Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.967
Filter
1.
Stem Cell Res Ther ; 15(1): 183, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902814

ABSTRACT

In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.


Subject(s)
Organoids , Tissue Engineering , Organoids/cytology , Organoids/metabolism , Humans , Tissue Engineering/methods , Animals , Cartilage/cytology , Regenerative Medicine/methods , Bone and Bones/cytology , Bone and Bones/physiology
2.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891883

ABSTRACT

Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-ß1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-ß1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Extracellular Matrix , Mesenchymal Stem Cells , Spheroids, Cellular , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Chondrogenesis/genetics , Extracellular Matrix/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Cells, Cultured , Wharton Jelly/cytology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Culture Techniques/methods , Tissue Engineering/methods , Cartilage/cytology , Cartilage/metabolism , Tooth, Deciduous/cytology , Tooth, Deciduous/metabolism , Dental Pulp/cytology , Dental Pulp/metabolism
3.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830491

ABSTRACT

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Subject(s)
Cell Differentiation , Cellulose , Chondrogenesis , Collagen , Hydrogels , Mesenchymal Stem Cells , Nanoparticles , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cellulose/chemistry , Cellulose/pharmacology , Chondrogenesis/drug effects , Cell Differentiation/drug effects , Nanoparticles/chemistry , Collagen/chemistry , Collagen/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Plastics/chemistry , Plastics/pharmacology , Cell Survival/drug effects , Glycosaminoglycans/metabolism , Cartilage/cytology , Cartilage/drug effects
4.
Sci Rep ; 14(1): 11991, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796487

ABSTRACT

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Subject(s)
Alginates , Bioreactors , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Microspheres , Tissue Engineering , Alginates/chemistry , Tissue Engineering/methods , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cartilage/metabolism , Cartilage/cytology , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Transforming Growth Factor beta1/metabolism , Cell Differentiation , Cells, Cultured , Transforming Growth Factor beta/metabolism , Extracellular Matrix/metabolism
5.
J Mater Chem B ; 12(22): 5360-5376, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38700242

ABSTRACT

Articular cartilage tissue has limited self-repair capabilities, with damage frequently progressing to irreversible degeneration. Engineered tissues constructed through bioprinting and embedded with stem cell aggregates offer promising therapeutic alternatives. Aggregates of bone marrow mesenchymal stromal cells (BMSCs) demonstrate enhanced and more rapid chondrogenic differentiation than isolated cells, thus facilitating cartilage repair. However, it remains a key challenge to precisely control biochemical microenvironments to regulate cellular adhesion and cohesion within bioprinted matrices simultaneously. Herein, this work reports a bioprintable hydrogel matrix with high cellular adhesion and aggregation properties for cartilage repair. The hydrogel comprises an enhanced cell-adhesive gelatin methacrylate and a cell-cohesive chitosan methacrylate (CHMA), both of which are subjected to photo-initiated crosslinking. By precisely adjusting the CHMA content, the mechanical stability and biochemical cues of the hydrogels are finely tuned to promote cellular aggregation, chondrogenic differentiation and cartilage repair implantation. Multi-layer constructs encapsulated with BMSCs, with high cell viability reaching 91.1%, are bioprinted and photo-crosslinked to support chondrogenic differentiation for 21 days. BMSCs rapidly form aggregates and display efficient chondrogenic differentiation both on the hydrogels and within bioprinted constructs, as evidenced by the upregulated expression of Sox9, Aggrecan and Collagen 2a1 genes, along with high protein levels. Transplantation of these BMSC-laden bioprinted hydrogels into cartilaginous defects demonstrates effective hyaline cartilage repair. Overall, this cell-responsive hydrogel scaffold holds immense promise for applications in cartilage tissue engineering.


Subject(s)
Bioprinting , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Regeneration , Chondrogenesis/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Mesenchymal Stem Cells/cytology , Regeneration/drug effects , Cartilage, Articular , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Differentiation/drug effects , Tissue Engineering , Methacrylates/chemistry , Cell Survival/drug effects , Cartilage/metabolism , Cartilage/cytology , Cells, Cultured , Humans
6.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38697073

ABSTRACT

Osteochondral tissue (OC) repair remains a significant challenge in the field of musculoskeletal tissue engineering. OC tissue displays a gradient structure characterized by variations in both cell types and extracellular matrix components, from cartilage to the subchondral bone. These functional gradients observed in the native tissue have been replicated to engineer OC tissuein vitro. While diverse fabrication methods have been employed to create these microenvironments, emulating the natural gradients and effective regeneration of the tissue continues to present a significant challenge. In this study, we present the design and development of CMC-silk interpenetrating (IPN) hydrogel with opposing dual biochemical gradients similar to native tissue with the aim to regenerate the complete OC unit. The gradients of biochemical cues were generated using an in-house-built extrusion system. Firstly, we fabricated a hydrogel that exhibits a smooth transition of sulfated carboxymethyl cellulose (sCMC) and TGF-ß1 (SCT gradient hydrogel) from the upper to the lower region of the IPN hydrogel to regenerate the cartilage layer. Secondly, a hydrogel with a hydroxyapatite (HAp) gradient (HAp gradient hydrogel) from the lower to the upper region was fabricated to facilitate the regeneration of the subchondral bone layer. Subsequently, we developed a dual biochemical gradient hydrogel with a smooth transition of sCMC + TGF-ß1 and HAp gradients in opposing directions, along with a blend of both biochemical cues in the middle. The results showed that the dual biochemical gradient hydrogels with biochemical cues corresponding to the three zones (i.e. cartilage, interface and bone) of the OC tissue led to differentiation of bone-marrow-derived mesenchymal stem cells to zone-specific lineages, thereby demonstrating their efficacy in directing the fate of progenitor cells. In summary, our study provided a simple and innovative method for incorporating gradients of biochemical cues into hydrogels. The gradients of biochemical cues spatially guided the differentiation of stem cells and facilitated tissue growth, which would eventually lead to the regeneration of the entire OC tissue with a smooth transition from cartilage (soft) to bone (hard) tissues. This promising approach is translatable and has the potential to generate numerous biochemical and biophysical gradients for regeneration of other interface tissues, such as tendon-to-muscle and ligament-to-bone.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Animals , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Chondrogenesis/drug effects , Cartilage/cytology , Cartilage/physiology , Cell Differentiation/drug effects , Bone and Bones/cytology , Durapatite/chemistry , Durapatite/pharmacology
8.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38563479

ABSTRACT

Osteoarthritis (OA) is a long-term, persistent joint disorder characterized by bone and cartilage degradation, resulting in tightness, pain, and restricted movement. Current attempts in cartilage regeneration are cell-based therapies using stem cells. Multipotent stem cells, such as mesenchymal stem cells (MSCs), and pluripotent stem cells, such as embryonic stem cells (ESCs), have been used to regenerate cartilage. However, since the discovery of human-induced pluripotent stem cells (hiPSCs) in 2007, it was seen as a potential source for regenerative chondrogenic therapy as it overcomes the ethical issues surrounding the use of ESCs and the immunological and differentiation limitations of MSCs. This literature review focuses on chondrogenic differentiation and 3D bioprinting technologies using hiPSCS, suggesting them as a viable source for successful tissue engineering. METHODS: A literature search was conducted using scientific search engines, PubMed, MEDLINE, and Google Scholar databases with the terms 'Cartilage tissue engineering' and 'stem cells' to retrieve published literature on chondrogenic differentiation and tissue engineering using MSCs, ESCs, and hiPSCs. RESULTS: hiPSCs may provide an effective and autologous treatment for focal chondral lesions, though further research is needed to explore the potential of such technologies. CONCLUSIONS: This review has provided a comprehensive overview of these technologies and the potential applications for hiPSCs in regenerative medicine.


Subject(s)
Cell Differentiation , Chondrogenesis , Induced Pluripotent Stem Cells , Tissue Engineering , Humans , Tissue Engineering/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Osteoarthritis/therapy , Osteoarthritis/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Cartilage/metabolism , Cartilage/cytology , Bioprinting/methods , Printing, Three-Dimensional , Regeneration
9.
ACS Biomater Sci Eng ; 10(5): 2983-2994, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38634615

ABSTRACT

Calcified cartilage digested by chondroclasts provides an excellent scaffold to initiate bone formation. We analyzed bioactive proteins and microarchitecture of calcified cartilage either separately or in combination and evaluated biomimetic osteogenic culture conditions of surface-coated micropatterning. To do so, we prepared a crude extract from porcine femoral growth plates, which enhanced in vitro mineralization when coated on flat-bottom culture dishes, and identified four candidate proteins by fractionation and mass spectrometry. Murine homologues of two candidates, desmoglein 4 (DSG4) and peroxiredoxin 6 (PRDX6), significantly promoted osteogenic activity based on in vitro mineralization and osteoblast differentiation. Moreover, we observed DSG4 and PRDX6 protein expression in mouse femur. In addition, we designed circular, triangular, and honeycomb micropatterns with 30 or 50 µm units, either isolated or connected, to mimic hypertrophic chondrocyte-sized compartments. Isolated, larger honeycomb patterns particularly enhanced osteogenesis in vitro. Mineralization on micropatterns was positively correlated with the reduction of osteoblast migration distance in live cell imaging. Finally, we evaluated possible combinatorial effects of coat proteins and micropatterns and observed an additive effect of DSG4 or PRDX6 coating with micropatterns. These data suggest that combining a bioactive surface coating with osteogenic micropatterns may recapitulate initiation of bone formation during endochondral ossification.


Subject(s)
Osteogenesis , Animals , Osteogenesis/drug effects , Mice , Swine , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Cell Differentiation/drug effects , Cartilage/metabolism , Cartilage/cytology , Peroxiredoxin VI/metabolism , Calcification, Physiologic/drug effects
10.
BMC Biotechnol ; 24(1): 25, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689309

ABSTRACT

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.


Subject(s)
Cartilage , Chondrocytes , Polylactic Acid-Polyglycolic Acid Copolymer , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods , Chondrocytes/cytology , Cartilage/cytology , Cartilage/growth & development , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Rabbits , Porosity , Polyglycolic Acid/chemistry , Neovascularization, Physiologic/drug effects
11.
Bioelectromagnetics ; 45(5): 226-234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546158

ABSTRACT

Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrocytes , Electromagnetic Fields , Osteogenesis , TOR Serine-Threonine Kinases , Animals , Mice , Osteogenesis/radiation effects , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrocytes/physiology , Cell Line , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Cartilage/metabolism , Cartilage/cytology , Cartilage/physiology , Signal Transduction , Gene Expression Regulation/radiation effects
12.
J Biol Chem ; 299(6): 104805, 2023 06.
Article in English | MEDLINE | ID: mdl-37172728

ABSTRACT

Bone development starts with condensations of undifferentiated mesenchymal cells that set a framework for future bones within the primordium. In the endochondral pathway, mesenchymal cells inside the condensation differentiate into chondrocytes and perichondrial cells in a SOX9-dependent mechanism. However, the identity of mesenchymal cells outside the condensation and how they participate in developing bones remain undefined. Here we show that mesenchymal cells surrounding the condensation contribute to both cartilage and perichondrium, robustly generating chondrocytes, osteoblasts, and marrow stromal cells in developing bones. Single-cell RNA-seq analysis of Prrx1-cre-marked limb bud mesenchymal cells at E11.5 reveals that Notch effector Hes1 is expressed in a mutually exclusive manner with Sox9 that is expressed in pre-cartilaginous condensations. Analysis of a Notch signaling reporter CBF1:H2B-Venus reveals that peri-condensation mesenchymal cells are active for Notch signaling. In vivo lineage-tracing analysis using Hes1-creER identifies that Hes1+ early mesenchymal cells surrounding the SOX9+ condensation at E10.5 contribute to both cartilage and perichondrium at E13.5, subsequently becoming growth plate chondrocytes, osteoblasts of trabecular and cortical bones, and marrow stromal cells in postnatal bones. In contrast, Hes1+ cells in the perichondrium at E12.5 or E14.5 do not generate chondrocytes within cartilage, contributing to osteoblasts and marrow stromal cells only through the perichondrial route. Therefore, Hes1+ peri-condensation mesenchymal cells give rise to cells of the skeletal lineage through cartilage-dependent and independent pathways, supporting the theory that early mesenchymal cells outside the condensation also play important roles in early bone development.


Subject(s)
Bone Development , Bone and Bones , Cartilage , Cell Differentiation , Cell Lineage , Chondrocytes , Mesenchymal Stem Cells , Transcription Factor HES-1 , Animals , Mice , Bone and Bones/cytology , Cartilage/cytology , Cartilage/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Transcription Factor HES-1/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Receptors, Notch/metabolism
13.
Nature ; 612(7940): 546-554, 2022 12.
Article in English | MEDLINE | ID: mdl-36477541

ABSTRACT

Insufficient intracellular anabolism is a crucial factor involved in many pathological processes in the body1,2. The anabolism of intracellular substances requires the consumption of sufficient intracellular energy and the production of reducing equivalents. ATP acts as an 'energy currency' for biological processes in cells3,4, and the reduced form of NADPH is a key electron donor that provides reducing power for anabolism5. Under pathological conditions, it is difficult to correct impaired anabolism and to increase insufficient levels of ATP and NADPH to optimum concentrations1,4,6-8. Here we develop an independent and controllable nanosized plant-derived photosynthetic system based on nanothylakoid units (NTUs). To enable cross-species applications, we use a specific mature cell membrane (the chondrocyte membrane (CM)) for camouflage encapsulation. As proof of concept, we demonstrate that these CM-NTUs enter chondrocytes through membrane fusion, avoid lysosome degradation and achieve rapid penetration. Moreover, the CM-NTUs increase intracellular ATP and NADPH levels in situ following exposure to light and improve anabolism in degenerated chondrocytes. They can also systemically correct energy imbalance and restore cellular metabolism to improve cartilage homeostasis and protect against pathological progression of osteoarthritis. Our therapeutic strategy for degenerative diseases is based on a natural photosynthetic system that can controllably enhance cell anabolism by independently providing key energy and metabolic carriers. This study also provides an enhanced understanding of the preparation and application of bioorganisms and composite biomaterials for the treatment of disease.


Subject(s)
Chondrocytes , Osteoarthritis , Photosynthesis , Plants , Humans , Adenosine Triphosphate/metabolism , Chondrocytes/metabolism , NADP/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Plants/metabolism , Cartilage/cytology , Cartilage/metabolism , Homeostasis , Energy Metabolism , Membrane Fusion
14.
Nat Commun ; 13(1): 3960, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803931

ABSTRACT

Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-ß and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-ß1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3ß and subsequent Smurf1 recruitment, promoted ß-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.


Subject(s)
Bone and Bones , Cartilage , Mesenchymal Stem Cells , Microtubule-Associated Proteins , Protein Serine-Threonine Kinases , Animals , Female , Mice , Bone and Bones/cytology , Bone and Bones/metabolism , Cartilage/cytology , Cartilage/metabolism , Cell Differentiation/genetics , Chondrogenesis/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/genetics , Osteogenesis/genetics , Protein Serine-Threonine Kinases/genetics , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway
15.
Development ; 149(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35132438

ABSTRACT

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Subject(s)
Cell Differentiation , MDS1 and EVI1 Complex Locus Protein/metabolism , Wnt Signaling Pathway/genetics , Zebrafish Proteins/metabolism , Animals , Cartilage/cytology , Cartilage/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , MDS1 and EVI1 Complex Locus Protein/deficiency , MDS1 and EVI1 Complex Locus Protein/genetics , Mice , Mice, Knockout , Neural Crest/cytology , Neural Crest/metabolism , Regulatory Sequences, Nucleic Acid , Skull/cytology , Skull/metabolism , Wnt Proteins/metabolism , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , beta Catenin/metabolism
16.
BMC Complement Med Ther ; 22(1): 25, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086536

ABSTRACT

BACKGROUND: Osteoarthritis (OA) treatment aims to improve inflammation and delay cartilage degeneration. However, there is no effective strategy presently available. Ononin, a representative isoflavone glycoside component extracted from natural Chinese herbs, exerts anti-inflammatory and proliferative effects. However, the therapeutic effect of ononin on chondrocyte inflammation remains unclear. METHODS: In this study, we explored the therapeutic effect and potential mechanism of ononin in OA by establishing an interleukin-1 beta (IL-1ß)-induced chondrocyte inflammation model. RESULTS: Our results verified that ononin alleviated the IL-1ß-induced decrease in chondrocyte viability, attenuated the overexpression of the inflammatory factors tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), and simultaneously inhibited the expression of cartilage extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteinase-13 (MMP-13). Furthermore, the decomposition of Collagen II protein could be alleviated in the OA model by ononin. Finally, ononin improved chondrocyte inflammation by downregulating the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signalling pathways. CONCLUSION: Our findings suggested that ononin could inhibit the IL-1ß-induced proinflammatory response and ECM degradation in chondrocytes by interfering with the abnormal activation of the MAPK and NF-κB pathways, indicating its protective effect against OA.


Subject(s)
Cartilage/drug effects , Glucosides/pharmacology , Inflammation/metabolism , Interleukin-1beta/metabolism , Isoflavones/pharmacology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Osteoarthritis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cartilage/cytology , Cartilage/metabolism , Cartilage/pathology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Down-Regulation , Glucosides/therapeutic use , Inflammation/drug therapy , Isoflavones/therapeutic use , MAP Kinase Signaling System , Male , Matrix Metalloproteinase 13/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
17.
Nat Commun ; 13(1): 571, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091558

ABSTRACT

Developmental osteogenesis, physiological bone remodelling and fracture healing require removal of matrix and cellular debris. Osteoclasts generated by the fusion of circulating monocytes degrade bone, whereas the identity of the cells responsible for cartilage resorption is a long-standing and controversial question. Here we show that matrix degradation and chondrocyte phagocytosis are mediated by fatty acid binding protein 5-expressing cells representing septoclasts, which have a mesenchymal origin and are not derived from haematopoietic cells. The Notch ligand Delta-like 4, provided by endothelial cells, is necessary for septoclast specification and developmental bone growth. Consistent with the termination of growth, septoclasts disappear in adult and ageing bone, but re-emerge in association with growing vessels during fracture healing. We propose that cartilage degradation is mediated by rare, specialized cells distinct from osteoclasts. Our findings have implications for fracture healing, which is frequently impaired in aging humans.


Subject(s)
Cartilage/metabolism , Fracture Healing/physiology , Mesenchymal Stem Cells/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Bone and Bones/ultrastructure , Cartilage/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Fracture Healing/genetics , Humans , Male , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Immunoelectron , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osteoclasts/cytology , Osteogenesis/genetics , RNA-Seq/methods
18.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768781

ABSTRACT

The study was aimed at the applicability of a bioink based on 4% collagen and chondrocytes for de novo cartilage formation. Extrusion-based bioprinting was used for the biofabrication. The printing parameters were tuned to obtain stable material flow. In vivo data proved the ability of the tested bioink to form a cartilage within five to six weeks after the subcutaneous scaffold implantation. Certain areas of cartilage formation were detected as early as in one week. The resulting cartilage tissue had a distinctive structure with groups of isogenic cells as well as a high content of glycosaminoglycans and type II collagen.


Subject(s)
Bioprinting/methods , Cartilage/cytology , Tissue Engineering/methods , Animals , Cartilage/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis , Collagen/metabolism , Printing, Three-Dimensional/instrumentation , Rats , Tissue Scaffolds/chemistry
19.
J Extracell Vesicles ; 10(13): e12160, 2021 11.
Article in English | MEDLINE | ID: mdl-34724347

ABSTRACT

Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) possess a great therapeutical potential for osteoarthritis (OA) treatment. However, the steric and electrostatic hindrance of cartilage matrix leads to very limited distribution of MSC-sEVs in cartilage and low bioavailability of MSC-sEVs after intra-articular injection. To overcome this, a strategy to reverse the surface charge of MSC-sEVs by modifying the MSC-sEVs with a novel cationic amphiphilic macromolecule namely ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) was developed in this study. Through incubation with 100 µg/ml PPD, positively charged MSC-sEVs (PPD-sEVs) were obtained, and the modification process showed nearly no disturbance to the integrity and contents of sEVs and exhibited good stability under the interference of anionic macromolecules. A more effective cellular uptake and homeostasis modulation ability of PPD-sEVs than unmodified MSC-sEVs to chondrocytes was demonstrated. More importantly, PPD-sEVs demonstrated significantly enhanced cartilage uptake, cartilage penetration, and joint retention capacity as compared to MSC-sEVs. Intra-articular injection of PPD-sEVs into a mouse OA model showed significantly improved bioavailability than MSC-sEVs, which resulted in enhanced therapeutic efficacy with reduced injection frequency. In general, this study provides a facile and effective strategy to improve the intra-articular bioavailability of MSC-sEVs and has a great potential to accelerate the clinical practice of MSC-sEVs based OA therapy.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Extracellular Vesicles/drug effects , Mesenchymal Stem Cells/cytology , Osteoarthritis/therapy , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polylysine/chemistry , Polylysine/pharmacology , Adolescent , Animals , Cartilage/cytology , Cells, Cultured , Chondrocytes/metabolism , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells/cytology , Injections, Intra-Articular , Male , Mice , Mice, Inbred C57BL , Swine , Treatment Outcome
20.
Bioengineered ; 12(1): 8622-8634, 2021 12.
Article in English | MEDLINE | ID: mdl-34629037

ABSTRACT

Osteoarthritis (OA) is a common degenerative disease in middle-aged and elderly people. Our previous study has proved that microRNA-7 (miR-7) exacerbated the OA process. This study was aimed to explore the downstream genes and mechanism regulated by miR-7 to affect OA. Multiple EGF-like-domains 9 (MEGF9) was the predicted target of miR-7 by databases. Luciferase report experiment results confirmed that MEGF9 could bind to miR-7. Among the 10 collected pairs of OA and healthy samples, the expression levels of miR-7 and MEGF9 were both up-regulated when compared with healthy subjects by qRT-PCR and immunohistochemistry (IHC). The increased MEGF9 levels were due to the interaction with epidermal growth factor receptor (EGFR) by co-immunoprecipitation. Evaluations found that upregulation of miR-7 or MEGF9 can increase the expression of EGFR, matrix metalloproteinase-13 (MMP-13) and a disintegrin like and metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5), so as to aggravate cartilage degradation. In addition, this effect induced by miR-7/EGFR/MEGF9 axis was by activation of PI3K/AKT signaling. The IHC and western blot assay results on OA model mice also demonstrated that miR-7/EGFR/MEGF9 axis regulated cartilage degradation in vivo. In summary, miR-7/EGFR/MEGF9 axis may perform a crucial function in the regulation of OA, providing potential for OA treatment.


Subject(s)
Cartilage , Membrane Proteins/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Osteoarthritis , Animals , Cartilage/cytology , Cartilage/metabolism , Cartilage/pathology , Cells, Cultured , Chondrocytes/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Male , Membrane Proteins/metabolism , Mice , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...