Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.298
1.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838155

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
2.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38804528

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Cell Lineage , Cell Polarity , Ear, Inner , Homeodomain Proteins , Mice, Transgenic , Transcription Factors , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice , Cell Lineage/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Ear, Inner/metabolism , Ear, Inner/embryology , Ear, Inner/cytology , Cell Polarity/genetics , Saccule and Utricle/cytology , Saccule and Utricle/metabolism , Saccule and Utricle/embryology , Gene Expression Regulation, Developmental , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology
3.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38804879

Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itchiness and proprioception. Previous studies using genetic strategies in animal models have revealed important insights into dI development, but the molecular details of how dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse embryonic stem cell-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo. We have also identified an endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogeneous during terminal differentiation. This study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility in clarifying dI lineage relationships.


Cell Differentiation , Cell Lineage , Gene Expression Regulation, Developmental , Interneurons , Spinal Cord , Animals , Mice , Spinal Cord/metabolism , Spinal Cord/embryology , Cell Lineage/genetics , Interneurons/metabolism , Interneurons/cytology , Cell Differentiation/genetics , Single-Cell Analysis , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA-Seq
4.
Nat Commun ; 15(1): 4200, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760342

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Differentiation , Extracellular Matrix , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Cell Differentiation/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Cell Lineage/genetics , Oocytes/metabolism , Oocytes/cytology
5.
PLoS Comput Biol ; 20(5): e1012094, 2024 May.
Article En | MEDLINE | ID: mdl-38723024

Cell lineage tree reconstruction methods are developed for various tasks, such as investigating the development, differentiation, and cancer progression. Single-cell sequencing technologies enable more thorough analysis with higher resolution. We present Scuphr, a distance-based cell lineage tree reconstruction method using bulk and single-cell DNA sequencing data from healthy tissues. Common challenges of single-cell DNA sequencing, such as allelic dropouts and amplification errors, are included in Scuphr. Scuphr computes the distance between cell pairs and reconstructs the lineage tree using the neighbor-joining algorithm. With its embarrassingly parallel design, Scuphr can do faster analysis than the state-of-the-art methods while obtaining better accuracy. The method's robustness is investigated using various synthetic datasets and a biological dataset of 18 cells.


Algorithms , Cell Lineage , Computational Biology , Single-Cell Analysis , Single-Cell Analysis/methods , Cell Lineage/genetics , Humans , Computational Biology/methods , Sequence Analysis, DNA/methods , Software , Models, Statistical
6.
PLoS Biol ; 22(5): e3002633, 2024 May.
Article En | MEDLINE | ID: mdl-38787797

Comparisons of single-cell RNA sequencing (scRNA-seq) data across species can reveal links between cellular gene expression and the evolution of cell functions, features, and phenotypes. These comparisons evoke evolutionary histories, as depicted by phylogenetic trees, that define relationships between species, genes, and cells. This Essay considers each of these in turn, laying out challenges and solutions derived from a phylogenetic comparative approach and relating these solutions to previously proposed methods for the pairwise alignment of cellular dimensional maps. This Essay contends that species trees, gene trees, cell phylogenies, and cell lineages can all be reconciled as descriptions of the same concept-the tree of cellular life. By integrating phylogenetic approaches into scRNA-seq analyses, challenges for building informed comparisons across species can be overcome, and hypotheses about gene and cell evolution can be robustly tested.


Phylogeny , Sequence Analysis, RNA , Single-Cell Analysis , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Animals , Humans , Cell Lineage/genetics , Evolution, Molecular , Species Specificity
7.
BMC Genomics ; 25(1): 464, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741085

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Cell Lineage , Chromatin , Gonads , SOX9 Transcription Factor , Single-Cell Analysis , Animals , Chromatin/metabolism , Chromatin/genetics , Mice , Cell Lineage/genetics , Female , Male , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gonads/metabolism , Gonads/cytology , Gonads/embryology , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Testis/metabolism , Testis/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Ovary/metabolism , Ovary/cytology
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731966

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Cell Proliferation , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , K562 Cells , Apoptosis , Secretome/metabolism , Middle Aged , Female , Male , Bone Marrow Cells/metabolism , Cell Lineage/genetics , Cell Survival , Adult
9.
Sci Rep ; 14(1): 11688, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778150

Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.


Data Mining , Prostatic Neoplasms , Signal Transduction , Transcription Factors , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , ras Proteins/genetics , ras Proteins/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Gene Regulatory Networks , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Cell Lineage/genetics
10.
Development ; 151(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38722217

Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.


Biological Evolution , Single-Cell Analysis , Animals , Single-Cell Analysis/methods , Humans , Cell Lineage/genetics , Transcriptome/genetics , Genomics , Gene Editing
11.
Mol Ther ; 32(6): 1643-1657, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38582963

Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.


Gene Editing , Hematopoietic Stem Cells , Introns , Myeloid Cells , Transcription Activator-Like Effector Nucleases , Transgenes , Animals , Gene Editing/methods , Mice , Hematopoietic Stem Cells/metabolism , Humans , Myeloid Cells/metabolism , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Cell Differentiation/genetics , Genetic Therapy/methods , Iduronidase/genetics , Iduronidase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gene Expression , Cell Lineage/genetics , CD11b Antigen/genetics , CD11b Antigen/metabolism , Hematopoietic Stem Cell Transplantation/methods , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/genetics
12.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653778

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
13.
Genome Med ; 16(1): 60, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658971

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Macrophages , Neuroendocrine Tumors , Pituitary Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/immunology , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Phenotype , Apoptosis/genetics , Cell Lineage/genetics
14.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38664022

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Astrocytes , Cell Differentiation , Cell Lineage , Dynamins , Mitochondria , Mitochondrial Dynamics , Neural Stem Cells , Neurons , Oligodendroglia , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mitochondria/metabolism , Mice , Cell Differentiation/genetics , Cell Lineage/genetics , Astrocytes/metabolism , Astrocytes/cytology , Oligodendroglia/metabolism , Oligodendroglia/cytology , Neurons/metabolism , Neurons/cytology , Cells, Cultured , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Neurogenesis , Lateral Ventricles/cytology , Lateral Ventricles/metabolism
15.
Nature ; 629(8011): 458-466, 2024 May.
Article En | MEDLINE | ID: mdl-38658765

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Cell Division , Cell Lineage , DNA, Mitochondrial , Genetic Fitness , Heteroplasmy , Selection, Genetic , Single-Cell Analysis , Animals , Female , Humans , Mice , Cell Division/genetics , Cell Line , Cell Lineage/genetics , DNA, Mitochondrial/genetics , Gene Editing , Heteroplasmy/genetics , Mitochondria/genetics , Mutation , Single-Cell Analysis/methods
16.
Genome Res ; 34(3): 484-497, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38580401

Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.


Cell Differentiation , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Single-Cell Analysis/methods , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Lineage/genetics , Transcriptome , Sequence Analysis, RNA/methods , RNA-Seq/methods , Gene Expression Profiling/methods , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , Multiomics , Single-Cell Gene Expression Analysis
17.
Cell Rep ; 43(5): 114136, 2024 May 28.
Article En | MEDLINE | ID: mdl-38643480

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


CDX2 Transcription Factor , Cell Lineage , Chromatin , Gene Expression Regulation, Developmental , Transcription Factor AP-2 , Animals , Chromatin/metabolism , Mice , Cell Lineage/genetics , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Blastocyst/metabolism , Blastocyst/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Histones/metabolism , Cell Differentiation/genetics , Ectoderm/metabolism , Ectoderm/cytology , Embryonic Development/genetics
18.
Cell Rep Methods ; 4(5): 100763, 2024 May 20.
Article En | MEDLINE | ID: mdl-38670101

Cellular barcoding is a lineage-tracing methodology that couples heritable synthetic barcodes to high-throughput sequencing, enabling the accurate tracing of cell lineages across a range of biological contexts. Recent studies have extended these methods by incorporating lineage information into single-cell or spatial transcriptomics readouts. Leveraging the rich biological information within these datasets requires dedicated computational tools for dataset pre-processing and analysis. Here, we present BARtab, a portable and scalable Nextflow pipeline, and bartools, an open-source R package, designed to provide an integrated end-to-end cellular barcoding analysis toolkit. BARtab and bartools contain methods to simplify the extraction, quality control, analysis, and visualization of lineage barcodes from population-level, single-cell, and spatial transcriptomics experiments. We showcase the utility of our integrated BARtab and bartools workflow via the analysis of exemplar bulk, single-cell, and spatial transcriptomics experiments containing cellular barcoding information.


High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Humans , Software , DNA Barcoding, Taxonomic/methods , Genome/genetics , Cell Lineage/genetics , Gene Expression Profiling/methods , Computational Biology/methods , Animals
19.
Stem Cell Reports ; 19(5): 744-757, 2024 May 14.
Article En | MEDLINE | ID: mdl-38579711

Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.


Cell Lineage , Gene Knock-In Techniques , Pluripotent Stem Cells , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Lineage/genetics , Gene Knock-In Techniques/methods , Genes, Reporter , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/genetics , Cell Line , Gene Editing/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Article En | MEDLINE | ID: mdl-38579708

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Enhancer Elements, Genetic , Mesoderm , Neural Stem Cells , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Animals , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesoderm/cytology , Mesoderm/metabolism , Neurogenesis , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Cell Differentiation/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Lineage/genetics , Smad4 Protein/metabolism , Smad4 Protein/genetics , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Chromatin/metabolism , Protein Binding
...