Ascites/metabolism , Chitosan/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Creatinine , DNA Damage , Urea , Apoptosis
13.
J Ethnopharmacol ; 321: 117566, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38081395

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia plants have long been used as traditional medicine in China, Europe, America, Turkey, India, Africa, Iran, and Pakistan because of its high medicinal value and health advantages especially as a remedy for several types of cancer. AIM OF THE STUDY: Doxorubicin (DOX) is one of the most frequently prescribed drugs in cancer chemotherapy, with dose-limiting cardiotoxicity. The development of medicinal approaches to attenuate drug's toxicity represents an area of great concern in cancer research. Because research on this topic is still disputed and limited, we aim to investigate the potential of supplementation with Euphorbia grantii Oliv. on DOX-induced cardiomyopathy in Ehrlich carcinoma bearing mice. MATERIALS AND METHODS: The high-performance thin layer chromatography (HPTLC) analysis of total methanolic extract (TE), and its bioactive dichloromethane fraction (DCMF) was applied for the determination of friedelin. Male BALB/c mice were used to keep the Ehrlich ascites tumor cells. The experiment was performed for a 2-weeks period. RESULTS: A good linearity relationship was found to be with correlation coefficient (r2) value of 0.9924 for the isolated friedelin. Limit of detection (LOD) and limit of quantitation (LOQ) was found to be 0.00179, and 0.000537 ng/band respectively for friedelin. The amount of friedelin in the TE and DCMF were determined by using calibration curve of standard as 106.32 ± 5.69 µg, and 159.2 ± 4.24 µg friedelin/mg extract, respectively. DOX-induced cardiomyopathy by decreasing the ejection fraction (EF) compared to the Ehrlich and negative control groups. It resulted in a decrease in the EF by 30 and 39% compared to the other groups. High and low doses of the TE and DCMF did not result in significantly different ejection fractions compared to the Ehrlich group. Co-administration of DCMF with DOX ameliorated the alteration in the serum CKMB and LDH levels. As revealed from histopathological study, DOX impairs viability of cardiac myocytes and DCMF could effectively and extensively counteract this action of DOX and potentially protect the heart from severe toxicity of DOX. CONCLUSIONS: Finally, our results indicated that Euphorbia grantii Oliv. would be the best option to reduce DOX adverse effects.


Subject(s)
Carcinoma, Ehrlich Tumor , Cardiomyopathies , Euphorbia , Mice , Animals , Doxorubicin/pharmacology , Myocytes, Cardiac , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology
14.
Anticancer Agents Med Chem ; 24(3): 193-202, 2024.
Article in English | MEDLINE | ID: mdl-38037833

ABSTRACT

BACKGROUND: Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported. OBJECTIVE: The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential. METHODS: Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays. RESULTS: A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -ß- D-glucopyranoside inhibited PgL's hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells. CONCLUSION: The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.


Subject(s)
Carcinoma, Ehrlich Tumor , Pomegranate , Humans , Mice , Rats , Animals , Lectins/pharmacology , Apoptosis , Plant Lectins/pharmacology , Plant Lectins/chemistry , Cell Proliferation , Ascites , Cell Line, Tumor , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Sugars/pharmacology , Sugars/therapeutic use , Plant Extracts/pharmacology
15.
Dokl Biochem Biophys ; 512(1): 300-318, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38093135

ABSTRACT

Quinoline derivatives possess several therapeutic properties. Aim: studying the anticancer effect of 3-(4-methyl-2-oxo-2-H-quinoline-7-yloxy)-3-phenylacrylic acid's sodium solution on the Ehrlich ascites carcinoma (EAC). Median lethal dose (LD50) and dose response curve was determined for sodium salt solution of 3-(4-methyl-2-oxo-2-H-quinoline-7-yloxy)-3-phenylacrylic acid, then diving a group of one hundred Swiss albino mice, which are all females, into five groups: group 1: (negative control) where intraperitoneally injected with saline into mice for 10 successive days; group 2 (positive control), also namely (EAC-bearing group): where the EAC cells were intraperitoneally injected into mice (2.5 × 106 cells/mouse) only one time on the first day; group 3 which is defined as the (therapeutic group) where the Na+ salt of the synthetic compound was injected into the peritoneum of the mice (2.5 mg/kg) the very first day after the injection of the EAC, then the compound was injected every two days for a period of 10 days; group 4 which is the (preventive group) where the sodium salt of the synthetic compound (2.5 mg/kg) was injected in the peritoneum of the mice the day before the injection of the EAC, then the compound was successively injected every day for a period of ten days; and group 5 which is the (drug group) in which mice were repeatedly injected) in their peritoneum with the sodium salt of the synthetic compound (2.5 mg/kg on a daily basis over a period of ten days. On the eleventh day of the trial, EAC cells were harvested from each mouse in a heparinized saline, in addition to blood samples, liver and kidney tissues which are also collected. Molecular docking showed that compound's sodium salt was docked into (PDB: 2R7G) and (PDB: 2R3I), which are the retinoblastoma protein receptor and the cyclin D-1 receptor respectively. Compared to those in the positive control group, mice in both the therapeutic and preventive groups, has shown a significant decrease in MDA, cyclin D-1 levels in the tissues of both liver and kidney tissues, in addition to the serum ALT, AST, CK-MB, and LDH activities, and the serum urea and creatinine concentration. However, mice in the formerly mentioned groups, both therapeutic and preventive groups, have shown an increase in the serum albumin, total protein, retinoblastoma protein in both liver and kidney tissues as well as the total antioxidant capacity, when compared to mice in the positive control group. It is worth mentioning that histopathological findings have confirmed that. Sodium salt of 3-(4-methyl-2-oxo-2H-quinoline-7-yloxy)-3-phenylacrylic acid showed potential in vivo anticancer and antioxidant effects against Ehrlich ascites carcinoma cells; (EAC cells).


Subject(s)
Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Quinolines , Female , Animals , Mice , Molecular Docking Simulation , Ascites/drug therapy , Retinoblastoma Protein/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Cyclin D
16.
BMC Complement Med Ther ; 23(1): 457, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098043

ABSTRACT

The current research intended to evaluate the antitumor properties of Moringa oleifera oil extract (MOE). Fifty-six female Swiss albino mice were employed in this study. Animals were assigned into four groups: control (C) group, moringa oil extract (MOE) group administered (500 mg/kg b. wt) MOE daily via gavage, Ehrlich ascites carcinoma (EAC) group and EAC group administered daily with (500 mg/kg b.wt) MOE for two weeks (EAC/MOE). The results showed that MOE significantly ameliorated the EAC increase in body weight and reduced the EAC cell viability. In addition, they upgraded the levels of hepatic and renal functions, inflammatory cytokines, oxidative stress markers and EAC-induced hepatic and renal histopathological changes. Treatment of EAC with MOE induced antitumor, anti-inflammatory and antioxidant effects and normalized most of the tested parameters besides the histopathological alterations in both renal and hepatic tissues. HPLC for the MOE identified Cinnamic acid, Ellagic acid, Quercetin, Gallic acid, Vanillin and Hesperidin as major compounds. The molecular docking study highlighted the virtual binding of the identified compounds inside the GSH and SOD proteins, especially for Quercetin which exhibited promising binding affinity with good interactive binding mode with the key amino acids. These results demonstrate that the antitumor constituents of MOE against EAC induced oxidative stress and inflammation by preventing oxidative damage and controlling EAC increase.


Subject(s)
Carcinoma, Ehrlich Tumor , Moringa oleifera , Female , Mice , Animals , Antioxidants/chemistry , Molecular Docking Simulation , Ascites , Quercetin , Plant Extracts/chemistry , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Anti-Inflammatory Agents/therapeutic use , Plant Oils
17.
Anticancer Agents Med Chem ; 23(17): 1924-1931, 2023.
Article in English | MEDLINE | ID: mdl-37469157

ABSTRACT

BACKGROUND: Indazoles are known for their anti-cancer properties. OBJECTIVE: The current investigation was on the synthesis and evaluation of novel indazole derivatives for their anticancer properties. METHODS: A series of novel indazoles were synthesized and characterized by IR, NMR and LCMS. We performed cytotoxic studies for all synthesized compounds on different cell lines such as HeLa, MCF-7 and EAC using MTT assay. The lead compound was tested further for its anti-tumor and anti-angiogenic effect on EAT tumor model. RESULTS: Amongst the series of compounds synthesized, compound KA8 showed potent antiproliferative effect against Hela, MCF-7 and EAC cell lines with IC50 values 10.4 to 11.5 and 13.5 µM respectively. In addition, our compound KA8 significantly decreased the cell viability, body weight, ascites volume and it also showed superior survival ability of mice compared to control groups. Furthermore, it suppressed the formation of neovasculature in the peritoneum of EAT-bearing mice. CONCLUSION: The findings reveal that the lead compound KA8 possesses potent anti-tumor and anti-angiogenic properties thereby promising it to be developed as a novel anticancer agent with further mechanistic studies.


Subject(s)
Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Animals , Mice , Cell Line, Tumor , Indazoles/chemistry , Ascites/drug therapy , Cell Proliferation , Antineoplastic Agents/chemistry , Carcinoma, Ehrlich Tumor/drug therapy , Drug Screening Assays, Antitumor , Molecular Structure , Structure-Activity Relationship
18.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446252

ABSTRACT

The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.


Subject(s)
Carcinoma, Ehrlich Tumor , Hyperthermia, Induced , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/metabolism , Angiogenesis Inhibitors/therapeutic use
19.
Int Immunopharmacol ; 122: 110622, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37451014

ABSTRACT

Although activated adoptive T cells therapy (ATC) is an effective approach for cancer treatment, it is not clear how modulation of T cell activation impacts their biochemical signature which significantly impacts the cell function. This study is aimed to investigate the impact of polyclonal activation on the metabolic signature of T cells from tumor-bearing mice under different settings of treatment with chemotherapy. Thirty female Swiss albino mice were divided into 5 groups (n = 6/each), Gp1(PBS), groups Gp2 were inoculated intraperitoneal (i.p) with 1 × 106 cells/mouse Ehrlich ascites carcinoma (EAC), Gp3-Gp5 were treated with cisplatin (20 mg/mice) which were represented as EAC/CIS/1wk Or EAC/CIS/2wk 3 times every other day. Splenocytes were cultured in or presence of concanavalin-A (Con-A) and IL-2 for 24 h or 72 h, then cells were harvested, and processed to determine the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and glucose 6 phosphate dehydrogenase(G6PD) enzymes. The results showed that before culture, T cells harvested from EAC/PBS/1wk of mice or inoculated with EAC/CIS/1wk showed higher activity in HK, PFK, LDH, and G6PH as compared to naive T cells. After 24, and 72 h of culture and activation, the enzyme activities in T cells harvested from EAC/CIS/2wk mice or EAC/CIS/3wk mice decreased compared with their control. The late stage of the tumor without chemotherapy gives a low glycolic rate. In late activation, naive and early stages of the tumor with chemotherapy can give high glycolic metabolism. These results show great significance as an application of adoptive T-cell therapy.


Subject(s)
Carcinoma, Ehrlich Tumor , Cisplatin , Female , Animals , Mice , Tumor Burden , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ascites , Carcinoma, Ehrlich Tumor/drug therapy
20.
Sci Rep ; 13(1): 12268, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507468

ABSTRACT

The ongoing development of novel drugs for breast cancer aims to improve therapeutic outcomes, reduce toxicities, and mitigate resistance to chemotherapeutic agents. Doxorubicin (Dox) is known for its significant side effects caused by non-specific cytotoxicity. In this study, we investigated the antitumor activity of galloylquinic acids (BF) and the beneficial role of their combination with Dox in an Ehrlich ascites carcinoma (EAC)-bearing mouse model, as well as their cytotoxic effect on MCF-7 cells. The EAC-mice were randomized into five experimental groups: normal saline, Dox (2 mg/kg, i.p), BF (150 mg/kg, orally), Dox and BF combined mixture, and a control group. Mice were subjected to a 14-day treatment regimen. Results showed that BF compounds exerted chemopreventive effects in EAC mice group by increasing mean survival time, decreasing tumor volume, inhibiting ascites tumor cell count, modulating body weight changes, and preventing multi-organ histopathological alterations. BF suppressed the increased levels of inflammatory mediators (IL-6 and TNF-α) and the angiogenic marker VEGF in the ascitic fluid. In addition, BF and their combination with Dox exhibited significant cytotoxic activity on MCF-7 cells by inhibiting cell viability and modulating Annexin A1 level. Moreover, BF treatments could revert oxidative stress, restore liver and kidney functions, and normalize blood cell counts.


Subject(s)
Annexin A1 , Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Doxorubicin , Animals , Mice , Antineoplastic Agents/pharmacology , Ascites , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Cytokines/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...