Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.686
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(8): 822-829, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39103264

ABSTRACT

Objective: To investigate the clinicopathological, immunohistochemical and molecular genetic characteristics of TFE3-rearranged perivascular epithelioid cell tumor (PEComa). Methods: Eight cases of PEComa with TFE3 rearrangement diagnosed in the First Affiliated Hospital of Air Force Medical University from January 2014 to July 2022 were collected. Three were consultation cases and 5 were collected from our hospital; 7 cases were resection specimens and 1 case was a needle biopsy specimen. Routine histolopathological analysis, immunohistochemical staining, fluorescence in situ hybridization (FISH) and the next-generation sequencing were performed. Clinical data were collected and the prognosis was assessed. Results: The 8 patients consisted of 5 females and 3 males with a median age of 45 years (ranged from 25 to 65 years). The tumor location included 1 uterus, 1 liver, 1 urachus, 2 kidneys, 1 abdominal cavity, 1 colon, and 1 retroperitoneum (3 subsequent recurrences in the abdominal cavity, pelvis and ovary, and abdominal cavity, respectively). Morphologically, the tumor cells were uniform and epithelioid with translucent or eosinophilic cytoplasm. They were arranged in nests or sheets, most of which were separated by thin-walled blood vessels. There were no papillary structures, and no overt smooth muscle or fat components. Atypical features were seen in 3 cases, with bizarre nuclei and tumor giant cells. Large areas of necrosis were visible, and mitosis was common (up to 28/50 HPF). Melanin deposition was present in 3 cases. Immunohistochemical staining showed diffuse and strong positivity for TFE3 in 8/8 cases and for HMB45 in 6/8 cases; focal positivity for Cathepsin K and Melan-A in 6/8 cases and for SMA in 2/8 of cases. All cases were negative for CKpan, PAX8 and Desmin. TFE3 gene break-apart was detected by FISH in all 8 cases, 4 of which underwent next-generation sequencing, and it revealed that 2 cases presented with SFPQ::TFE3 fusion, 1 case with ASPSCR1::TFE3 fusion, and 1 case with no chimeric fusion. Seven cases were followed up for 4-94 months. All cases were alive; 4 cases were disease-free, 2 cases showed recurrence, and 1 case had metastasis at initial diagnosis. Conclusions: TFE3-rearranged PEComa has unique histomorphological, immunohistochemical and molecular characteristics. The biological behavior is aggressive, which could lead to recurrence and metastasis, and warrants close clinical follow-up.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Gene Rearrangement , Perivascular Epithelioid Cell Neoplasms , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Perivascular Epithelioid Cell Neoplasms/genetics , Perivascular Epithelioid Cell Neoplasms/pathology , Perivascular Epithelioid Cell Neoplasms/metabolism , Female , Male , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence , Immunohistochemistry , High-Throughput Nucleotide Sequencing , Prognosis , Neoplasm Recurrence, Local , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MART-1 Antigen/metabolism , MART-1 Antigen/genetics , Retroperitoneal Neoplasms/genetics , Retroperitoneal Neoplasms/pathology , Retroperitoneal Neoplasms/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Cathepsin K , gp100 Melanoma Antigen
2.
Bioorg Med Chem Lett ; 110: 129887, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39002936

ABSTRACT

Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.


Subject(s)
Cathepsin K , Peptidomimetics , Proline , Cathepsin K/antagonists & inhibitors , Cathepsin K/metabolism , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Proline/chemistry , Proline/pharmacology , Humans , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug
3.
Bone Res ; 12(1): 29, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744829

ABSTRACT

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Subject(s)
Endosomes , Lysosomes , Osteoclasts , Animals , Female , Mice , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Cell Differentiation , Endosomes/metabolism , Gene Deletion , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/metabolism , Protein Transport , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
4.
Pediatr Nephrol ; 39(9): 2773-2777, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38744714

ABSTRACT

BACKGROUND: Activin A has been shown to enhance osteoclast activity and its inhibition results in bone growth. The potential role of activin A as a marker of chronic kidney disease-mineral bone disease (CKD-MBD) and its relationship with other markers has not been studied in children with CKD. METHODS: A cross sectional study was conducted among 40 children aged 2 to 18 years with CKD (Stage 2 to 5; 10 in each stage) and 40 matched controls. Activin A, cathepsin K, FGF-23, PTH, serum calcium, phosphorous and alkaline phosphatase in both groups were measured and compared. The correlation of activin A and markers of CKD-MBD was studied. A p value of < 0.05 was considered significant. RESULTS: The mean age of children with CKD was 9.30 ± 3.64 years. Mean levels of activin A in cases were 485.55 pg/ml compared to 76.19 pg/ml in controls (p < 0.001). FGF-23 levels in cases were 133.18 pg/ml while in controls it was 6.93 pg/ml (p < 0.001). Mean levels of cathepsin K were also significantly higher in cases as compared to controls. There was a progressive increase in activin A and cathepsin K levels with increasing stage of CKD. Activin A had a significant positive correlation with serum creatinine (r = 0.51; p < 0.001). CONCLUSIONS: Activin A levels progressively rise with advancing CKD stage. These findings suggest that activin A can be a potential early marker of CKD-MBD in children.


Subject(s)
Activins , Biomarkers , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Renal Insufficiency, Chronic , Humans , Child , Activins/blood , Fibroblast Growth Factor-23/blood , Biomarkers/blood , Female , Cross-Sectional Studies , Male , Adolescent , Child, Preschool , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Fibroblast Growth Factors/blood , Cathepsin K/blood , Chronic Kidney Disease-Mineral and Bone Disorder/blood , Chronic Kidney Disease-Mineral and Bone Disorder/diagnosis , Chronic Kidney Disease-Mineral and Bone Disorder/etiology , Case-Control Studies , Parathyroid Hormone/blood , Calcium/blood , Alkaline Phosphatase/blood , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/diagnosis
5.
J Dent Res ; 103(7): 734-744, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752256

ABSTRACT

N6-methyladenosine (m6A) modification, a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), plays a pivotal role in stem cell fate determination. Calvarial bone development and maintenance are orchestrated by the cranial sutures. Cathepsin K (CTSK)-positive calvarial stem cells (CSCs) contribute to mice calvarial ossification. However, the role of m6A modification in regulating Ctsk+ lineage cells during calvarial development remains elusive. Here, we showed that METTL3 was colocalized with cranial nonosteoclastic Ctsk+ lineage cells, which were also associated with GLI1 expression. During neonatal development, depletion of Mettl3 in the Ctsk+ lineage cells delayed suture formation and decreased mineralization. During adulthood maintenance, loss of Mettl3 in the Ctsk+ lineage cells impaired calvarial bone formation, which was featured by the increased bone porosity, enhanced bone marrow cavity, and decreased number of osteocytes with the less-developed cellular outline. The analysis of methylated RNA immunoprecipitation sequencing and RNA sequencing data indicated that loss of METTL3 reduced Hedgehog (Hh) signaling pathway. Restoration of Hh signaling pathway by crossing Sufufl/+ alleles or by local administration of SAG21 partially rescued the abnormity. Our data indicate that METTL3 modulates Ctsk+ lineage cells supporting calvarial bone formation by regulating the Hh signaling pathway, providing new insights for clinical treatment of skull vault osseous diseases.


Subject(s)
Cathepsin K , Hedgehog Proteins , Methyltransferases , Osteogenesis , Signal Transduction , Skull , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Osteogenesis/physiology , Osteogenesis/genetics , Mice , Hedgehog Proteins/metabolism , Cell Lineage , Cranial Sutures , Stem Cells , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics
6.
FASEB J ; 38(10): e23684, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38795334

ABSTRACT

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Subject(s)
Adipocytes , Adiponectin , Cathepsin K , Cell Differentiation , Dipeptidyl Peptidase 4 , Glucagon-Like Peptide 1 , Mice, Knockout , Animals , Mice , Adiponectin/metabolism , Glucagon-Like Peptide 1/metabolism , Adipocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Male , Mice, Inbred C57BL , Stress, Psychological/metabolism , 3T3-L1 Cells , Exenatide/pharmacology , PPAR gamma/metabolism , Adipogenesis
7.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703204

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Subject(s)
Apoptosis , Cathepsin K , Chlorides , Disease Models, Animal , Ferric Compounds , Thrombosis , Animals , Humans , Male , Mice , ADAMTS13 Protein/metabolism , ADAMTS13 Protein/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Chlorides/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Stress, Psychological/complications , Stress, Psychological/metabolism , Thrombosis/metabolism , Thrombosis/pathology , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics
8.
J Dent ; 144: 104957, 2024 05.
Article in English | MEDLINE | ID: mdl-38527517

ABSTRACT

INTRODUCTION: Osteoclasts (OCs) play a crucial role in maintaining bone health. Changes in OC activity are linked to different bone diseases, making them an intriguing focus for research. However, most studies on OCs have relied on 2D cultures, limiting our understanding of their behavior. Yet, there's a lack of knowledge regarding platforms that effectively support osteoclast formation in 3D cultures. METHODS: In our investigation, we explored the capacity of collagen and GelMA hydrogels to facilitate osteoclast development in 3D culture settings. We assessed the osteoclast development by using different hydrogels and cell seeding strategies and optimizing cell seeding density and cytokine concentration. The osteoclast development in 3D cultures was further validated by biochemical assays and immunochemical staining. RESULTS: Our findings revealed that 0.3 % (w/v) collagen was conducive to osteoclast formation in both 2D and 3D cultures, demonstrated by increased multinucleation and higher TRAP activity compared to 0.6 % collagen and 5 % to 10 % (w/v) GelMA hydrogels. Additionally, we devised a "sandwich" technique using collagen substrates and augmented the initial macrophage seeding density and doubling cytokine concentrations, significantly enhancing the efficiency of OC culture in 3D conditions. Notably, we validated osteoclasts derived from macrophages in our 3D cultures express key osteoclast markers like cathepsin K and TRAP. CONCLUSIONS: To conclude, our study contributes to establishing an effective method for cultivating osteoclasts in 3D environments in vitro. This innovative approach not only promises a more physiologically relevant platform to study osteoclast behavior during bone remodeling but also holds potential for applications in bone tissue engineering. CLINICAL SIGNIFICANCE: This study introduces an efficient method for cultivating osteoclasts in 3D environments in vitro. It offers a more physiologically relevant platform to investigate osteoclast behavior and holds promise to advance research in bone biology and regenerative dentistry.


Subject(s)
Cell Culture Techniques , Hydrogels , Osteoclasts , Osteoclasts/cytology , Animals , Cell Differentiation , Collagen , Mice , Cell Culture Techniques, Three Dimensional/methods , Macrophages/cytology , Cathepsin K , Cytokines/metabolism , Cells, Cultured
9.
Matrix Biol ; 129: 15-28, 2024 May.
Article in English | MEDLINE | ID: mdl-38548090

ABSTRACT

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.


Subject(s)
Cathepsin K , Collagenases , Heparitin Sulfate , Osteoclasts , Cathepsin K/metabolism , Cathepsin K/antagonists & inhibitors , Cathepsin K/chemistry , Cathepsin K/genetics , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Collagenases/metabolism , Humans , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , Binding Sites , Mice , Crystallography, X-Ray , Bone Resorption/metabolism , Bone Resorption/drug therapy , Protein Binding , Catalytic Domain , Models, Molecular , Protein Multimerization
10.
Sheng Li Xue Bao ; 76(1): 45-51, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38444130

ABSTRACT

The present study aims to investigate the effect of cathepsin K (CatK) on ischemic angiogenesis in high-fat diet fed mice. The mice were subjected to unilateral hindlimb ischemic surgery, and the ischemic blood flow was measured with a laser Doppler blood flow imager. Immunohistochemical staining was used to observe the quantity of new capillaries in the ischemic lower extremity, and Western blot was used to detect the expression of insulin receptor substrate-1 (IRS-1), p-Akt, Akt and vascular endothelial growth factor (VEGF). Firstly, the effect of high-fat diet on ischemic angiogenesis was observed in wild-type mice, which were randomly divided into control group and high-fat diet group and were fed with normal diet or 60% high-fat diet respectively for 16 weeks. The results showed the body weight and the plasma CatK concentration of the high-fat diet group was significantly increased compared with the control group (P < 0.05), and the blood flow recovery of the high-fat diet group was significantly lower than control group (P < 0.05). Then, wild-type and CatK knock out (CatK-/-) mice were both fed with high-fat diet to further observe the effect and mechanism of CatK on ischemic angiogenesis under high-fat diet. The results showed that the blood flow recovery in the CatK-/- group was significantly greater than the wild-type group, and the number of CD31 positive cells was significantly increased (P < 0.05). At the same time, the protein expression levels of IRS-1, p-Akt and VEGF in the ischemic skeletal muscle were significantly increased in the CatK-/- group compared with the wild-type group (P < 0.05). These results suggest that the deficiency of CatK improves ischemic angiogenesis in high-fat diet fed mice through IRS-1-Akt-VEGF signaling pathway.


Subject(s)
Diet, High-Fat , Vascular Endothelial Growth Factor A , Animals , Mice , Angiogenesis , Cathepsin K , Diet, High-Fat/adverse effects , Proto-Oncogene Proteins c-akt/genetics , Vascular Endothelial Growth Factor A/genetics
11.
Sci Rep ; 14(1): 7358, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548807

ABSTRACT

Cathepsin K (CatK), an essential collagenase in osteoclasts (OCs), is a potential therapeutic target for the treatment of osteoporosis. Using live-cell imaging, we monitored the bone resorptive behaviour of OCs during dose-dependent inhibition of CatK by an ectosteric (Tanshinone IIA sulfonate) and an active site inhibitor (odanacatib). CatK inhibition caused drastic reductions in the overall resorption speed of OCs. At IC50 CatK-inhibitor concentration, OCs reduced about 40% of their trench-forming capacity and at fourfold IC50 concentrations, a > 95% reduction was observed. The majority of CatK-inhibited OCs (~ 75%) were involved in resorption-migration-resorption episodes forming adjacent pits, while ~ 25% were stagnating OCs which remained associated with the same excavation. We also observed fusions of OCs during the resorption process both in control and inhibitor-treated conditions, which increased their resorption speeds by 30-50%. Inhibitor IC50-concentrations increased OC-fusion by twofold. Nevertheless, more fusion could not counterweigh the overall loss of resorption activity by inhibitors. Using an activity-based probe, we demonstrated the presence of active CatK at the resorbing front in pits and trenches. In conclusion, our data document how OCs respond to CatK-inhibition with respect to movement, bone resorption activity, and their attempt to compensate for inhibition by activating fusion.


Subject(s)
Bone Density Conservation Agents , Bone Resorption , Osteoporosis , Humans , Osteoclasts , Bone Density Conservation Agents/pharmacology , Bone Resorption/drug therapy , Osteoporosis/drug therapy , Cathepsin K
12.
J Bone Miner Metab ; 42(2): 166-184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376670

ABSTRACT

INTRODUCTION: Osteoporosis is a global health issue. Bisphosphonates that are commonly used to treat osteoporosis suppress both bone resorption and subsequent bone formation. Inhibition of cathepsin K, a cysteine proteinase secreted by osteoclasts, was reported to suppress bone resorption while preserving or increasing bone formation. Analyses of the different effects of antiresorptive reagents such as bisphosphonates and cysteine proteinase inhibitors will contribute to the understanding of the mechanisms underlying bone remodeling. MATERIALS AND METHODS: Our team has developed an in vitro system in which bone remodeling can be temporally observed at the cellular level by 2-photon microscopy. We used this system in the present study to examine the effects of the cysteine proteinase inhibitor E-64 and those of zoledronic acid on bone remodeling. RESULTS: In the control group, the amount of the reduction and the increase in the matrix were correlated in each region of interest, indicating the topological and quantitative coordination of bone resorption and formation. Parameters for osteoblasts, osteoclasts, and matrix resorption/formation were also correlated. E-64 disrupted the correlation between resorption and formation by potentially inhibiting the emergence of spherical osteoblasts, which are speculated to be reversal cells in the resorption sites. CONCLUSION: These new findings help clarify coupling mechanisms and will contribute to the development of new drugs for osteoporosis.


Subject(s)
Bone Resorption , Cysteine Proteases , Osteoporosis , Humans , Cysteine Proteases/pharmacology , Cysteine Proteases/therapeutic use , Bone Resorption/drug therapy , Osteoclasts , Cathepsin K , Osteoporosis/drug therapy , Diphosphonates/pharmacology , Diphosphonates/therapeutic use
13.
J Mol Endocrinol ; 72(3)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38261314

ABSTRACT

Follicle-stimulating hormone (FSH) accelerates osteoporosis in postmenopausal women, while the underlying mechanism remains uncharacterized. N6-methyladenosine (m6A) is one of the most important regulations in the development of osteoporosis. In this study, we aimed to investigate the role of FSH in m6A modification and osteoclast function. Here, we showed that FSH upregulated m6A levels in osteoclasts via stimulating methyltransferase-like 3 (METTL3) protein expression. FSH enhanced osteoclast migration, while the knockdown of METTL3 eliminated this enhancement. Both MeRIP-seq and RNA sequencing identified that cathepsin K (CTSK) is the potential downstream target of METTL3. Knockdown of CTSK reduced FSH-upregulated osteoclast migration. Furthermore, silencing METTL3 decreased CTSK mRNA stability. Finally, FSH induced phosphorylation of cyclic-AMP response element-binding protein (CREB), while silencing of CREB attenuated the effects of FSH on the promoter transcriptional activity of Mettl3 and CTSK/METTL3 protein. Taken together, these findings indicate that FSH promotes osteoclast migration via the CREB/METTL3/CTSK signaling pathway, which may provide a potential target for suppressing osteoclast mobility and postmenopausal osteoporosis therapy.


Subject(s)
Adenine/analogs & derivatives , Osteoclasts , Osteoporosis , Humans , Female , Osteoclasts/metabolism , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Cathepsin K/genetics , Cathepsin K/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism
14.
Mod Pathol ; 37(3): 100426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219952

ABSTRACT

Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.


Subject(s)
Melanoma , Perivascular Epithelioid Cell Neoplasms , Receptors, Fc , Sarcoma , Humans , Immunohistochemistry , Cathepsin K/metabolism , Melanoma/pathology , Biomarkers, Tumor/metabolism , Perivascular Epithelioid Cell Neoplasms/diagnosis , Perivascular Epithelioid Cell Neoplasms/pathology , Glycoproteins , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Membrane Glycoproteins
15.
Angew Chem Int Ed Engl ; 63(6): e202318459, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38105412

ABSTRACT

Intravital fluorescence imaging of functional osteoclasts within their intact disease context provides valuable insights into the intricate biology at the microscopic level, facilitating the development of therapeutic approaches for osteoclast-associated bone diseases. However, there is a lack of studies investigating osteoclast activity within deep-seated bone lesions using appropriate fluorescent probes, despite the advantages offered by the multi-photon excitation system in enhancing deep tissue imaging resolution. In this study, we report on the intravital tracking of osteoclast activity in three distinct murine bone disease models. We utilized a cathepsin K (CatK)-responsive two-photon fluorogenic probe (CatKP1), which exhibited a notable fluorescence turn-on response in the presence of active CatK. By utilizing CatKP1, we successfully monitored a significant increase in osteoclast activity in hindlimb long bones and its attenuation through pharmacological intervention without sacrificing mice. Thus, our findings highlight the efficacy of CatKP1 as a valuable tool for unraveling pathological osteoclast behavior and exploring novel therapeutic strategies.


Subject(s)
Bone Diseases , Osteoclasts , Animals , Mice , Osteoclasts/pathology , Cathepsin K , Bone and Bones , Bone Diseases/pathology , Diagnostic Imaging
16.
Clin Oral Investig ; 28(1): 1, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114764

ABSTRACT

OBJECTIVES: This study aimed to assess the activity, distribution, and colocalization of cathepsin K (catK) and matrix metalloproteases (MMPs) in both intact and eroded dentin in vitro. MATERIALS AND METHODS: Eroded dentin was obtained by consecutive treatment with 5% citric acid (pH = 2.3) for 7 days, while intact dentin remained untreated. Pulverized dentin powder (1.0 g) was extracted from both intact and eroded dentin using 5 mL of 50 mM Tris-HCl buffer (0.2 g/1 mL, pH = 7.4) for 60 h to measure the activity of catK and MMPs spectrofluorometrically. In addition, three 200-µm-thick dentin slices were prepared from intact and eroded dentin for double-labeling immunofluorescence to evaluate the distribution and colocalization of catK and MMPs (MMP-2 and MMP-9). The distribution and colocalization of enzymes were analyzed using inverted confocal laser scanning microscopy (CLSM), with colocalization rates quantified using Leica Application Suite Advanced Fluorescent (LAS AF) software. One-way analysis of variance (ANOVA) was used to analyze the fluorescence data related to enzyme activity (α = 0.05). RESULTS: The activity of catK and MMPs was significantly increased in eroded dentin compared with intact dentin. After erosive attacks, catK, MMP-2, and MMP-9 were prominently localized in the eroded regions. The colocalization rates of catK with MMP-2 and MMP-9 were 13- and 26-fold higher in eroded dentin, respectively, than in intact dentin. CONCLUSIONS: Erosive attacks amplified the activity of catK and MMPs in dentin while also altering their distribution patterns. Colocalization between catK and MMPs increased following erosive attacks. CLINICAL RELEVANCE: CatK, MMP-2, and MMP-9 likely play synergistic roles in the pathophysiology of dentin erosion.


Subject(s)
Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Cathepsin K , Fluorescent Antibody Technique , Dentin
17.
Sci Rep ; 13(1): 19320, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935734

ABSTRACT

Oral lichen planus (OLP) is a chronic inflammatory disease associated with T cell infiltration. The crosstalk between oral epithelium and mucosal T cells was considered to be crucial in the pathogenesis of OLP. Here, we selectively extracted the normal epithelium (NE) and lesional epithelium (LE) of buccal mucosa specimens from three patients with OLP by laser capture microdissection due to identify the pathogenic factors. Cathepsin K (CTSK) was identified as one of common upregulated genes in the LE by DNA microarray. Immunohistochemically, CTSK was distinctly detected in and around the LE, while it was rarely seen in the NE. Recent studies showed that CTSK enhanced Toll-like receptor 9 (TLR9) signaling in antigen-presenting cells, leading to Th17 cell differentiation. TLR9 expression mainly co-localized with CD123+ plasmacytoid dendritic cells (pDCs). The number of RORγt-positive cells correlated with that of CTSK-positive cells in OLP tissues. CD123+ pDCs induced the production of Th17-related cytokines (IL-6, IL-23, and TGF-ß) upon stimulation with TLR9 agonist CpG DNA. Moreover, single cell RNA-sequencing analysis revealed that TLR9-positive pDCs enhanced in genes associated with Th17 cell differentiation in comparison with TLR9-negative pDCs. CTSK could induce Th17-related production of CD123+ pDCs via TLR9 signaling to promote the pathogenesis of OLP.


Subject(s)
Lichen Planus, Oral , Humans , Lichen Planus, Oral/pathology , Toll-Like Receptor 9/metabolism , Interleukin-3 Receptor alpha Subunit/metabolism , Cathepsin K/genetics , Cathepsin K/metabolism , Dendritic Cells , Epithelium/metabolism , Immunity , Toll-Like Receptor 7/metabolism , Th17 Cells/metabolism
18.
Stem Cell Res Ther ; 14(1): 319, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936199

ABSTRACT

BACKGROUND: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS: In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS: Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Osteoclasts , Leukocytes, Mononuclear , Cathepsin K/metabolism , Cell Differentiation
19.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931101

ABSTRACT

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Subject(s)
Osteogenesis , Stem Cell Niche , Mice , Animals , Cathepsin K/metabolism , Periosteum/metabolism , Cell Differentiation/genetics , Wnt Signaling Pathway , Proto-Oncogene Proteins/metabolism
20.
Biochem Biophys Res Commun ; 688: 149147, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37948912

ABSTRACT

Heterotopic ossification (HO) is abnormal bone growth in soft tissues that results from injury, trauma, and rare genetic disorders. Bone morphogenetic proteins (BMPs) are critical osteogenic regulators which are involved in HO. However, it remains unclear how BMP signaling interacts with other extracellular stimuli to form HO. To address this question, using the Cre-loxP recombination system in mice, we conditionally expressed the constitutively activated BMP type I receptor ALK2 with a Q207D mutation (Ca-ALK2) in Cathepsin K-Cre labeled tendon progenitors (hereafter "Ca-Alk2:Ctsk-Cre"). Ca-Alk2:Ctsk-Cre mice were viable but they formed spontaneous HO in the Achilles tendon. Histological and molecular marker analysis revealed that HO is formed via endochondral ossification. Ectopic chondrogenesis coincided with enhanced GLI1 production, suggesting that elevated Hedgehog (Hh) signaling is involved in the pathogenesis of HO. Interestingly, focal adhesion kinase, a critical mediator for the mechanotransduction pathway, was also activated in Ca-Alk2:Ctsk-Cre mice. Our findings suggest that enhanced BMP signaling may elevate Hh and mechanotransduction pathways, thereby causing HO in the regions of the Achilles tendon.


Subject(s)
Mechanotransduction, Cellular , Ossification, Heterotopic , Mice , Animals , Cathepsin K/metabolism , Hedgehog Proteins , Ossification, Heterotopic/metabolism , Tendons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL