Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.254
Filter
1.
J Gen Physiol ; 156(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39083045

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart characterized by thickening of the left ventricle (LV), hypercontractility, and impaired relaxation. HCM is caused primarily by heritable mutations in sarcomeric proteins, such as ß myosin heavy chain. Until recently, medications in clinical use for HCM did not directly target the underlying contractile changes in the sarcomere. Here, we investigate a novel small molecule, RLC-1, identified in a bovine cardiac myofibril high-throughput screen. RLC-1 is highly dependent on the presence of a regulatory light chain to bind to cardiac myosin and modulate its ATPase activity. In demembranated rat LV trabeculae, RLC-1 decreased maximal Ca2+-activated force and Ca2+ sensitivity of force, while it increased the submaximal rate constant for tension redevelopment. In myofibrils isolated from rat LV, both maximal and submaximal Ca2+-activated force are reduced by nearly 50%. Additionally, the fast and slow phases of relaxation were approximately twice as fast as DMSO controls, and the duration of the slow phase was shorter. Structurally, x-ray diffraction studies showed that RLC-1 moved myosin heads away from the thick filament backbone and decreased the order of myosin heads, which is different from other myosin inhibitors. In intact trabeculae and isolated cardiomyocytes, RLC-1 treatment resulted in decreased peak twitch magnitude and faster activation and relaxation kinetics. In conclusion, RLC-1 accelerated kinetics and decreased force production in the demembranated tissue, intact tissue, and intact whole cells, resulting in a smaller cardiac twitch, which could improve the underlying contractile changes associated with HCM.


Subject(s)
Myocardial Contraction , Animals , Rats , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Myosin Light Chains/metabolism , Cattle , Myofibrils/metabolism , Cardiac Myosins/metabolism , Rats, Sprague-Dawley , Male , Calcium/metabolism
2.
Med ; 5(7): 655-659, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002536

ABSTRACT

A key area of therapeutic progress in obstructive hypertrophic cardiomyopathy revolves around the emergence of cardiac myosin inhibitors, of which mavacamten and aficamten represent the first and second molecules. We summarize the key research evidence, including many similarities and potential differences between various clinical trials studying these molecules.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Cardiac Myosins/metabolism , Barbiturates/therapeutic use , Urea/analogs & derivatives , Urea/therapeutic use , Urea/pharmacology , Uracil/analogs & derivatives , Uracil/therapeutic use , Uracil/pharmacology , Benzylamines/therapeutic use , Clinical Trials as Topic
3.
Circ Res ; 134(12): 1767-1790, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843292

ABSTRACT

Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.


Subject(s)
Autoimmune Diseases , Myocarditis , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/etiology , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/drug therapy , Animals , Autoantibodies/immunology , Autoimmunity , T-Lymphocytes/immunology , Autoantigens/immunology , Cardiac Myosins/immunology
4.
Nat Commun ; 15(1): 4885, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849353

ABSTRACT

Inherited cardiomyopathies are common cardiac diseases worldwide, leading in the late stage to heart failure and death. The most promising treatments against these diseases are small molecules directly modulating the force produced by ß-cardiac myosin, the molecular motor driving heart contraction. Omecamtiv mecarbil and Mavacamten are two such molecules that completed phase 3 clinical trials, and the inhibitor Mavacamten is now approved by the FDA. In contrast to Mavacamten, Omecamtiv mecarbil acts as an activator of cardiac contractility. Here, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All-atom molecular dynamics simulations reveal how these molecules produce distinct effects in motor allostery thus impacting force production in opposite way. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.


Subject(s)
Molecular Dynamics Simulation , Myocardial Contraction , Urea , Myocardial Contraction/drug effects , Crystallography, X-Ray , Humans , Urea/analogs & derivatives , Urea/pharmacology , Urea/chemistry , Cardiac Myosins/metabolism , Cardiac Myosins/chemistry , Cardiac Myosins/genetics , Ventricular Myosins/metabolism , Ventricular Myosins/chemistry , Ventricular Myosins/genetics , Animals , Benzylamines , Uracil/analogs & derivatives
5.
Biosci Biotechnol Biochem ; 88(8): 900-907, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38835135

ABSTRACT

Melanoma, a cancer arising from melanocytes, requires a novel treatment strategy because of the ineffectiveness of conventional therapies in certain patients. Fustin is a flavanonol found in young fustic (Cotinus coggygria). However, little is known about its antimelanoma effects. Our study demonstrates that fustin suppresses the growth of B16 melanoma cells. Phalloidin staining of cytoskeletal actin revealed that fustin induced a conformational change in the actin structure of melanoma cells, accompanied by suppressed phosphorylation of myosin regulatory light chain 2 (MLC2), a regulator of actin structure. Furthermore, the protein kinase A (cAMP-dependent protein kinase) inhibitor H89 completely attenuated fustin-induced downregulation of phosphorylated myosin phosphatase targeting subunit 1, which is involved in dephosphorylation of MLC2. In a mouse model, administration of fustin suppressed tumor growth in B16 melanoma cells without adverse effects. In conclusion, our findings suggest that fustin effectively suppresses melanoma cell growth both in vitro and in vivo.


Subject(s)
Cell Proliferation , Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Melanoma, Experimental , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/drug therapy , Cell Line, Tumor , Mice , Phosphorylation/drug effects , Myosin Light Chains/metabolism , Cardiac Myosins/metabolism , Flavonoids/pharmacology , Isoquinolines/pharmacology , Actins/metabolism , Sulfonamides/pharmacology , Humans , Melanoma/pathology , Melanoma/metabolism , Melanoma/drug therapy , Mice, Inbred C57BL
7.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928453

ABSTRACT

Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac ß-myosin heavy chain (ß-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant.


Subject(s)
Myosin Heavy Chains , Transfection , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Humans , Transfection/methods , Cell Line , Animals , Mice , Cardiac Myosins
8.
Stem Cell Res Ther ; 15(1): 184, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902843

ABSTRACT

BACKGROUND: Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) by traditional methods are a mix of atrial and ventricular CMs and many other non-cardiomyocyte cells. Retinoic acid (RA) plays an important role in regulation of the spatiotemporal development of the embryonic heart. METHODS: CMs were derived from hiPSC (hi-PCS-CM) using different concentrations of RA (Control without RA, LRA with 0.05µM and HRA with 0.1 µM) between day 3-6 of the differentiation process. Engineered heart tissues (EHTs) were generated by assembling hiPSC-CM at high cell density in a low collagen hydrogel. RESULTS: In the HRA group, hiPSC-CMs exhibited highest expression of contractile proteins MYH6, MYH7 and cTnT. The expression of TBX5, NKX2.5 and CORIN, which are marker genes for left ventricular CMs, was also the highest in the HRA group. In terms of EHT, the HRA group displayed the highest contraction force, the lowest beating frequency, and the highest sensitivity to hypoxia and isoprenaline, which means it was functionally more similar to the left ventricle. RNAsequencing revealed that the heightened contractility of EHT within the HRA group can be attributed to the promotion of augmented extracellular matrix strength by RA. CONCLUSION: By interfering with the differentiation process of hiPSC with a specific concentration of RA at a specific time, we were able to successfully induce CMs and EHTs with a phenotype similar to that of the left ventricle or right ventricle.


Subject(s)
Cell Differentiation , Heart Ventricles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Tretinoin , Humans , Tretinoin/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Heart Ventricles/cytology , Heart Ventricles/metabolism , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Cardiac Myosins/metabolism , Cardiac Myosins/genetics , Tissue Engineering/methods , Homeobox Protein Nkx-2.5/metabolism , Homeobox Protein Nkx-2.5/genetics , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics
9.
Chem Biol Interact ; 398: 111085, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38823539

ABSTRACT

Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.


Subject(s)
Acute Lung Injury , Cardiac Myosins , Human Umbilical Vein Endothelial Cells , Kaempferols , Lung , Lysophospholipids , Mice, Inbred C57BL , Myosin Light Chains , Sepsis , Signal Transduction , Sphingosine , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Humans , Myosin Light Chains/metabolism , Signal Transduction/drug effects , Mice , Lysophospholipids/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/pharmacology , Male , Human Umbilical Vein Endothelial Cells/metabolism , Cardiac Myosins/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Lipopolysaccharides , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Receptors, Lysosphingolipid/metabolism , Interleukin-6/metabolism , Sphingosine-1-Phosphate Receptors/metabolism
10.
J Biol Chem ; 300(7): 107470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879012

ABSTRACT

Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the ß-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.


Subject(s)
Myocardial Contraction , Animals , Mice , Myocardial Contraction/drug effects , Myosin Light Chains/metabolism , Myosin Light Chains/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Cardiac Myosins/metabolism , Cardiac Myosins/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Knockout , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Humans , Cholinesterase Inhibitors/pharmacology , Male , Apoptosis/drug effects , Guanine Nucleotide Exchange Factors
11.
Open Biol ; 14(6): 230427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862020

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a monogenic cardiac disorder commonly induced by sarcomere gene mutations. However, the mechanism for HCM is not well defined. Here, we generated transgenic MYH7 R453C and MYH6 R453C piglets and found both developed typical cardiac hypertrophy. Unexpectedly, we found serious fibrosis and cardiomyocyte loss in the ventricular of MYH7 R453C, not MYH6 R453C piglets, similar to HCM patients. Then, RNA-seq analysis and western blotting identified the activation of ERK1/2 and PI3K-Akt pathways in MYH7 R453C. Moreover, we observed an increased expression of fetal genes and an excess of reactive oxygen species (ROS) in MYH7 R453C piglet models, which was produced by Nox4 and subsequently induced inflammatory response. Additionally, the phosphorylation levels of Smad2/3, ERK1/2 and NF-kB p65 proteins were elevated in cardiomyocytes with the MYH7 R453C mutation. Furthermore, epigallocatechin gallate, a natural bioactive compound, could be used as a drug to reduce cell death by adjusting significant downregulation of the protein expression of Bax and upregulated Bcl-2 levels in the H9C2 models with MYH7 R453C mutation. In conclusion, our study illustrated that TGF-ß/Smad2/3, ERK1/2 and Nox4/ROS pathways have synergistic effects on cardiac remodelling and inflammation in MYH7 R453C mutation.


Subject(s)
Myosin Heavy Chains , NADPH Oxidase 4 , NF-kappa B , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta , Animals , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Transforming Growth Factor beta/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Swine , Myocytes, Cardiac/metabolism , Humans , Cardiac Myosins/metabolism , Cardiac Myosins/genetics , Disease Models, Animal , MAP Kinase Signaling System , Animals, Genetically Modified , Smad2 Protein/metabolism , Smad2 Protein/genetics , Mutation , Smad3 Protein/metabolism , Smad3 Protein/genetics , Ventricular Remodeling , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Rats
12.
N Engl J Med ; 390(20): 1849-1861, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38739079

ABSTRACT

BACKGROUND: One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility. METHODS: In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24. RESULTS: A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups. CONCLUSIONS: Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiovascular Agents , Exercise Test , Aged , Female , Humans , Male , Middle Aged , Benzylamines , Cardiac Myosins/antagonists & inhibitors , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Double-Blind Method , Exercise Tolerance/drug effects , Oxygen Consumption/drug effects , Uracil/analogs & derivatives , Valsalva Maneuver , Ventricular Outflow Obstruction/drug therapy , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/etiology , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Administration, Oral
13.
Cell Signal ; 120: 111223, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729320

ABSTRACT

BACKGROUND: Control of angiogenesis is widely considered a therapeutic strategy, but reliable control methods are still under development. Phosphorylation of myosin light chain 2 (MLC2), which regulates actin-myosin interaction, is critical to the behavior of vascular endothelial cells (ECs) during angiogenesis. MLC2 is phosphorylated by MLC kinase (MLCK) and dephosphorylated by MLC phosphatase (MLCP) containing a catalytic subunit PP1. We investigated the potential role of MLC2 in the pharmacological control of angiogenesis. METHODS AND RESULTS: We exposed transgenic zebrafish Tg(fli1a:Myr-mCherry)ncv1 embryos to chemical inhibitors and observed vascular development. PP1 inhibition by tautomycetin increased length of intersegmental vessels (ISVs), whereas MLCK inhibition by ML7 decreased it; these effects were not accompanied by structural dysplasia. ROCK inhibition by Y-27632 also decreased vessel length. An in vitro angiogenesis model of human umbilical vein endothelial cells (HUVECs) showed that tautomycetin increased vascular cord formation, whereas ML7 and Y-27632 decreased it. These effects appear to be influenced by regulation of cell morphology rather than cell viability or motility. Actin co-localized with phosphorylated MLC2 (pMLC2) was abundant in vascular-like elongated-shaped ECs, but poor in non-elongated ECs. pMLC2 was associated with tightly arranged actin, but not with loosely arranged actin. Moreover, knockdown of MYL9 gene encoding MLC2 reduced total MLC2 and pMLC2 protein and inhibited angiogenesis in HUVECs. CONCLUSION: The present study found that MLC2 is a pivotal regulator of angiogenesis. MLC2 phosphorylation may be involved in the regulation of of cell morphogenesis and cell elongation. The functionally opposite inhibitors positively or negatively control angiogenesis, probably through the regulating EC morphology. These findings may provide a unique therapeutic target for angiogenesis.


Subject(s)
Cardiac Myosins , Human Umbilical Vein Endothelial Cells , Myosin Light Chains , Neovascularization, Physiologic , Pyridines , Zebrafish , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Humans , Animals , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/drug effects , Cardiac Myosins/metabolism , Pyridines/pharmacology , Myosin-Light-Chain Kinase/metabolism , Animals, Genetically Modified , Amides/pharmacology , rho-Associated Kinases/metabolism , Azepines/pharmacology , Actins/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Angiogenesis , Naphthalenes
14.
Expert Opin Pharmacother ; 25(7): 915-924, 2024 May.
Article in English | MEDLINE | ID: mdl-38813944

ABSTRACT

INTRODUCTION: Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic heart disease with an estimated prevalence in the general population of 0.2% to 0.6%. Clinically, HCM can range from no symptoms to severe symptoms such as heart failure or sudden cardiac death. Currently, the management of HCM involves lifestyle modifications, familial screening, genetic counseling, pharmacotherapy to manage symptoms, sudden cardiac death risk assessment, septal reduction therapy, and heart transplantation for specific patients. Multicenter randomized controlled trials have only recently explored the potential of cardiac myosin inhibitors (CMIs) such as mavacamten as a directed pharmacological approach for managing HCM. AREAS COVERED: We will assess the existing medical treatments for HCM: beta-blockers, calcium channel blockers, disopyramide, and different CMIs. We will also discuss future HCM pharmacotherapy guidelines and underline this patient population's unfulfilled needs. EXPERT OPINION: Mavacamten is the first-in-class CMI approved by the FDA to target HCM pathophysiology specifically. Mavacamten should be incorporated into the standard therapy for oHCM in case of symptom persistence despite using maximally tolerated beta blockers and/or calcium channel blockers. Potential drug-drug interactions should be assessed before initiating this drug. More studies are needed on the use of CMIs in patients with kidney and/or liver failure and pregnant/breastfeeding patients.


Subject(s)
Cardiomyopathy, Hypertrophic , Adult , Humans , Benzylamines , Cardiac Myosins/genetics , Cardiac Myosins/antagonists & inhibitors , Cardiomyopathy, Hypertrophic/drug therapy , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Drug Interactions , Randomized Controlled Trials as Topic , Uracil/analogs & derivatives
15.
Arch Cardiovasc Dis ; 117(6-7): 427-432, 2024.
Article in English | MEDLINE | ID: mdl-38762345

ABSTRACT

BACKGROUND: The efficacy of current pharmacological therapies in hypertrophic cardiomyopathy is limited. A cardiac myosin inhibitor, mavacamten, has recently been approved as a first-in-class treatment for symptomatic hypertrophic obstructive cardiomyopathy. AIMS: To assess the profile and burden of cardiac myosin inhibitor candidates in the hypertrophic cardiomyopathy prospective Register of hypertrophic cardiomyopathy (REMY) held by the French Society of Cardiology. METHODS: Data were collected at baseline and during follow-up from patients with hypertrophic cardiomyopathy enrolled in REMY by the three largest participating centres. RESULTS: Among 1059 adults with hypertrophic cardiomyopathy, 461 (43.5%) had obstruction; 325 (30.7%) of these were also symptomatic, forming the "cardiac myosin inhibitor candidates" group. Baseline features of this group were: age 58±15years; male sex (n=196; 60.3%); diagnosis-to-inclusion delay 5 (1-12)years; maximum wall thickness 20±6mm; left ventricular ejection fraction 69±6%; family history of hypertrophic cardiomyopathy or sudden cardiac death (n=133; 40.9%); presence of a pathogenic sarcomere gene mutation (n=101; 31.1%); beta-blocker or verapamil treatment (n=304; 93.8%), combined with disopyramide (n=28; 8.7%); and eligibility for septal reduction therapy (n=96; 29%). At the end of a median follow-up of 66 (34-106) months, 319 (98.2%) were treated for obstruction (n=43 [13.2%] received disopyramide), 46 (14.2%) underwent septal reduction therapy and the all-cause mortality rate was 1.9/100 person-years (95% confidence interval 1.4-2.6) (46 deaths). Moreover, 41 (8.9%) patients from the initial hypertrophic obstructive cardiomyopathy group became eligible for a cardiac myosin inhibitor. CONCLUSIONS: In this cohort of patients with hypertrophic cardiomyopathy selected from the REMY registry, one third were eligible for a cardiac myosin inhibitor.


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiovascular Agents , Registries , Ventricular Function, Left , Humans , Male , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/diagnosis , Female , Middle Aged , France/epidemiology , Treatment Outcome , Aged , Time Factors , Ventricular Function, Left/drug effects , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/adverse effects , Patient Selection , Prospective Studies , Cardiac Myosins/genetics , Benzylamines/therapeutic use , Adult , Risk Factors , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/drug therapy , Ventricular Outflow Obstruction/etiology , Uracil/analogs & derivatives
17.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38752340

ABSTRACT

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Subject(s)
CRISPR-Cas Systems , Cardiac Myosins , Cardiomyopathy, Hypertrophic , Myosin Heavy Chains , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/therapy , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Mice , Humans , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Alleles , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Genetic Therapy/methods
18.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690726

ABSTRACT

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Subject(s)
Amino Acid Substitution , Distal Myopathies , Proline , Animals , Mice , Humans , Proline/genetics , Proline/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Distal Myopathies/pathology , Mutation, Missense , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Female , Male , Mice, Transgenic , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
19.
JACC Clin Electrophysiol ; 10(7 Pt 1): 1380-1391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819352

ABSTRACT

BACKGROUND: The effects of disease-causing MYBPC3 or MYH7 genetic variants on atrial myopathy, atrial fibrillation (AF) clinical course, and catheter ablation efficacy remain unclear. OBJECTIVES: The aim of this study was to characterize the atrial substrate of patients with MYBPC3- or MYH7-mediated hypertrophic cardiomyopathy (HCM) and its impact on catheter ablation outcomes. METHODS: A retrospective single-center study of patients with HCM who underwent genetic testing and catheter ablation for AF was performed. Patients with MYBPC3- or MYH7-mediated HCM formed the gene-positive cohort; those without disease-causative genetic variants formed the control cohort. High-density electroanatomical mapping was performed using a 3-dimensional mapping system, followed by radiofrequency ablation. RESULTS: Twelve patients were included in the gene-positive cohort (mean age 55.6 ± 9.9 years, 83% men, 50% MYBPC3, 50% MYH7, mean ejection fraction 59.3% ± 13.7%, mean left atrial [LA] volume index 51.7 ± 13.1 mL/m2, mean LA pressure 20.2 ± 5.4 mm Hg) and 15 patients in the control arm (mean age 61.5 ± 12.6 years, 60% men, mean ejection fraction 64.9% ± 5.1%, mean LA volume index 54.1 ± 12.8 mL/m2, mean LA pressure 19.6 ± 5.41 mm Hg). Electroanatomical mapping demonstrated normal voltage in 87.7% ± 5.03% of the LA in the gene-positive cohort and 94.3% ± 3.58% of the LA in the control cohort (P < 0.001). Of the abnormal regions, intermediate scar (0.1-0.5 mV) accounted for 6.33% ± 1.97% in the gene-positive cohort and 3.07% ± 2.46% in the control cohort (P < 0.01). Dense scar (<0.1 mV) accounted for 5.93% ± 3.20% in the gene-positive cohort and 2.61% ± 2.19% in the control cohort (P < 0.01). Freedom from AF at 12 months was similar between the gene-positive (75%) and control (73%) cohorts (P = 0.92), though a greater number of procedures were required in the gene-positive cohort. CONCLUSIONS: Patients with MYBPC3- or MYH7-mediated HCM undergoing AF ablation have appreciably more low-amplitude LA signals, suggestive of fibrosis. However, catheter ablation remains an effective rhythm-control strategy.


Subject(s)
Atrial Fibrillation , Cardiac Myosins , Cardiomyopathy, Hypertrophic , Carrier Proteins , Catheter Ablation , Myosin Heavy Chains , Humans , Atrial Fibrillation/surgery , Atrial Fibrillation/genetics , Atrial Fibrillation/physiopathology , Catheter Ablation/methods , Middle Aged , Carrier Proteins/genetics , Female , Male , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/surgery , Cardiomyopathy, Hypertrophic/physiopathology , Retrospective Studies , Myosin Heavy Chains/genetics , Cardiac Myosins/genetics , Aged , Adult , Treatment Outcome
20.
J Gen Physiol ; 156(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709176

ABSTRACT

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Dilated , Ventricular Myosins , Animals , Humans , Actins/metabolism , Actins/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Mutation , Myocardial Contraction/physiology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL