Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Food Chem ; 463(Pt 1): 141085, 2025 Jan 15.
Article in English | MEDLINE | ID: mdl-39243619

ABSTRACT

The influence of oxygen on the thermal treatment (TT) of secondary metabolite-enriched extracts (SMEEs) from Tórtola beans and procyanidin C1 (PC1) on the inhibition of advanced glycation end products (AGEs) generation in proteins was investigated. SMEE was incubated at 4 °C (control) or thermally treated at 60 °C for 2 h, at either 0 % O2 (I) or 20 % O2 (II). Treatments I and II increased the content of procyanidin dimers B2. Treatment II was more effective than the control or treatment I in preventing homocysteine oxidation and AGEs generation. TT of PC1 at 0 % or 20 % O2 generated procyanidin dimers and tetramers. PC1 TT at 20 % O2 exhibited higher oxidation potentials and lower IC50 values of fluorescent AGEs than those of controls or TT at 0 % O2. These findings indicate that SMEE from Tórtola beans after treatment II changes the degree of polymerization and oxidation procyanidins, thereby increasing their antiglycation activity.


Subject(s)
Antioxidants , Biflavonoids , Glycation End Products, Advanced , Hot Temperature , Oxidation-Reduction , Phaseolus , Plant Extracts , Proanthocyanidins , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Biflavonoids/pharmacology , Biflavonoids/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phaseolus/chemistry , Catechin/chemistry , Catechin/pharmacology , Glycosylation , Chile
2.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201369

ABSTRACT

Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.


Subject(s)
Catechin , Cell Proliferation , Heme , Photosensitizing Agents , Protoporphyrins , Reactive Oxygen Species , Catechin/analogs & derivatives , Catechin/pharmacology , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Humans , Heme/metabolism , Reactive Oxygen Species/metabolism , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Photochemotherapy/methods , Cell Survival/drug effects , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/analogs & derivatives
3.
Molecules ; 29(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930937

ABSTRACT

Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.


Subject(s)
Antioxidants , Catechin , Persea , Proanthocyanidins , Persea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/chemical synthesis , Proanthocyanidins/isolation & purification , Catechin/chemistry , Catechin/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Sulfhydryl Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Phenols/chemical synthesis
4.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658362

ABSTRACT

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Subject(s)
Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
5.
Nutrients ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276564

ABSTRACT

Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.


Subject(s)
Catechin , Animals , Humans , Catechin/pharmacology , Catechin/therapeutic use , Catechin/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , MyoD Protein/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
Molecules ; 28(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959682

ABSTRACT

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Subject(s)
Catechin , Polyphenols , Polyphenols/pharmacology , Tea , Amyloid/chemistry , Amyloidogenic Proteins , Catechin/pharmacology , Catechin/chemistry
7.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687058

ABSTRACT

Breast cancer, due to its high incidence and mortality, is a public health problem worldwide. Current chemotherapy uses non-specific cytotoxic drugs, which inhibit tumor growth but cause significant adverse effects. (-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids. It is widely distributed in the plant kingdom; it can be found in green tea, grapes, and cocoa. Several studies in animals and humans have shown that EC induces beneficial effects in the skeletal muscle and the cardiovascular system, reducing risk factors such as arterial hypertension, endothelial dysfunction, damage to skeletal muscle structure, and mitochondrial malfunction by promoting mitochondrial biogenesis, with no adverse effects reported. Recently, we reported that EC had an antitumor effect in a murine triple-negative mammary gland tumor model, decreasing tumoral size and volume and increasing survival by 44%. This work aimed to characterize the effects of flavanol EC on proliferation, migration, and metastasis markers of triple-negative murine breast (4T1) cancer cells in culture. We found proliferation diminished and Bax/Bcl2 ratio increased. When the migration of culture cells was evaluated, we observed a significant reduction in migration. Also, the relative expression of the genes associated with metastasis, Cdh1, Mtss1, Pten, Bmrs, Fat1, and Smad4, was increased. In conclusion, these results contribute to understanding molecular mechanisms activated by EC that can inhibit metastatic-associated proliferation, migration, and invasion of murine breast cancer cells.


Subject(s)
Catechin , Drug-Related Side Effects and Adverse Reactions , Humans , Animals , Mice , Catechin/pharmacology , Neoplastic Processes , Flavonoids/pharmacology , Cell Proliferation
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445915

ABSTRACT

Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.


Subject(s)
Breast Neoplasms , Catechin , Humans , Female , Breast Neoplasms/metabolism , Catechin/pharmacology , Catechin/therapeutic use , Polyphenols/pharmacology , Breast/metabolism , Signal Transduction , Apoptosis , Tea
9.
J Ethnopharmacol ; 311: 116436, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS: The leaves (LAE; EC50 12.0 µg/mL) and branches (TAE; EC50 101.0 µg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION: Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.


Subject(s)
Alphavirus , Catechin , Maytenus , Animals , Chlorocebus aethiops , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Catechin/pharmacology , Vero Cells , Alphavirus/genetics , Mammals
10.
J Neuroimmunol ; 375: 578018, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36657373

ABSTRACT

Our objective was to determine whether (-)-Epicatechin administered alone or simultaneously with topical Ketorolac decreased the relative expression of GFAP and modulated the response of Nrf2 in a mouse model with induced hyperglycemia. We found that GFAP and Nrf2 decreased in the groups that received treatments alone or simultaneous during 8 weeks; even when the effect on the Nrf2 was not pronounced, it showed a higher concentration when GFAP decreased. Our results suggest a protective effect of Ketorolac and (-) - Epicatechin, which seem to limit the preclinical retinal damage caused by inflammation in hyperglycemia.


Subject(s)
Catechin , Hyperglycemia , Retinal Diseases , Animals , Mice , Catechin/pharmacology , Catechin/therapeutic use , Catechin/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Ketorolac/therapeutic use , Ketorolac/metabolism , Ketorolac/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Retina/metabolism
11.
Gene ; 849: 146907, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36174904

ABSTRACT

The flavanol (-)-epicatechin has exercise-mimetic properties. Besides, several miRNAs play a role in modulating the adaptation of the muscle to different training protocols. However, notwithstanding all information, few studies aimed to determine if (-)-epicatechin can modify the expression of miRNAs related to skeletal muscle development and regeneration. Mice were treated for fifteen days by oral gavage with the flavanol (-)-epicatechin. After treatment, the quadriceps of the mice was dissected, and total RNA was extracted. The expression level of miR-133, -204, -206, -223, -486, and -491 was analyzed by qRT-PCR. We also used bioinformatic analysis to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. Additionally, we analyzed the level of the myogenic proteins MyoD and myogenin by Western blot and measured the cross-sectional area of muscle fibers stained with E&H. (-)-Epicatechin upregulated the expression of miR-133, -204, -206, -223, and -491 significantly, which was associated with an increase in the level of the myogenic proteins MyoD and Myogenin and an augment in the fiber size. The bioinformatics analysis showed that the studied miRNAs might participate in different signal transduction pathways related to muscle development and adaptation. Our results showed that (-)-epicatechin upregulated miRNAs that participate in skeletal exercise muscle adaptation, induced muscle hypertrophy, and increased the level of myogenic proteins MyoD and MyoG.


Subject(s)
Catechin , MicroRNAs , Mice , Animals , Myogenin/genetics , Myogenin/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Catechin/pharmacology , Muscle, Skeletal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation
12.
Braz. j. biol ; 83: e248746, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339351

ABSTRACT

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.


Resumo O câncer colorretal (CCR) é um dos cânceres mais comuns, levando a comorbidades e mortalidade em todo o mundo. O racional do presente estudo foi avaliar a combinação de galato de epigalocatequina e quercetina como um agente antitumoral potente como agente de comentário para protocolo terapêutico. O presente estudo investigou o efeito de galato de epigalocatequina (EGCG) (150 mg) e quercetina (200 mg) em diferentes proporções na proliferação e indução de apoptose em células de câncer de cólon humano (HCT-116). O crescimento celular, colonogênico, anexina V, além do ciclo celular foram detectados em resposta a fitomoléculas. Os dados obtidos mostraram que a formação de colônias foi inibida significativamente no CRC a partir da concentração mais baixa testada de 10 µg/mL, resultando em nenhuma colônia conforme visualizado por um microscópio de contraste de fase. Os dados mostraram uma elevação significativa na anexina V a 100 µg/mL de EGCG (25,85%) e 150 µg/mL de quercetina (48,35%). Além disso, a análise do ciclo celular mostrou que essa combinação causou parada do ciclo celular na fase G1 na concentração de 100 µg/mL (72,7%) e 150 µg/mL (75,25%). O efeito combinado da epigalocatequina galato e quercetina exerce atividade antiproliferativa contra o CCR, é promissor como agente quimioterápico alternativo convencional.


Subject(s)
Humans , Colorectal Neoplasms/drug therapy , Catechin/analogs & derivatives , Catechin/pharmacology , Quercetin/pharmacology , Cell Cycle , Annexin A5 , Cell Line, Tumor , Cell Proliferation
13.
Biofouling ; 38(7): 687-695, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36017657

ABSTRACT

This study aimed at performing a systematic review of the literature on the effects of epigallocatechin-3-gallate (EGCG) on Streptococcus mutans planktonic cultures and biofilms. The selected references demonstrated that EGCG suppresses S. mutans acid production by inhibiting the activity of enzymes such as lactate dehydrogenase and FIF0-ATPase. Regarding virulence factors, one study reported a reduction in soluble and insoluble polysaccharide synthesis, another demonstrated that EGCG inhibited GTase activity, and another showed effects of EGCG on the expression of gtf B, C, and D. The effects of EGCG on S. mutans biofilms were reported only by 2 of the selected studies. Moreover, high variability in effective concentrations and microbial assessment methods were observed. The literature suggests that EGCG has effects against S. mutans planktonic cells viability and virulence factors. However, the literature lacks studies with appropriate biofilm models to evaluate the precise effectiveness of EGCG against S. mutans biofilms.


Subject(s)
Catechin , Streptococcus mutans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Biofilms , Catechin/analogs & derivatives , Catechin/pharmacology , Lactate Dehydrogenases/metabolism , Plankton/metabolism , Polysaccharides , Tea , Virulence Factors/metabolism
14.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012227

ABSTRACT

(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated with the activation of two specific receptors: the G protein-coupled estrogen receptor (GPER), a transmembrane receptor, and the pregnane X receptor (PXR), which is a nuclear receptor. However, the effects of EC are so diverse that these two receptors cannot describe the complete phenomenon. The apelin receptor or APLNR is classified within the G protein-coupled receptor (GPCR) family, and is capable of activating the G protein canonical pathways and the ß-arrestin transducer, which participates in the phenomenon of receptor desensitization and internalization. ß-arrestin gained interest in selective pharmacology and mediators of the so-called "biased agonism". With molecular dynamics (MD) and in vitro assays, we demonstrate how EC can recruit the ß-arrestin in the active conformation of the APLN receptor acting as a biased agonist.


Subject(s)
Catechin , Apelin Receptors/metabolism , Catechin/pharmacology , GTP-Binding Proteins/metabolism , Ligands , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
15.
Fundam Clin Pharmacol ; 36(3): 526-535, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34984750

ABSTRACT

A combination of maternal obesity and high-fat diet (HFD) in offspring postnatal life has deleterious effects, and (-)-epicatechin (Epi) treatment can reverse these adverse effects. To investigate whether Epi administration can modify fat mass, muscle mass, and bone mass in male rats descended from obese mothers, fed postnatally on an HFD. Male offspring of mothers fed with control diet formed the control group (C), control group with high-fat diet (CHF), and control group with high-fat diet + epicatechin (CHF + Epi). Male offspring of maternal obesity formed the group with control diet (MO), maternal obesity group with high-fat diet (MOHF), and maternal obesity group with high-fat diet + epicatechin (MOHF + Epi). We measured total fat and weight of visceral adipose tissue by dissection and by dual-energy x-ray absorptiometry scanning body composition. Epicatechin diminished total and visceral pads fat of male offspring of CHF + Epi and MOHF + Epi groups versus to male offspring of CHF and MOHF groups. Besides, epicatechin increased lean mass in CHF + Epi and MOHF + Epi groups, but these changes were not significant. Total body mineral density of the male offspring of CHF, MOHF, and MOHF + Epi groups was significantly higher versus male offspring of C and MO groups. Obesity programming model plus a high-fat postnatal diet presents higher visceral adipose tissue, decreased lean mass, and modified body mineral density when compared with a direct obesity model and its controls. Epicatechin treatment improved body composition; however, it was not able to induce similar values as presented by the controls.


Subject(s)
Catechin , Obesity, Maternal , Animals , Body Composition , Body Weight , Catechin/pharmacology , Diet, High-Fat , Female , Male , Mothers , Obesity/drug therapy , Pregnancy , Rats
16.
Crit Rev Food Sci Nutr ; 62(26): 7222-7241, 2022.
Article in English | MEDLINE | ID: mdl-33890518

ABSTRACT

Natural products have been studied to reveal new therapies against human dysfunctions since they present several medicinal properties. Caffeine, theobromine and (+)-catechin are remarkable natural agents in the class of methylxanthines and flavonoids. These bioactive molecules have several biological activities, for instance, antioxidant, anti-inflammatory, and antitumor capacity. In this sense, studies focusing on these molecules have been performed to discover new treatments against diseases, such as cancer. Cancer is a serious public health problem worldwide responsible for more than 70% of all deaths globally. Industrialized products associated with a sedentary lifestyle and a diet low in antioxidants are related to neoplasms development. Unfortunately, many types of cancers are extremely aggressive and untreatable since, in many cases, they are resistant to chemotherapy. Therefore, revealing new strategies to block cancer growth is one of the biggest challenges to science. In this context, despite the known anticancer actions of caffeine, theobromine and (+)-catechin, it is still essential to elucidate the causal antitumor mechanism of these molecules by analyzing the dysfunctional cancer pathways associated with the hallmarks of cancer. Hence, this review aims to describe the anticancer activity of caffeine, theobromine, and (+)-catechin against the different hallmarks and enabling characteristics of cancer.


Subject(s)
Biological Products , Catechin , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Caffeine/pharmacology , Catechin/pharmacology , Catechin/therapeutic use , Humans , Neoplasms/drug therapy , Theobromine/pharmacology
17.
J Nutr Biochem ; 101: 108920, 2022 03.
Article in English | MEDLINE | ID: mdl-34875388

ABSTRACT

Inflammation causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation damage. Polyphenol compounds found in green tea (GTE), including the most important component epigallocatechin-3-gallate (EGCG), have a great therapeutic potential. Here, protective properties of GTE and EGCG against lipopolysaccharide (LPS)-induced inflammation are explored. To this end, the effects of GTE and EGCG were studied on LPS challenged macrophages. Mice received GTE (250 mg/kg/d/p.o) or EGCG (25 mg/kg/d/i.p.) for 7 d, before the inflammation shock was provoked with a single intraperitoneal injection of LPS. The frequencies of lymphocytes CD4+, CD8+, NK1-1+ and CD4+CD25highFOXP3+ (Treg), macrophages CD11b+F480+, monocytes CD11b+Ly6Clow/high, neutrophils CD11b+Ly6G+, MDSCs CD11b+Gr-1high, M2/N2-like phenotype CD206+ and M1-like phenotype CD86+ in spleen, bone marrow and peripheral blood were determined. In vitro studies revealed that GTE and EGCG significantly attenuated LPS-induced CD80 expression and increased the CD163 expression, showing a potential to reduce the macrophage inflammatory phenotype. In vivo, GTE and EGCG inhibited the inflammation, mainly by reducing M1-macrophages and increasing Treg cells in the bone marrow. In addition, GTE and EGCG increase M2-macrophages, N2-neutrophils and Tregs in the spleen and blood and block the migration of monocytes from the bone marrow to the peripheral blood. These findings indicate that EGCG and GTE prevent LPS-induced inflammatory damage contributing to restoring the immune system homeostasis.


Subject(s)
Catechin/analogs & derivatives , Inflammation/immunology , Inflammation/therapy , Lymphocytes/immunology , Macrophages/immunology , Tea , Animals , Catechin/pharmacology , Humans , Lipopolysaccharides/immunology , Macrophage Activation , Male , Mice , Mice, Inbred BALB C , Myeloid Cells/immunology , Protective Agents
18.
Pflugers Arch ; 474(1): 99-115, 2022 01.
Article in English | MEDLINE | ID: mdl-34812946

ABSTRACT

This review summarizes experimental evidence on the beneficial effects of ( -)-epicatechin (EC) attenuating major cardiometabolic risk factors, i.e., dyslipidemias, obesity (adipose tissue dysfunction), hyperglycemia (insulin resistance), and hypertension (endothelial dysfunction). Studies in humans are revised and complemented with experiments in animal models, and cultured cells, aiming to understand the molecular mechanisms involved in EC-mediated effects. Firstly, an assessment of EC metabolism gives relevance to both conjugated-EC metabolites product of host metabolism and microbiota-derived species. Integration and analysis of results stress the maintenance of redox homeostasis and mitigation of inflammation as relevant processes associated with cardiometabolic diseases. In these processes, EC appears having significant effects regulating NADPH oxidase (NOX)-dependent oxidant production, nitric oxide (NO) production, and energy homeostasis (mitochondrial biogenesis and function). The potential participation of cell membranes and membrane-bound receptors is also discussed in terms of direct molecular action of EC and EC metabolites reaching cells and tissues.


Subject(s)
Cardiometabolic Risk Factors , Catechin/pharmacology , Animals , Catechin/chemistry , Catechin/metabolism , Catechin/therapeutic use , Dyslipidemias/drug therapy , Humans , Hyperglycemia/drug therapy , Hypertension/drug therapy , Obesity/drug therapy
19.
Biomolecules ; 11(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34944489

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aß aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5-50 µM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 µM) significantly inhibited the aggregation of (i)sAPPßf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aß42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Catechin/analogs & derivatives , Cholinergic Neurons/cytology , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/toxicity , Catechin/pharmacology , Cells, Cultured , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Female , Gene Regulatory Networks/drug effects , Humans , Hydrogen Peroxide/metabolism , Microscopy, Fluorescence , Models, Biological , Mutation , Protein Aggregates/drug effects
20.
Molecules ; 26(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34946510

ABSTRACT

Methylxanthines and polyphenols from cocoa byproducts should be considered for their application in the development of functional ingredients for food, cosmetic and pharmaceutical formulations. Different cocoa byproducts were analyzed for their chemical contents, and skincare properties were measured by antioxidant assays and anti-skin aging activity. Musty cocoa beans (MC) and second-quality cocoa beans (SQ) extracts showed the highest polyphenol contents and antioxidant capacities. In the collagenase and elastase inhibition study, the highest effect was observed for the SQ extract with 86 inhibition and 36% inhibition, respectively. Among cocoa byproducts, the contents of catechin and epicatechin were higher in the SQ extract, with 18.15 mg/100 g of sample and 229.8 mg/100 g of sample, respectively. Cocoa bean shells (BS) constitute the main byproduct due to their methylxanthine content (1085 mg of theobromine and 267 mg of caffeine/100 g of sample). Using BS, various influencing factors in the extraction process were investigated by response surface methodology (RSM), before scaling up separations. The extraction process developed under optimized conditions allows us to obtain almost 2 g/min and 0.2 g/min of total methylxanthines and epicatechin, respectively. In this way, this work contributes to the sustainability and valorization of the cocoa production chain.


Subject(s)
Antioxidants/isolation & purification , Cacao/chemistry , Catechin/isolation & purification , Enzyme Inhibitors/isolation & purification , Plant Extracts/isolation & purification , Xanthines/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Catechin/chemistry , Catechin/pharmacology , Collagenases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fluorescence Recovery After Photobleaching , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Xanthines/chemistry , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL