Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40.483
1.
Drug Deliv ; 31(1): 2354687, 2024 Dec.
Article En | MEDLINE | ID: mdl-38823413

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity in vitro and in vivo when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.


Carcinoma, Hepatocellular , Diterpenes , Epoxy Compounds , Liver Neoplasms , Nanoparticles , Phenanthrenes , Polylactic Acid-Polyglycolic Acid Copolymer , Diterpenes/administration & dosage , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Mice , Cell Membrane/drug effects , Particle Size , Drug Carriers/chemistry , Mice, Nude , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Inbred BALB C
2.
Med Sci Monit ; 30: e943523, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38824386

BACKGROUND Hepatocellular carcinoma (HCC) poses a significant threat to human life and is the most prevalent form of liver cancer. The intricate interplay between apoptosis, a common form of programmed cell death, and its role in immune regulation stands as a crucial mechanism influencing tumor metastasis. MATERIAL AND METHODS Utilizing HCC samples from the TCGA database and 61 anoikis-related genes (ARGs) sourced from GeneCards, we analyzed the relationship between ARGs and immune cell infiltration in HCC. Subsequently, we identified long non-coding RNAs (lncRNAs) associated with ARGs, using the least absolute shrinkage and selection operator (LASSO) regression analysis to construct a robust prognostic model. The predictive capabilities of the model were then validated through examination in a single-cell dataset. RESULTS Our constructed prognostic model, derived from lncRNAs linked to ARGs, comprised 11 significant lncRNAs: NRAV, MCM3AP-AS1, OTUD6B-AS1, AC026356.1, AC009133.1, DDX11-AS1, AC108463.2, MIR4435-2HG, WARS2-AS1, LINC01094, and HCG18. The risk score assigned to HCC samples demonstrated associations with immune indicators and the infiltration of immune cells. Further, we identified Annexin A5 (ANXA5) as the pivotal gene among ARGs, with it exerting a prominent role in regulating the lncRNA gene signature. Our validation in a single-cell database elucidated the involvement of ANXA5 in immune cell infiltration, specifically in the regulation of mononuclear cells. CONCLUSIONS This study delves into the intricate correlation between ARGs and immune cell infiltration in HCC, culminating in the development of a novel prognostic model reliant on 11 ARGs-associated lncRNAs. Furthermore, our findings highlight ANXA5 as a promising target for immune regulation in HCC, offering new perspectives for immune therapy in the context of HCC.


Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , Prognosis , Databases, Genetic , Biomarkers, Tumor/genetics , Anoikis/genetics , Apoptosis/genetics
3.
BMC Cancer ; 24(1): 672, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824541

BACKGROUND: Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS: To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS: The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.


Carcinoma, Hepatocellular , Liver Neoplasms , Transcriptome , Tumor Microenvironment , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/secondary , Tumor Microenvironment/genetics , Prognosis , Genomics/methods , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Male , Female , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
4.
Oncol Res ; 32(6): 1129-1139, 2024.
Article En | MEDLINE | ID: mdl-38827325

Circular RNAs (circRNAs) have been recognized as pivotal regulators in tumorigenesis, yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma (HCC) remain elusive. We sought to unveil the expression profile and biological role of circMYBL2 in HCC. Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells, and qRT‒PCR analysis was then performed in HCC cell lines and tissues, revealing significant upregulation of circMYBL2. Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression. Furthermore, bioinformatics analysis, qRT‒PCR analysis, luciferase reporter assays, and western blot analysis were employed to investigate the interplay among circMYBL2, miR-1205, and E2F1. CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines. Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells, whereas circMYBL2 knockdown elicited contrasting effects. Mechanistically, our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205. Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis, suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.


Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Disease Progression , E2F1 Transcription Factor , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , RNA, Circular , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , RNA, Circular/genetics , Cell Proliferation/genetics , Cell Line, Tumor , MicroRNAs/genetics , Cell Movement/genetics , Mice , Prognosis
5.
BMC Cancer ; 24(1): 673, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825709

Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.


Carcinoma, Hepatocellular , Liver Neoplasms , Mutation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Male , Female , Prognosis , Middle Aged , Aged , Adult , Biomarkers, Tumor/genetics , Genomics/methods , BRCA2 Protein/genetics , Molecular Targeted Therapy , Hepatectomy , Gene Expression Profiling , Tumor Suppressor Protein p53/genetics , DNA-Binding Proteins , Neoplasm Proteins , beta Catenin
7.
Oncol Res ; 32(6): 1063-1078, 2024.
Article En | MEDLINE | ID: mdl-38827322

Hepatocellular carcinoma (HCC) is a malignancy known for its unfavorable prognosis. The dysregulation of the tumor microenvironment (TME) can affect the sensitivity to immunotherapy or chemotherapy, leading to treatment failure. The elucidation of PHLDA2's involvement in HCC is imperative, and the clinical value of PHLDA2 is also underestimated. Here, bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC. Then, the expression and function of PHLDA2 were examined via the qRT-PCR, Western Blot, and MTT assays. Our findings indicate a substantial upregulation of PHLDA2 in HCC, correlated with a poorer prognosis. The methylation levels of PHLDA2 were found to be lower in HCC tissues compared to normal liver tissues. Besides, noteworthy associations were observed between PHLDA2 expression and immune infiltration in HCC. In addition, PHLDA2 upregulation is closely associated with stemness features and immunotherapy or chemotherapy resistance in HCC. In vitro experiments showed that sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels, and PHLDA2 knockdown markedly decreased the sensitivity of HCC cells to chemotherapy drugs. Meanwhile, we found that TGF-ß induced the expression of PHLDA2 in vitro. The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via activating the AKT signaling pathway. Our study revealed the novel role of PHLDA2 as an independent prognostic factor, which plays an essential role in TME remodeling and treatment resistance in HCC.


Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Tumor Microenvironment/immunology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction , Nuclear Proteins
8.
BMC Cancer ; 24(1): 624, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778317

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Carcinoma, Hepatocellular , Cyclic Nucleotide Phosphodiesterases, Type 7 , DNA Methylation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Genes, Tumor Suppressor , Male , Cell Proliferation/genetics , Female , Neoplasm Metastasis , Cell Movement/genetics
9.
Immun Inflamm Dis ; 12(5): e1264, 2024 May.
Article En | MEDLINE | ID: mdl-38780041

AIM: Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS: Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS: Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS: HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.


Carcinoma, Hepatocellular , Dendritic Cells , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Neoplasm Metastasis , Transcriptome , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Gene Expression Regulation, Neoplastic/immunology , Gene Expression Profiling , T-Lymphocytes, Regulatory/immunology , Prognosis , Computational Biology/methods , Chemokine CCL19/genetics , Chemokine CCL19/metabolism
10.
J Cell Mol Med ; 28(10): e18380, 2024 May.
Article En | MEDLINE | ID: mdl-38780503

Hepatocellular carcinoma (HCC) presents a persistent challenge to conventional therapeutic approaches. SLC12A5 is implicated in an oncogenic capacity and facilitates the progression of cancer. The objective of this investigation is to scrutinize the inhibitory effects of borax on endoplasmic reticulum (ER)-stress and apoptosis mediated by SLC12A5 in HepG2 cells. Initially, we evaluated the cytotoxic impact of borax on both HL-7702 and HepG2 cell lines. Subsequently, the effects of borax on cellular morphology and the cell cycle of these lines were examined. Following this, we explored the impact of borax treatment on the mRNA and protein expression levels of SLC12A5, C/EBP homologous protein (CHOP), glucose-regulated protein-78 (GRP78), activating transcription factor-6 (ATF6), caspase-3 (CASP3), and cytochrome c (CYC) in these cellular populations. The determined IC50 value of borax for HL-7702 cells was 40.8 mM, whereas for HepG2 cells, this value was 22.6 mM. The concentrations of IC50 (22.6 mM) and IC75 (45.7 mM) of borax in HepG2 cells did not manifest morphological aberrations in HL-7702 cells. Conversely, these concentrations in HepG2 cells induced observable morphological and nuclear abnormalities, resulting in cell cycle arrest in the G1/G0 phase. Additionally, the levels of SLC12A5, ATF6, CHOP, GRP78, CASP3, and CYC were elevated in HepG2 cells in comparison to HL-7702 cells. Moreover, SLC12A5 levels decreased following borax treatment in HepG2 cells, whereas ATF6, CHOP, GRP78, CASP3, and CYC levels exhibited a significant increase. In conclusion, our data highlight the potential therapeutic effects of borax through the regulation of ER stress in HCC by targeting SLC12A5.


Apoptosis , Carcinoma, Hepatocellular , Cell Survival , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Liver Neoplasms , Humans , Endoplasmic Reticulum Stress/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Cell Survival/drug effects , Hep G2 Cells , Apoptosis/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Cell Proliferation/drug effects , Cell Cycle/drug effects
11.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Article En | MEDLINE | ID: mdl-38780505

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Carcinogenesis , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Liver Neoplasms , RNA, Long Noncoding , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , RNA, Long Noncoding/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Animals , Cell Movement/genetics , Tumor Escape/genetics , Mice , Cell Hypoxia/genetics , Signal Transduction
12.
J Egypt Natl Canc Inst ; 36(1): 18, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797810

BACKGROUND: This systematic review aims to compare the prognosis of treatment transarterial chemoembolization (TACE) combined with sorafenib and TACE-alone in patients with hepatocellular carcinoma (HCC) with Barcelona clinic liver cancer-stage C (BCLC-C). MATERIALS AND METHODS: A systematic search was conducted on five electronic databases: PubMed, ScienceDirect, Cochrane, Embase, and Scopus. Studies were included if they compared overall survival (OS) of TACE-Sorafenib to TACE-alone in patients with HCC BCLC-C within the 2019-2023 timeframe. We excluded studies consisting of conference abstracts, letters, editorials, guidelines, case reports, animal studies, trial registries, and unpublished work. The selected articles were evaluated from August 2023 to September 2023. The journal's quality was assessed with NOS for a non-randomized controlled trial. RESULTS: This systematic review included four studies following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). All four studies compared the OS of 401 patients with TACE-sorafenib to TACE-alone. Two studies compared time-to-progression (TTP), one study compared progression-free survival (PFS), and two studies compared disease control rate (DCR). There were various population criteria, TACE techniques used, risk factors, follow-up time, and adverse events. The collected evidence generally suggested that the combination of TACE-sorafenib is superior compared to TACE-alone. Due to a lack of essential data for the included study, a meta-analysis couldn't be performed. CONCLUSION: The results of this systematic review suggested that TACE-sorafenib combination therapy in patients with HCC BCLC-C improves OS superior compared to TACE-alone, without a notable increase in adverse events.


Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Sorafenib , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Chemoembolization, Therapeutic/methods , Sorafenib/therapeutic use , Sorafenib/administration & dosage , Prognosis , Neoplasm Staging , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Treatment Outcome , Combined Modality Therapy
13.
J Biochem Mol Toxicol ; 38(6): e23737, 2024 Jun.
Article En | MEDLINE | ID: mdl-38798245

Recently, olsalazine a DNA hypomethylating agent was found to inhibit the growth of breast cancer cells. The present study was carried out to evaluate the effects of olsalazine pretreatment in the potentiation of chemosensitivity of gemcitabine for the treatment of hepatocellular carcinoma (HCC). In silico molecular docking was performed to analyze the interaction of olsalazine and gemcitabine with DNMT1 and DNA, respectively, using the AutoDock tools 1.5.6. Cytotoxicity of olsalazine, gemcitabine, and combination were measured on human HePG2 cells using MTT assay. Antiproliferative effects were assessed using animal model of N-nitrosodiethylamine and carbon tetrachloride-induced HCC. Treatment was initiated from 8th week of induction to 11th week and change in body weight, liver weight, and survival rate were measured. Following treatment, blood samples were collected for estimation serum biochemistry. Blood serum was used for the estimation of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), C-reactive protein [CRP], lactate dehydrogenase (LDH), and P53 levels. Oxidative stress markers were measured in liver tissue homogenates. Histopathology and immunohistochemistry (IHC) were performed on liver sections to detect the morphological changes and P53 expression. Docking analysis revealed the interactions between olsalazine and DNMT1 with a binding energy score of -5.34 and gemcitabine and DNA with a binding energy score of -5.93. Olsalazine pretreatment potentiated the antiproliferative effect of gemcitabine in cell line study. In the group receiving olsalazine pretreatment showed significant reductions in relative liver weight and improved survival rate of gemcitabine treatment group. Serum biochemical markers: serum glutamate pyruvate transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, and bilirubin revealed improved liver functions. Olsalazine pretreatment also reduced the levels of inflammatory markers like CRP, LDH, TNF-α, and IL-6 and oxidative stress markers dose dependently. Histopathology and IHC showed improved liver morphology with potentiated the induction of P53 upon olsalazine pretreatment in combination with gemcitabine. In conclusion, sequential combination of olsalazine and gemcitabine improved the treatment outcomes during the progression of HCC.


Carcinoma, Hepatocellular , Deoxycytidine , Gemcitabine , Liver Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Molecular Docking Simulation , Male , Drug Synergism , Rats , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
14.
Cells ; 13(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38786033

Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.


Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Palmitic Acid , Pyroptosis , Tretinoin , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Diterpenes/pharmacology , Palmitic Acid/pharmacology , Pyroptosis/drug effects , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Tretinoin/pharmacology , Animals , Autophagy/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects
15.
PLoS One ; 19(5): e0304352, 2024.
Article En | MEDLINE | ID: mdl-38787832

PURPOSE: To evaluate the added value of contrast-enhanced ultrasonography (CEUS) using Sonazoid in characterizing focal liver lesions (FLLs) with indeterminate findings on gadoxetic acid-enhanced liver MRI in patients without risk factors for hepatocellular carcinoma (HCC). METHODS: Patients who underwent CEUS using Sonazoid for characterizing indeterminate FLLs on gadoxetic acid-enhanced liver MRI were. The indeterminate FLLs were classified according to the degree of malignancy on a 5-point scale on MRI and combined MRI and CEUS. The final diagnosis was made either pathologically or based on more than one-year follow-up. The diagnostic performance was assessed using a receiver operating characteristic (ROC) curve analysis, and the net reclassification improvement (NRI) was calculated. RESULTS: A total of 97 patients (mean age, 49 years ± 16, 41 men, 80 benign and 17 malignant lesions) were included. When CEUS was added to MRI, the area under the ROC curve increased, but the difference was not statistically significant (0.87 [95% confidence interval {CI}, 0.77-0.98] for MRI vs 0.93 [95% CI, 0.87-0.99] for CEUS added to MRI, P = 0.296). The overall NRI was 0.473 (95% CI, 0.100-0.845; P = 0.013): 33.8% (27/80) of benign lesions and 41.2% (7/17) of malignant lesions were appropriately reclassified, whereas 10.0% (8/80) of benign lesions and 17.6% (3/17) of malignant lesions were incorrectly reclassified. CONCLUSIONS: Although performing CEUS with Sonazoid did not significantly improve the overall diagnostic performance in characterizing indeterminate FLLs on gadoxetic acid-enhanced liver MRI in patients without risk factors for HCC, it may increase radiologist's confidence in classifying FLLs.


Carcinoma, Hepatocellular , Contrast Media , Ferric Compounds , Gadolinium DTPA , Iron , Liver Neoplasms , Magnetic Resonance Imaging , Oxides , Ultrasonography , Humans , Male , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Female , Magnetic Resonance Imaging/methods , Ultrasonography/methods , Adult , Risk Factors , ROC Curve , Aged , Liver/diagnostic imaging , Liver/pathology
16.
J Cancer Res Clin Oncol ; 150(5): 270, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780656

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancers. Little is known about the combined hepatocellular-cholangiocarcinoma (cHCC-ICC) variant and the proper therapeutic strategies. Out of over 1200 available studies about cHCC-ICC, we selected the most representative ones that reflected updated information with application to individualized therapy. Based on literature data and own experience, we hypothesize that two molecular groups of cHCC-ICC can be identified. The proposed division might have a significant therapeutic role. Most cases develop, like HCC, on a background of cirrhosis and hepatitis and share characteristics with HCC; thus, they are named HCC-type cHCC-ICC and therapeutic strategies might be like those for HCC. This review also highlights a new carcinogenic perspective and identifies, based on literature data and the own experience, a second variant of cHCC-ICC called ICC-type cHCC-ICC. Contrary to HCC, these cases show a tendency for lymph node metastases and ICC components in the metastatic tissues. No guidelines have been established yet for such cases. Individualized therapy should be, however, oriented toward the immunoprofile of the primary tumor and metastatic cells, and different therapeutic strategies should be used in patients with HCC- versus ICC-type cHCC-ICC.


Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/therapy , Cholangiocarcinoma/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics
17.
Genomics ; 116(3): 110852, 2024 May.
Article En | MEDLINE | ID: mdl-38703969

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Autophagy , Liver Neoplasms , tau Proteins , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Autophagy/genetics , tau Proteins/genetics , tau Proteins/metabolism , Prognosis , Cell Line, Tumor , Survivin/genetics , Survivin/metabolism , Cell Proliferation , Animals , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Biomarkers, Tumor/genetics , Cell Movement , Mice , Apoptosis , Gene Expression Regulation, Neoplastic , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism
18.
Front Immunol ; 15: 1244392, 2024.
Article En | MEDLINE | ID: mdl-38694506

Objective: Significant advancements have been made in hepatocellular carcinoma (HCC) therapeutics, such as immunotherapy for treating patients with HCC. However, there is a lack of reliable biomarkers for predicting the response of patients to therapy, which continues to be challenging. Cancer stem cells (CSCs) are involved in the oncogenesis, drug resistance, and invasion, as well as metastasis of HCC cells. Therefore, in this study, we aimed to create an mRNA expression-based stemness index (mRNAsi) model to predict the response of patients with HCC to immunotherapy. Methods: We retrieved gene expression and clinical data of patients with HCC from the GSE14520 dataset and the Cancer Genome Atlas (TCGA) database. Next, we used the "one-class logistic regression (OCLR)" algorithm to obtain the mRNAsi of patients with HCC. We performed "unsupervised consensus clustering" to classify patients with HCC based on the mRNAsi scores and stemness subtypes. The relationships between the mRNAsi model, clinicopathological features, and genetic profiles of patients were compared using various bioinformatic methods. We screened for differentially expressed genes to establish a stemness-based classifier for predicting the patient's prognosis. Next, we determined the effect of risk scores on the tumor immune microenvironment (TIME) and the response of patients to immune checkpoint blockade (ICB). Finally, we used qRT-PCR to investigate gene expression in patients with HCC. Results: We screened CSC-related genes using various bioinformatics tools in patients from the TCGA-LIHC cohort. We constructed a stemness classifier based on a nine-gene (PPARGC1A, FTCD, CFHR3, MAGEA6, CXCL8, CABYR, EPO, HMMR, and UCK2) signature for predicting the patient's prognosis and response to ICBs. Further, the model was validated in an independent GSE14520 dataset and performed well. Our model could predict the status of TIME, immunogenomic expressions, congenic pathway, and response to chemotherapy drugs. Furthermore, a significant increase in the proportion of infiltrating macrophages, Treg cells, and immune checkpoints was observed in patients in the high-risk group. In addition, tumor cells in patients with high mRNAsi scores could escape immune surveillance. Finally, we observed that the constructed model had a good expression in the clinical samples. The HCC tumor size and UCK2 genes expression were significantly alleviated and decreased, respectively, by treatments of anti-PD1 antibody. We also found knockdown UCK2 changed expressions of immune genes in HCC cell lines. Conclusion: The novel stemness-related model could predict the prognosis of patients and aid in creating personalized immuno- and targeted therapy for patients in HCC.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Computational Biology , Immunotherapy , Liver Neoplasms , Machine Learning , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Computational Biology/methods , Prognosis , Biomarkers, Tumor/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Immunotherapy/methods , Male , Gene Expression Regulation, Neoplastic , Female , Gene Expression Profiling , Middle Aged , Predictive Value of Tests
19.
World J Surg Oncol ; 22(1): 125, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720338

BACKGROUND: To investigate the correlation between microinvasion and various features of hepatocellular carcinoma (HCC), and to clarify the microinvasion distance from visible HCC lesions to subclinical lesions, so as to provide clinical basis for the expandable boundary of clinical target volume (CTV) from gross tumor volume (GTV) in the radiotherapy of HCC. METHODS: HCC patients underwent hepatectomy of liver cancer in our hospital between July 2019 and November 2021 were enrolled. Data on various features and tumor microinvasion distance were collected. The distribution characteristics of microinvasion distance were analyzed to investigate its potential correlation with various features. Tumor size compared between radiographic and pathologic samples was analyzed to clarify the application of pathologic microinvasion to identify subclinical lesions of radiographic imaging. RESULTS: The average microinvasion distance was 0.6 mm, with 95% patients exhibiting microinvasion distance less than 3.0 mm, and the maximum microinvasion distance was 4.0 mm. A significant correlation was found between microinvasion and liver cirrhosis (P = 0.036), serum albumin level (P = 0.049). Multivariate logistic regression analysis revealed that HCC patients with cirrhosis had a significantly lower risk of microinvasion (OR = 0.09, 95%CI = 0.02 ~ 0.50, P = 0.006). Tumor size was overestimated by 1.6 mm (95%CI=-12.8 ~ 16.0 mm) on radiographic size compared to pathologic size, with a mean %Δsize of 2.96% (95%CI=-0.57%~6.50%). The %Δsize ranged from - 29.03% to 34.78%. CONCLUSIONS: CTV expanding by 5.4 mm from radiographic GTV could include all pathologic microinvasive lesions in the radiotherapy of HCC. Liver cirrhosis was correlated with microinvasion and were independent predictive factor of microinvasion in HCC.


Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Invasiveness , Tumor Burden , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Prognosis , Hepatectomy/methods , Aged , Follow-Up Studies , Retrospective Studies , Adult , Radiotherapy Planning, Computer-Assisted/methods , Liver Cirrhosis/pathology
20.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Article En | MEDLINE | ID: mdl-38722284

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Female , Prognosis , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Movement/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Clinical Relevance
...