Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
In Vivo ; 38(4): 1579-1593, 2024.
Article in English | MEDLINE | ID: mdl-38936891

ABSTRACT

BACKGROUND/AIM: Melanoma, a variant of skin cancer, presents the highest mortality rates among all skin cancers. Despite advancements in targeted therapies, immunotherapies, and tissue culture techniques, the absence of an effective early treatment model remains a challenge. This study investigated the impact of dabrafenib on both 2D and 3D cell culture models with distinct molecular profiles. MATERIALS AND METHODS: We developed a high-throughput workflow enabling drug screening on spheroids. Our approach involved cultivating 2D and 3D cultures derived from normal melanocytes and metastatic melanoma cells, treating them with dabrafenib and conducting viability, aggregation, migration, cell cycle, and apoptosis assays. RESULTS: Dabrafenib exerted multifaceted influences, particularly on migration at concentrations of 10 and 25 µM. It induced a decrease in cell viability, impeded cellular adhesion to the matrix, inhibited cellular aggregation and spheroid formation, arrested the cell cycle in the G1 phase, and induced apoptosis. CONCLUSION: These results confirm the therapeutic potential of dabrafenib in treating melanoma with the BRAF V600E mutation and that 3D models are validated models to study the potential of new molecules for therapeutic purposes. Furthermore, our study underscores the relevance of 3D models in simulating physiological in vivo microenvironments, providing insights into varied treatment responses between normal and tumor cells.


Subject(s)
Apoptosis , Cell Movement , Cell Survival , Imidazoles , Melanoma , Oximes , Proto-Oncogene Proteins B-raf , Spheroids, Cellular , Oximes/pharmacology , Humans , Imidazoles/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Cell Line, Tumor , Apoptosis/drug effects , Cell Movement/drug effects , Spheroids, Cellular/drug effects , Cell Survival/drug effects , Cell Culture Techniques , Protein Kinase Inhibitors/pharmacology , Cell Cycle/drug effects , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Culture Techniques, Three Dimensional/methods , Drug Screening Assays, Antitumor/methods
2.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920683

ABSTRACT

Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both physiological and pathological conditions. This section presents a concise overview of the most recent updates on the significant contribution of different types of 3D cell cultures including spheroids, organoids and organ-on-chip and bio-printed tissues in advancing our understanding of cellular and molecular mechanisms. The case studies presented include the 3D cultures of breast cancer (BC), endometriosis, the liver microenvironment and infections. In BC, the establishment of 3D culture models has permitted the visualization of the role of cancer-associated fibroblasts in the delivery of exosomes, as well as the significance of the physical properties of the extracellular matrix in promoting cell proliferation and invasion. This approach has also become a valuable tool in gaining insight into general and specific mechanisms of drug resistance. Given the considerable heterogeneity of endometriosis, 3D models offer a more accurate representation of the in vivo microenvironment, thereby facilitating the identification and translation of novel targeted therapeutic strategies. The advantages provided by 3D models of the hepatic environment, in conjunction with the high throughput characterizing various platforms, have enabled the elucidation of complex molecular mechanisms underlying various threatening hepatic diseases. A limited number of 3D models for gut and skin infections have been developed. However, a more profound comprehension of the spatial and temporal interactions between microbes, the host and their environment may facilitate the advancement of in vitro, ex vivo and in vivo disease models. Additionally, it may pave the way for the development of novel therapeutic approaches in diverse research fields. The interested reader will also find concluding remarks on the challenges and prospects of using 3D cell cultures for discovering cellular and molecular mechanisms in the research areas covered in this review.


Subject(s)
Breast Neoplasms , Cell Culture Techniques, Three Dimensional , Endometriosis , Humans , Endometriosis/pathology , Endometriosis/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Culture Techniques, Three Dimensional/methods , Communicable Diseases/metabolism , Communicable Diseases/pathology , Cell Culture Techniques/methods , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Liver/pathology , Liver/metabolism , Organoids/metabolism , Organoids/pathology , Liver Diseases/pathology , Liver Diseases/metabolism , Animals
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928197

ABSTRACT

Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Naphthoquinones , Humans , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , MCF-7 Cells , Quinolones/pharmacology , Quinolones/chemistry , Apoptosis/drug effects , Cell Culture Techniques, Three Dimensional/methods , Doxorubicin/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects
4.
J Mater Chem B ; 12(25): 6063-6078, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38888153

ABSTRACT

Injectable hydrogels have attracted significant interest in the biomedical field due to their minimal invasiveness and accommodation of intricate scenes. Herein, we developed an injectable polyurethane-based thermogel platform by modulating the hydrophilic-hydrophobic balance of the segmented components with pendant PEG. The thermogelling behavior is achieved by a combination of the bridging from the hydrophilic PEG and the percolated network from the hydrophobic micelle core. Firstly, the thermogelation mechanism of this system was demonstrated by both DPD simulation and experimental investigation. The gelling temperature could be modulated by varying the solid content, the component of soft segments, and the length of the pendant PEG. We further applied 3D printing technology to prepare personalized hydrogel structures. This integration highlights the adaptability of our thermogel for fabricating complex and patient-specific constructs, presenting a significant advance in the field of regenerative medicine and tissue engineering. Subsequently, in vitro cell experiments demonstrated that the thermogel had good cell compatibility and could promote the proliferation and migration of L929 cells. Impressively, A549 cells could be expediently in situ parceled in the thermogel for three-dimensional cultivation and gain lifeful 3D cell spheres after 7 days. Further, in vivo experiments demonstrated that the thermogel could promote wound healing with the regeneration of capillaries and hair follicles. Ultimately, our study demonstrates the potential of hydrogels to prepare personalized hydrogel structures via 3D printing technology, offering innovative solutions for complex biomedical applications. This work not only provides a fresh perspective for the design of injectable thermogels but also offers a promising avenue to develop thermoresponsive waterborne polyurethane for various medical applications.


Subject(s)
Hydrogels , Micelles , Polyurethanes , Polyurethanes/chemistry , Humans , Animals , Hydrogels/chemistry , Mice , Wound Healing/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Cell Proliferation/drug effects , Temperature , Cell Culture Techniques, Three Dimensional/methods , Injections , Cell Movement/drug effects , Particle Size
5.
PLoS Comput Biol ; 20(6): e1012112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861575

ABSTRACT

Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-ß pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.


Subject(s)
Cell Adhesion , Cell Movement , Paclitaxel , Humans , Cell Adhesion/physiology , Cell Movement/physiology , Paclitaxel/pharmacology , Cell Line, Tumor , Models, Biological , Cell Culture Techniques, Three Dimensional/methods , Triple Negative Breast Neoplasms/pathology , Computational Biology , Fibroblasts/physiology , Chemotaxis/physiology
6.
SLAS Discov ; 29(4): 100158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852983

ABSTRACT

3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches. This protocol is particularly timely, as it validates magnetic bioprinting as a method for the rapid deployment of 3D cultures as a tool for compound screening and development of heterotypic cultures such as co-culture of oral squamous cell carcinoma cells with cancer-associated fibroblasts (HSC3/CAFs).


Subject(s)
Bioprinting , Carcinoma, Squamous Cell , Coculture Techniques , Mouth Neoplasms , Printing, Three-Dimensional , Spheroids, Cellular , Humans , Mouth Neoplasms/pathology , Bioprinting/methods , Cell Line, Tumor , Carcinoma, Squamous Cell/pathology , Coculture Techniques/methods , Spheroids, Cellular/pathology , Cell Culture Techniques, Three Dimensional/methods
7.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829450

ABSTRACT

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
8.
Nat Commun ; 15(1): 5027, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871693

ABSTRACT

Generating 3D bone cell networks in vitro that mimic the dynamic process during early bone formation remains challenging. Here, we report a synthetic biodegradable microporous hydrogel for efficient formation of 3D networks from human primary cells, analysis of cell-secreted extracellular matrix (ECM) and microfluidic integration. Using polymerization-induced phase separation, we demonstrate dynamic in situ formation of microporosity (5-20 µm) within matrix metalloproteinase-degradable polyethylene glycol hydrogels in the presence of living cells. Pore formation is triggered by thiol-Michael-addition crosslinking of a viscous precursor solution supplemented with hyaluronic acid and dextran. The resulting microporous architecture can be fine-tuned by adjusting the concentration and molecular weight of dextran. After encapsulation in microporous hydrogels, human mesenchymal stromal cells and osteoblasts spread rapidly and form 3D networks within 24 hours. We demonstrate that matrix degradability controls cell-matrix remodeling, osteogenic differentiation, and deposition of ECM proteins such as collagen. Finally, we report microfluidic integration and proof-of-concept osteogenic differentiation of 3D cell networks under perfusion on chip. Altogether, this work introduces a synthetic microporous hydrogel to efficiently differentiate 3D human bone cell networks, facilitating future in vitro studies on early bone development.


Subject(s)
Cell Culture Techniques, Three Dimensional , Cell Differentiation , Extracellular Matrix , Hydrogels , Mesenchymal Stem Cells , Osteoblasts , Osteogenesis , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Cell Differentiation/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Extracellular Matrix/metabolism , Porosity , Cell Culture Techniques, Three Dimensional/methods , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Hyaluronic Acid/chemistry , Cells, Cultured , Tissue Scaffolds/chemistry , Dextrans/chemistry
9.
J Vet Sci ; 25(3): e40, 2024 May.
Article in English | MEDLINE | ID: mdl-38834510

ABSTRACT

IMPORTANCE: The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. OBSERVATIONS: This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. CONCLUSIONS AND RELEVANCE: This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.


Subject(s)
Organoids , Female , Animals , Pregnancy , Humans , Cell Culture Techniques, Three Dimensional/methods , Embryo Implantation/physiology
10.
Int J Nanomedicine ; 19: 6201-6228, 2024.
Article in English | MEDLINE | ID: mdl-38911499

ABSTRACT

Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.


Subject(s)
Graphite , Organoids , Organoids/drug effects , Organoids/cytology , Animals , Graphite/chemistry , Graphite/pharmacology , Humans , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Drug Combinations , Cell Culture Techniques/methods , Cell Culture Techniques, Three Dimensional/methods , Mice , Laminin/chemistry , Laminin/pharmacology , Collagen , Proteoglycans
11.
Mol Biol Rep ; 51(1): 781, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913199

ABSTRACT

Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation. The differentiation process, generally carried out in 2D culture systems, were relied on growth factors induction. Therefore, an artificial extracellular matrix with relevant mechanical properties is essential to build 3D culture models. Various 3D fabrication techniques, such as hydrogel-based and fibrous scaffolds, scaffold-free, and co-culture to endothelial cells were reviewed and summarized to gain insights. The obtained MSCs-derived ECs are shown by the expression of endothelial gene markers and tubule-like structure. In order to mimicking relevant vascular tissue, 3D-bioprinting facilitates to form more complex microstructures. In addition, a microfluidic chip with adequate flow rate allows medium perfusion, providing mechanical cues like shear stress to the artificial vascular vessels.


Subject(s)
Cell Culture Techniques, Three Dimensional , Cell Differentiation , Endothelial Cells , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Cell Culture Techniques, Three Dimensional/methods , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Hydrogels/chemistry , Cell Culture Techniques/methods , Coculture Techniques/methods , Extracellular Matrix/metabolism
12.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823920

ABSTRACT

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Subject(s)
Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
13.
Biotechnol J ; 19(6): e2400159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896414

ABSTRACT

The liver is one of the most important organs in the human body. It performs many important functions, including being responsible for the metabolism of most drugs, which is often associated with its drug-induced damage. Currently, there are no ideal pharmacological models that would allow the evaluation of the effect of newly tested drugs on the liver in preclinical studies. Moreover, the influence of hepatic metabolism on the effectiveness of the tested drugs is rarely evaluated. Therefore, in this work we present an advanced model of the liver, which reflects most of the morphologically and metabolically important features of the liver in vivo, namely: three-dimensionality, cellular composition, presence of extracellular matrix, distribution of individual cell types in the structure of the liver model, high urea and albumin synthesis efficiency, high cytochrome p450 activity. In addition, the work, based on the example of commonly used anticancer drugs, shows how important it is to take into account hepatic metabolism in the effective assessment of their impact on the target organ, in this case cancer. In our research, we have shown that the most similar to liver in vivo are 3D cellular aggregates composed of three important liver cells, namely hepatocytes (HepG2), hepatic stellate cells (HSCs), and hepatic sinusoidal endothelial cells (HSECs). Moreover, we showed that the cells in 3D aggregate structure need time (cell-cell interactions) to improve proper liver characteristic. The triculture model additionally showed the greatest ability to metabolize selected anticancer drugs.


Subject(s)
Antineoplastic Agents , Liver , Humans , Antineoplastic Agents/pharmacology , Liver/metabolism , Liver/drug effects , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Models, Biological , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cell Culture Techniques, Three Dimensional/methods
14.
J Nanobiotechnology ; 22(1): 333, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877492

ABSTRACT

In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.


Subject(s)
Adipose Tissue , Apoptosis , Ischemia , MicroRNAs , Animals , Mice , Adipose Tissue/cytology , MicroRNAs/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Oxidative Stress , Surgical Flaps , Cells, Cultured , Mice, Inbred C57BL , Male , Cell Survival , Neovascularization, Physiologic , Cell Culture Techniques, Three Dimensional/methods
15.
Adv Colloid Interface Sci ; 328: 103163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749384

ABSTRACT

Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Animals , Drug Delivery Systems , Cell Culture Techniques , Cell Culture Techniques, Three Dimensional/methods
16.
J Struct Biol ; 216(2): 108096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697586

ABSTRACT

The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.


Subject(s)
Cell Differentiation , Collagen , Extracellular Matrix , Osteoblasts , Osteogenesis , Extracellular Matrix/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Collagen/metabolism , Osteogenesis/physiology , Animals , Cell Culture Techniques, Three Dimensional/methods , Mice , Osteoclasts/metabolism , Osteoclasts/cytology
17.
Theriogenology ; 225: 33-42, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38788627

ABSTRACT

The in vitro maturation (IVM) quality of oocytes is directly related to the subsequent developmental potential of embryos and a fundamental of in vitro embryo production. However, conventional IVM methods fail to maintain the gap-junction intercellular communication (GJIC) between cumulus-oocyte complexes (COCs), which leads to insufficient oocyte maturation. Herein, we investigated the effects of three different three-dimensional (3D) culture methods on oocyte development in vitro, optimized of the alginate-hydrogel embedding method, and assessed the effects of the alginate-hydrogel embedding method on subsequent embryonic developmental potential of oocytes after IVM and parthenogenetic activation (PA). The results showed that Matrigel embedding and alginate-hydrogel embedding benefited the embryonic developmental potential of oocytes after IVM and PA. With the further optimization of alginate-hydrogel embedding, including crosslinking and decrosslinking of parameters, we established a 3D culture system that can significantly increase oocyte maturation and the blastocyst rate of embryos after PA (27.2 ± 1.5 vs 36.7 ± 2.8, P < 0.05). This 3D culture system produced oocytes with markedly increased mitochondrial intensity and membrane potential, which reduced the abnormalities of spindle formation and cortical granule distribution. The alginate-hydrogel embedding system can also remarkably enhance the GJIC between COCs. In summary, based on alginate-hydrogel embedding, we established a 3D culture system that can improve the IVM quality of porcine oocytes, possibly by enhancing GJIC.


Subject(s)
Alginates , Hydrogels , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Alginates/pharmacology , Oocytes/physiology , Swine , Cell Culture Techniques, Three Dimensional/methods , Glucuronic Acid/pharmacology , Parthenogenesis , Hexuronic Acids/pharmacology , Female , Embryo Culture Techniques/veterinary , Embryo Culture Techniques/methods
18.
Eur J Pharm Sci ; 199: 106817, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38797439

ABSTRACT

Pharmaceutical residues are widely detected in surface waters all around the world, causing a range of adverse effects on environmental species, such as fish. Besides population level effects (mortality, reproduction), pharmaceutical residues can bioaccumulate in fish tissues resulting in organ-specific toxicities. In this study, we developed in vitro 3D culture models for rainbow trout (Oncorhynchus mykiss) liver cell line (RTH-149) and cryopreserved, primary rainbow trout hepatocytes (RTHEP), and compared their spheroid formation and susceptibility to toxic impacts of pharmaceuticals. The rapidly proliferating, immortalized RTH-149 cells were shown to form compact spheroids with uniform morphology in just three days, thus enabling higher throughput toxicity screening compared with the primary cells that required acclimation times of about one week. In addition, we screened the cytotoxicity of a total of fourteen clinically used human pharmaceuticals toward the 3D cultures of both RTH-149 cells (metabolically inactive) and primary RTHEP cells (metabolically active), to evaluate the impacts of the pharmaceuticals' own metabolism on their hepatotoxicity in rainbow trout in vitro. Among the test substances, the azole antifungals (clotrimazole and ketoconazole) were identified as the most cytotoxic, with hepatic metabolism indicatively amplifying their toxicity, followed by fluoxetine, levomepromazine, and sertraline, which were slightly less toxic toward the metabolically active primary cells than RTH-149 spheroids. Besides individual pharmaceuticals, the 3D cultures were challenged with mixtures of the eight most toxic substances, to evaluate if their combined mixture toxicities can be predicted based on individual substances' half-maximal effect (EC50) concentrations. As a result, the classical concentration addition approach was concluded sufficiently accurate for preliminarily informing on the approximate effect concentrations of pharmaceutical mixtures on a cellular level. However, direct read-across from human data was proven challenging and inexplicit for prediction of hepatotoxicity in fish in vitro.


Subject(s)
Hepatocytes , Oncorhynchus mykiss , Spheroids, Cellular , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Spheroids, Cellular/drug effects , Pharmaceutical Preparations , Cell Line , Cell Survival/drug effects , Cell Culture Techniques , Cells, Cultured , Cell Culture Techniques, Three Dimensional/methods
19.
J Dent ; 146: 105028, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719135

ABSTRACT

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Dental Papilla , Dentin , Gelatin , Lab-On-A-Chip Devices , Tissue Engineering , Tissue Engineering/methods , Humans , Dental Papilla/cytology , Stem Cells/cytology , Odontogenesis , Osteogenesis/physiology , Methacrylates , Cell Culture Techniques , Microfluidics/methods , Microfluidics/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Cells, Cultured
20.
Bioelectrochemistry ; 159: 108734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38762949

ABSTRACT

Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.


Subject(s)
Cell Death , Cell Survival , Electroporation , Metformin , Reactive Oxygen Species , Humans , Metformin/pharmacology , Cell Line, Tumor , Electroporation/methods , Reactive Oxygen Species/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Glucose/metabolism , Cell Culture Techniques, Three Dimensional/methods , Tissue Scaffolds/chemistry , Antineoplastic Agents/pharmacology , MDA-MB-231 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...