Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.440
Filter
1.
Int J Med Mushrooms ; 26(9): 65-76, 2024.
Article in English | MEDLINE | ID: mdl-39093402

ABSTRACT

To study and compare the morphology of the phellinoid Agaricomycetes strains and find other strategies to improve Phellinus spp. growth and metabolism. In this study, the morphological characteristics of four Phellinus igniarius strains (phellinoid Agaricomycetes) were observed under a light microscope. The exudates from these fungi were observed using light microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The exudates were initially transparent with a water-like appearance, and became darker with time at neutral pH. Microscopy of air-dried exudates revealed regular shapes and crystals. Cl- (chloride) and K+ were the two key elements analyzed using EDS. Polyphenol oxidase (POD), catalase (CAT), and laccase activities were detected in mycelia from each of the four Phellinus strains. The K+ content of the three strains was higher than that of the wild strain. Cl- content correlated negatively with that of K+. Laccase activities associated with each mycelia and its corresponding media differed under cold and contaminated conditions.


Subject(s)
Basidiomycota , Laccase , Microscopy, Electron, Scanning , Mycelium , Laccase/metabolism , Basidiomycota/enzymology , Basidiomycota/chemistry , Mycelium/chemistry , Catalase/metabolism , Catechol Oxidase/metabolism , Potassium/metabolism , Chlorides/metabolism
2.
Physiol Plant ; 176(4): e14420, 2024.
Article in English | MEDLINE | ID: mdl-38956780

ABSTRACT

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Subject(s)
Catechol Oxidase , Cucumis sativus , Germination , Molecular Docking Simulation , Naphthoquinones , Plant Roots , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Cucumis sativus/genetics , Cucumis sativus/enzymology , Cucumis sativus/drug effects , Naphthoquinones/pharmacology , Naphthoquinones/metabolism , Germination/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/enzymology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Cotyledon/genetics , Cotyledon/drug effects , Cotyledon/enzymology
3.
J Inorg Biochem ; 259: 112671, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059176

ABSTRACT

Copper metalloenzymes ascorbate oxidase (AOase), amine oxidase (AmOase), and catechol oxidase (COase) possess copper(II) sites of coordination, which are trimeric, homodimeric, and dimeric, respectively. Two newly mononuclear copper(II) complexes, namely, [Cu(L)(bpy)](ClO4) (1) and [Cu(L)(phen)](ClO4) (2) where HL = Schiff base, have been synthesized. UV-visible, EPR and single-crystal X-ray diffraction examinations were used to validate the geometry in solution and solid state. For complex 1, the metal exhibits a coordination sphere between square pyramidal and trigonal bipyramidal geometry (τ, 0.49). A positive CuII/I redox potential indicates a stable switching between CuII and CuI redox states. Despite the monomeric origin, both homogeneous catalysts (1 or 2) in MeOH were found to favor three distinct chemical transformations, namely, ascorbic acid (H2A) to dehydroascorbic acid (DA), benzylamine (Ph-CH2-NH2) to benzaldehyde (Ph-CHO), and 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) [kcat: AOase, 9.6 (1) or 2.0 × 106 h-1(2); AmOase, 13.4 (1) or 9.4 × 106 h-1 (2); COase, 2.0 (1) or 1.9 × 103 h-1 (2)]. They exhibit higher levels of AOase activity as indicated by their kcat values compared to the AOase enzyme. The kcat values for COase activity in buffer solution [5.93 (1) or 2.95 × 105 h-1 (2)] are one order lower than those of the enzymes. This is because of the labile nature of the coordinated donor, the flexibility of the ligand, the simplicity of the catalyst-substrate interaction, and the positive CuII/I redox potential. Interestingly, more efficient catalysis is promoted by 1 and 2 concerning that of other mono- and dicopper(II) complexes.


Subject(s)
Amine Oxidase (Copper-Containing) , Ascorbic Acid , Catechol Oxidase , Copper , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Ascorbic Acid/chemistry , Copper/chemistry , Amine Oxidase (Copper-Containing)/chemistry , Amine Oxidase (Copper-Containing)/metabolism , Oxidation-Reduction , Coordination Complexes/chemistry , Ascorbate Oxidase/chemistry , Ascorbate Oxidase/metabolism , Biomimetic Materials/chemistry , Biomimetics , Catalysis , Crystallography, X-Ray
4.
Plant Physiol Biochem ; 214: 108934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003974

ABSTRACT

Apple (Malus domestica Borkh.) is among the most widely planted and economically valuable horticultural crops globally. Over time, the apple fruit's cut surface undergoes browning, and the degree of browning varies among different apple varieties. Browning not only affects the appearance of fruits but also adversely affects their taste and flavor. In the present study, we observed browning in different apple varieties over time and analyzed the expression of genes in the polyphenol oxidase gene family. The results indicated a strong correlation between the browning degree of the fruit and the relative expression of the polyphenol oxidase gene MdPPO2. With the MdPPO2 promoter as bait, the basic leucine zipper (bZIP) transcription factor MdbZIP44 was identified using the yeast single-hybrid screening method. Further investigation revealed that the overexpression of MdbZIP44 in 'Orin' callus could enhance the expression of MdPPO2 and promote browning of the callus. However, knocking out MdbZIP44 resulted in a callus with no apparent browning phenotype. In addition, our results confirmed the interaction between MdbZIP44 and MdbZIP11. In conclusion, the results indicated that MdbZIP44 can induce apple fruit browning by activating the MdPPO2 promoter. The results provide a theoretical basis for further clarifying the browning mechanism of apple fruit.


Subject(s)
Fruit , Malus , Plant Proteins , Promoter Regions, Genetic , Malus/genetics , Malus/metabolism , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics
5.
Mikrochim Acta ; 191(8): 496, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080043

ABSTRACT

Copper selenide nanoparticles (CuSeNP) were synthesized using histidine, ethylenediamine, and sodium selenate as precursors by one-step microwave digestion methods. The as-prepared CuSeNPs exhibit excellent catechol oxidase mimic enzyme and catalase (CAT)-like activities. Dopamine (DA) can be oxidized to aminochrome with H2O2 by CuSeNPs, and the intermediate product aminochrome can further react with α-naphthol to yield a highly fluorescent derivative. It was confirmed that Cr(III) could adsorb on the surface of CuSeNPs and inhibit the production of semiquinone radicals in the reaction system, and the catalytic activity of CuSeNPs was inhibited. The detection mechanisms, kinetics, and catalytic properties of CuSeNPs were systematically investigated. As a result, a novel fluorescence method for the assay of Cr(III) was established. The feasibility of CuSeNP nanozyme in detecting speciation Cr(III) in food samples was explored with satisfactory results. It showed the obvious potential for developing effective and dependable fluorescent detection method for protecting food safety.


Subject(s)
Catechol Oxidase , Chromium , Copper , Spectrometry, Fluorescence , Copper/chemistry , Chromium/chemistry , Chromium/analysis , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Spectrometry, Fluorescence/methods , Biomimetic Materials/chemistry , Metal Nanoparticles/chemistry , Food Contamination/analysis , Catalysis , Selenium Compounds/chemistry , Oxidation-Reduction , Fluorescence , Hydrogen Peroxide/chemistry
6.
J Hazard Mater ; 477: 135235, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39053054

ABSTRACT

Sediment, as the destination of marine pollutants, often bears much more serious petroleum pollution than water. Biochar is increasingly utilized for remediating organic pollutant-laden sediments, yet its long-term impacts on oil-contaminated sediment remain poorly understood. In this study, simulation experiments adding 2.5 wt% biochars (corn straw and wood chips biochar at different pyrolysis temperatures) were conducted. The effects on petroleum hydrocarbon attenuation, enzyme activities, and microbial community structure were systematically investigated. Results showed enhanced degradation of long-chain alkanes in certain biochar-treated groups. Biochar species and PAH characteristics together lead to the PAHs' attenuation, with low-temperature corn straw biochar facilitating the degradation of phenanthrene, fluorene, and chrysene. Initially, biochars reduced polyphenol oxidase activity but increased urease and dehydrogenase activities. However, there was a noticeable rise in polyphenol oxidase activity for a long time. Biochars influenced bacterial community succession and abundance, likely due to nutrient release stimulating microbial activity. The structural equations model (SEM) reveals that DON affected the enzyme activity by changing the microbial community and thus regulated the degradation of PAHs. These findings shed light on biochar's role in bacterial communities and petroleum hydrocarbon degradation over extended periods, potentially enhancing biochar-based remediation for petroleum-contaminated sediments.


Subject(s)
Biodegradation, Environmental , Charcoal , Geologic Sediments , Petroleum , Polycyclic Aromatic Hydrocarbons , Charcoal/chemistry , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Petroleum/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Bacteria/metabolism , Bacteria/drug effects , Petroleum Pollution , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Microbiota/drug effects , Catechol Oxidase/metabolism
7.
Anal Chim Acta ; 1317: 342897, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030003

ABSTRACT

BACKGROUND: Accurate and quick judgement of the food quality can protect the legitimate rights of consumers. Currently, nanozymes are widely employed in the rapid detection of food due to their stability and economy. The contents of bisphenol A and antioxidant can be used to measure the quality of beverages. However, due to the complexity of the actual samples, it is still challenging to achieve the sensitive detection of both at the same time. The development of nanozyme with high enzyme activity is essential for sensitive detection of targets in complex foods. RESULTS: In this work, a novel nanomaterial (ZrTGA) was synthesized based on thioglycolic acid-modified Metal-Organic Framework (MOF-818). The interaction between Cu-S bonds and increase in the proportion of Cu1+ resulted in ZrTGA exhibiting higher peroxidase-like and polyphenol oxidase-like activities. These enzyme activities were 317 % and 200 % of the original values, respectively. With high enzyme activity can sensitively detect two important indicators of bisphenol A and antioxidants in beverages. The increased enzyme activity of ZrTGA enabled the content of both substances to be detected by smartphone extraction of RGB. Finally, through the output of the ''0″ and ''1″ signals of the logic gates, it is possible to quickly determine the level of the two substances and thus directly assess the quality of the beverages. SIGNIFICANCE: The modification of nanozyme enables the detection of substances at low concentrations based on enhancing dual-enzyme activity. The combination of mobile phone photography and logic gate technology enables the continuous detection of two important indicators in beverages, overcoming the limitations of traditional large-scale instruments. It also provides an alternative strategy for food quality detection.


Subject(s)
Antioxidants , Benzhydryl Compounds , Beverages , Metal-Organic Frameworks , Phenols , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Metal-Organic Frameworks/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Beverages/analysis , Nanostructures/chemistry , Copper/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry
8.
PLoS One ; 19(6): e0300748, 2024.
Article in English | MEDLINE | ID: mdl-38889121

ABSTRACT

The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.


Subject(s)
Animal Feed , Body Composition , Oxidation-Reduction , Penaeidae , Spirulina , Animals , Penaeidae/growth & development , Penaeidae/immunology , Penaeidae/genetics , Animal Feed/analysis , Dietary Supplements , Biomass , Immunity, Innate/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Gene Expression Regulation/drug effects , Enzyme Precursors/metabolism , Enzyme Precursors/genetics
9.
Food Res Int ; 188: 114325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823824

ABSTRACT

In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.


Subject(s)
Catechol Oxidase , Molecular Docking Simulation , Molecular Dynamics Simulation , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Spectrometry, Fluorescence , Kinetics , Electricity , Agaricales/enzymology , Catechols/chemistry , Catechols/metabolism
10.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874060

ABSTRACT

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Subject(s)
Catechol Oxidase , Escherichia coli , Fruit and Vegetable Juices , Malus , Microbial Viability , Ultraviolet Rays , Catechol Oxidase/metabolism , Malus/chemistry , Escherichia coli/radiation effects , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Microbial Viability/radiation effects , Food Irradiation/methods
11.
Insect Biochem Mol Biol ; 171: 104151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880307

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors that play a critical role in the immune response of invertebrates and vertebrates. Herein, the short ApPGRP-D gene was cloned from the model lepidopteran Antheraea pernyi. Quantitative PCR (qPCR) confirmed that ApPGRP-D is an immune-related protein and that the expression of ApPGRP-D can be induced by microorganisms. ApPGRP-D is a broad-spectrum pattern recognition protein that activates the prophenoloxidase cascade activation system and promotes the agglutination of microbial cells. Likely due to its amidase activity, ApPGRP-D can inhibit the growth of E. coli and S. aureus. In addition, we demonstrated for the first time that zinc ions, as important metal coenzymes, could promote multiple functions of ApPGRP-D but not its amidase activity.


Subject(s)
Carrier Proteins , Immunity, Humoral , Insect Proteins , Moths , Animals , Moths/immunology , Moths/genetics , Moths/metabolism , Moths/microbiology , Insect Proteins/metabolism , Insect Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Escherichia coli , Staphylococcus aureus , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Catechol Oxidase/metabolism , Cloning, Molecular , Zinc/metabolism , Enzyme Precursors
12.
Food Chem ; 456: 139996, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38925008

ABSTRACT

This study was aimed to evaluate the potential of high-humidity hot air impingement cooking (HHAIC) on Penaeus vannamei, focusing on its drying characteristics, microstructure, water distribution, enzyme activity, astaxanthin content, antioxidant capacity, color, and Maillard reaction. Results demonstrated that a 3 min HHAIC significantly improved the shrimp's color and optimized astaxanthin content with a notable increase in scavenging capacity based on an in-vitro as antioxidation activity evaluation. Compared to the untreated samples, HHAIC could significantly inactivate polyphenol oxidase by 95.76%. Also, it suppressed the Maillard reaction by decreasing 5-hydroxymethylfurfural content and shortened the drying time by 40%. In addition, the low-field nuclear magnetic resonance and microstructure analysis showed alterations in the shrimp muscle fiber structure and water distribution. This study indicated that HHAIC could elevate quality, enhance appearance, and reduce the processing time of dried shrimp, presenting valuable implications for industry progress.


Subject(s)
Color , Cooking , Hot Temperature , Maillard Reaction , Penaeidae , Animals , Penaeidae/chemistry , Penaeidae/enzymology , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Desiccation , Shellfish/analysis , Antioxidants/chemistry , Xanthophylls/chemistry
13.
Talanta ; 277: 126422, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897016

ABSTRACT

Phenolic compounds (PCs) are diverse in nature and undergo complex migration and transformations in the environment, making it challenging to use techniques such as chromatography and other traditional methods to determine the concentration of PCs by separation, individual monitoring and subsequent addition. To address this issue, a facile and on-site strategy was developed to measure the concentration of PCs using a novel nanozyme with polyphenol oxidase-like activity. First, the nanozyme was designed by coordinating the asymmetric ligand nicotinic acid with copper to mimic the structure of mononuclear and trinuclear copper clusters of natural laccases. Subsequently, by introducing 2-mercaptonicotinic acid to regulate the valence state of copper, the composite nanozyme CuNA10S was obtained with significantly enhanced activity. Interestingly, CuNA10S was shown to have a broad substrate spectrum capable of catalyzing common PCs. Building upon the superior performance of this nanozyme, a method was developed to determine the concentration of PCs. To enable rapid on-site sensing, we designed and prepared CuNA10S-based test strips and developed a tailored smartphone sensing platform. Using paper strip sensors combined with a smartphone sensing platform with RGB streamlined the sensing process, facilitating rapid on-site analysis of PCs within a range of 0-100 µM. Our method offers a solution for the quick screening of phenolic wastewater at contaminated sites, allowing sensitive and quick monitoring of PCs without the need for standard samples. This significantly simplifies the monitoring procedure compared to more cumbersome large-scale instrumental methods.


Subject(s)
Catechol Oxidase , Phenols , Phenols/chemistry , Phenols/analysis , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Copper/chemistry , Smartphone , Nanostructures/chemistry
14.
Food Chem ; 457: 140118, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38905831

ABSTRACT

The development of natural inhibitors of polyphenol oxidase (PPO) is crucial in the prevention of enzymatic browning in fresh foods. However, few studies have focused on the effect of subsequent sterilization on their inhibition efficiency. This study investigated the influence and mechanism of high hydrostatic pressure (HHP) on the inhibition of PPO by epigallocatechin gallate (EGCG), cyanidin-3-O-glucoside (C3G), and ferulic acid. Results showed that under the conditions of 550 MPa/30 min, the activity of EGCG-PPO decreased to 55.92%, C3G-PPO decreased to 81.80%, whereas the activity of FA-PPO remained stable. Spectroscopic experiments displayed that HHP intensified the secondary structure transformation and fluorescence quenching of PPO. Molecular dynamics simulations revealed that at 550 MPa, the surface interaction between PPO with EGCG or C3G increased, potentially leading to a reduction in their activity. In contrast, FA-PPO demonstrated conformational stability. This study can provide a reference for the future industrial application of natural inhibitors.


Subject(s)
Anthocyanins , Catechin , Catechol Oxidase , Coumaric Acids , Enzyme Inhibitors , Hydrostatic Pressure , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/antagonists & inhibitors , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Anthocyanins/chemistry , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Molecular Dynamics Simulation
15.
Food Chem ; 457: 140133, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38909455

ABSTRACT

The present work evaluated kiwi juice addition alongside pasteurization (at 85 °C for 5 min) or microwave treatment (for 3 min) on the quality improvement of sugarcane juice. The juice was treated in the presence of kiwi juice (0-8%), and its physicochemical properties and microbial load were compared with raw juice. The study also highlighted the key enzymes causing sugarcane juice discoloration, peroxidase (POD) and polyphenol oxidase (PPO), by quantifying kiwi juice constituents using GC-MS and monitoring their effects by molecular docking. Kiwi addition considerably raised (p < 0.05) acidity, ascorbic acid (54.28%), and phenolic compounds (32%), and decreased the POD and PPO activity of raw cane juice. Pasteurization in the presence of kiwi, rather than microwave treatment, has significantly (p < 0.05) increased the phenolic compounds and reduced POD and PPO activities until barley was detected. Molecular docking revealed that heptacosane, oleic acid, and melezitose are the primary kiwi components responsible for enzyme inactivation.


Subject(s)
Actinidia , Catechol Oxidase , Fruit and Vegetable Juices , Molecular Docking Simulation , Saccharum , Saccharum/chemistry , Fruit and Vegetable Juices/analysis , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/antagonists & inhibitors , Actinidia/chemistry , Actinidia/enzymology , Peroxidase/chemistry , Peroxidase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
Plant J ; 119(2): 927-941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872484

ABSTRACT

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Subject(s)
Catechol Oxidase , Glucosides , Phenols , Plant Proteins , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Glucosides/metabolism , Glucosides/biosynthesis , Phenols/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biosynthetic Pathways , Oleaceae/enzymology , Oleaceae/genetics , Oleaceae/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Polyphenols
17.
Nature ; 631(8020): 350-359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926577

ABSTRACT

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Subject(s)
Catechol Oxidase , Drosophila Proteins , Drosophila melanogaster , Enzyme Precursors , Hemocytes , Oxygen , Phase Transition , Respiration , Animals , Female , Male , Biological Transport , Carbonic Anhydrases/metabolism , Catechol Oxidase/metabolism , Copper/metabolism , Crystallization , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Enzyme Precursors/metabolism , Hemocyanins/metabolism , Hemocytes/immunology , Hemocytes/metabolism , Homeostasis , Hydrogen-Ion Concentration , Hyperoxia/metabolism , Hypoxia/metabolism , Larva/anatomy & histology , Larva/cytology , Larva/immunology , Larva/metabolism , Oxygen/metabolism
18.
Physiol Plant ; 176(3): e14335, 2024.
Article in English | MEDLINE | ID: mdl-38705728

ABSTRACT

Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/physiology , Pseudomonas syringae/pathogenicity , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Sound , Disease Resistance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Catechol Oxidase/metabolism , Catechol Oxidase/genetics
19.
PLoS One ; 19(5): e0304673, 2024.
Article in English | MEDLINE | ID: mdl-38820398

ABSTRACT

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Subject(s)
Hydrogen Peroxide , Orobanche , Vicia faba , Vicia faba/microbiology , Vicia faba/parasitology , Vicia faba/metabolism , Hydrogen Peroxide/metabolism , Catechol Oxidase/metabolism , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/metabolism , Rhizobium/physiology , Peroxidase/metabolism , Plant Diseases/parasitology , Plant Diseases/microbiology , Phenylalanine Ammonia-Lyase/metabolism
20.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38722774

ABSTRACT

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catechol Oxidase , Particle Size , Biofilms/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Catechol Oxidase/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Molecular Docking Simulation , Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL