Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 145.219
1.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822457

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Adenocarcinoma of Lung , Citric Acid Cycle , Homologous Recombination , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor , Cell Cycle/genetics , Cellular Reprogramming/genetics , Female , A549 Cells , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Movement , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Male , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
2.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822516

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Diphtheria Toxin/genetics , Diphtheria Toxin/pharmacology , Promoter Regions, Genetic/genetics , A549 Cells , Cell Movement/genetics , Cell Movement/drug effects , Vimentin/genetics , Vimentin/metabolism , Genes, Transgenic, Suicide , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Gene Expression Regulation, Neoplastic
3.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822901

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
4.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824268

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Breast Neoplasms , Epithelial-Mesenchymal Transition , Tumor-Associated Macrophages , Humans , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , MCF-7 Cells , Cell Movement/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Sequence Analysis, RNA/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
5.
J Cardiothorac Surg ; 19(1): 314, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824534

BACKGROUND: Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS: We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS: The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION: LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.


Asthma , Cell Movement , Cell Proliferation , Fibroblast Growth Factor 9 , MicroRNAs , Myocytes, Smooth Muscle , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Cell Proliferation/genetics , Asthma/genetics , Asthma/metabolism , Myocytes, Smooth Muscle/metabolism , Fibroblast Growth Factor 9/genetics , Fibroblast Growth Factor 9/metabolism , Cells, Cultured , Airway Remodeling/physiology , Airway Remodeling/genetics
6.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824544

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
7.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119744, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702016

BACKGROUND: Lung squamous cell carcinoma (LUSC) is associated with high mortality and has limited therapeutic treatment options. Plasminogen activator urokinase (PLAU) plays important roles in tumor cell malignancy. However, the oncogenic role of PLAU in the progression of LUSC remains unknown. GATA-binding factor 6 (GATA6), a key regulator of lung development, inhibits LUSC cell proliferation and migration, but the underlying regulatory mechanism remains to be further explored. Moreover, the regulatory effect of GATA6 on PLAU expression has not been reported. The aim of this study was to identify the role of PLAU and the transcriptional inhibition mechanism of GATA6 on PLAU expression in LUSC. METHODS: To identify the potential target genes regulated by GATA6, differentially expressed genes (DEGs) obtained from GEO datasets analysis and RNA-seq experiment were subjected to Venn analysis and correlation heatmap analysis. The transcriptional regulatory effects of GATA6 on PLAU expression were detected by real-time PCR, immunoblotting, and dual-luciferase reporter assays. The oncogenic effects of PLAU on LUSC cell proliferation and migration were evaluated by EdU incorporation, Matrigel 3D culture and Transwell assays. PLAU expression was detected in tissue microarray of LUSC via immunohistochemistry (IHC) assay. To determine prognostic factors for prognosis of LUSC patients, the clinicopathological characteristics and PLAU expression were subjected to univariate Cox regression analysis. RESULTS: PLAU overexpression promoted LUSC cell proliferation and migration. PLAU is overexpressed in LUSC tissues compared with normal tissues. Consistently, high PLAU expression, which acts as an independent risk factor, is associated with poor prognosis of LUSC patients. Furthermore, the expression of PLAU is transcriptionally regulated by GATA6. CONCLUSION: In this work, it was revealed that PLAU is a novel oncogene for LUSC and a new molecular regulatory mechanism of GATA6 in LUSC was unveiled. Targeting the GATA6/PLAU pathway might help in the development of novel therapeutic treatment strategies for LUSC.


Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , GATA6 Transcription Factor , Gene Expression Regulation, Neoplastic , Lung Neoplasms , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Humans , Cell Proliferation/genetics , Cell Movement/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Female , Male , Middle Aged , Membrane Proteins
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 627-635, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708494

OBJECTIVE: To explore the pathogenic roles of miR-21, estrogen (E2), and estrogen receptor (ER) in adenomyosis. METHODS: We examined the expression levels of miR-21 in specimens of adenomyotic tissue and benign cervical lesions using qRT-PCR. In primary cultures of cells isolated from the adenomyosis lesions, the effect of ICI82780 (an ER inhibitor) on miR-21 expression levels prior to E2 activation or after E2 deprivation were examined with qRT-PCR. We further assessed the effects of a miR-21 mimic or an inhibitor on proliferation, apoptosis, migration and autophagy of the cells. RESULTS: The expression level of miR-21 was significantly higher in adenomyosis tissues than in normal myometrium (P < 0.05). In the cells isolated from adenomyosis lesions, miR-21 expression level was significantly higher in E2 activation group than in ER inhibition + E2 activation group and the control group (P < 0.05); miR-21 expression level was significantly lower in cells in E2 deprivation+ER inhibition group than in E2 deprivation group and the control group (P < 0.05). The adenomyosis cells transfected with miR-21 inhibitor showed inhibited proliferation and migration, expansion of mitochondrial endoplasmic reticulum, increased lysosomes, presence of autophagosomes, and increased cell apoptosis, while transfection of the cells with the miR-21 mimic produced the opposite effects. CONCLUSION: MiR-21 plays an important role in promoting proliferation, migration, and antiapoptosis in adenomyosis cells by altering the cell ultrastructure, which may contribute to early pathogenesis of the disease. In addition to binding with E2, ER can also regulate miR-21 through other pathways to participate in the pathogenesis of adenomyosis, thus having a stronger regulatory effect on miR-21 than E2.


Adenomyosis , Apoptosis , Cell Proliferation , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Adenomyosis/metabolism , Adenomyosis/genetics , Adenomyosis/pathology , Estrogens/metabolism , Autophagy , Cell Movement , Receptors, Estrogen/metabolism , Myometrium/metabolism , Myometrium/pathology
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 652-659, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708497

OBJECTIVE: To investigate the protective effect of arbutin against CCl4-induced hepatic fibrosis in mice and explore the underlying mechanisms. METHODS: Twenty-four C57BL/6 mice were randomly divided into control group, model group, and low- and high-dose arbutin treatment (25 and 50 mg/kg, respectively) groups. Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4, and arbutin was administered daily via gavage for 6 weeks. After the treatments, serum biochemical parameters of the mice were tested, and liver tissues were taken for HE staining, Sirius Red staining and immunohistochemical staining. RT-qPCR was used to detect the mRNA levels of α-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a, and Western blotting was performed to detect α-SMA protein expression in the liver tissues. In the cell experiment, the effect of arbutin treatment for 24 h on THP-1 and RAW264.7 cell migration and recruitment was examined using Transwell migration assay and DAPI staining; The changes in protein levels of Akt, p65, Smad3, p-Akt, p-p65, p-Smad3 and α-SMA in arbutintreated LX-2 cells were detected with Western blotting. RESULTS: Arbutin treatment significantly lowered serum alanine aminotransferase and aspartate aminotransferase levels, alleviated liver tissue damage and collagen deposition, and reduced macrophage infiltration and α-SMA protein expression in the liver of the mouse models (P < 0.05 or 0.001). Arbutin treatment also significantly reduced CCl4-induced elevation of a-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a mRNA levels in mice (P < 0.05). In the cell experiment, arbutin treatment obviously inhibited migration and recruitment of THP-1 and RAW264.7 cells and lowered the phosphorylation levels of Akt, p65 and Smad3 and the protein expression level of α-SMA in LX-2 cells. CONCLUSION: Arbutin ameliorates liver inflammation and fibrosis in mice by inhibiting hepatic stellate cell activation via reducing macrophage recruitment and infiltration and suppressing activation of the Akt/NF-κB and Smad signaling pathways.


Arbutin , Liver Cirrhosis , Macrophages , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Arbutin/pharmacology , Arbutin/therapeutic use , Carbon Tetrachloride , Cell Movement/drug effects , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Smad Proteins/metabolism
10.
Cancer Biol Ther ; 25(1): 2360768, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38816350

Circular RNA Ribonuclease P RNA Component H1 (circ_RPPH1) and microRNA (miRNA) miR-1296-5p play a crucial role in breast cancer (BC), but the molecular mechanism is vague. Evidence showed that miR-1296-5p can activate tripartite motif-containing 14 (TRIM14). Clinical indications of eighty BC patients were collected and the circ_RPPH1 expression was detected using real-time quantitative PCR. MCF-7 and MDA-MB-231 cells were transfected with overexpression or knockdown of circ_RPPH1, miR-1296-5p, or TRIM14. Cell counting kit-8, cell cloning formation, wound healing, Transwell, and flow cytometry assays were performed to investigate the malignant phenotype of BC. The dual-luciferase reporter gene analyses were applied to reveal the interaction between these target genes. Subcutaneous tumorigenic model mice were established with circ_RPPH1 overexpression MDA-MB-231 cells in vivo; the tumor weight and volume, levels of miR-1296-5 and TRIM14 mRNA were measured. Western blot and immunohistochemistry were used to detect TRIM14 in cells and mice. Circ_RPPH1 levels were notably higher in BC patients and have been found to promote cell proliferation, invasion, and migration of BC cells. Circ_RPPH1 altered cell cycle and hindered apoptosis. Circ_RPPH1 knockdown or miR-1296-5p overexpression inhibited the malignant phenotype of BC. Furthermore, miR-1296-5p knockdown reversed circ_RPPH1's promotion effects on BC. Interestingly, TRIM14 overexpression counteracts the inhibitory effects of miR-1296-5p overexpression and circ_RPPH1 silencing on BC. Moreover, in BC tumor-bearing mice, circ_RPPH1 overexpression led to increased TRIM14 expression and facilitated tumor growth. Circ_RPPH1 enhanced BC progression through miR-1296-5p/TRIM14 axis, indicating its potential as a biomarker and therapeutic target in BC.


Breast Neoplasms , Cell Proliferation , Disease Progression , MicroRNAs , RNA, Circular , Tripartite Motif Proteins , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Animals , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Apoptosis , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , Mice, Nude
11.
Cell Death Dis ; 15(5): 381, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816365

Osteosarcoma (OS) therapy presents numerous challenges, due largely to a low survival rate following metastasis onset. Nerve growth factor (NGF) has been implicated in the metastasis and progression of various cancers; however, the mechanism by which NGF promotes metastasis in osteosarcoma has yet to be elucidated. This study investigated the influence of NGF on the migration and metastasis of osteosarcoma patients (88 cases) as well as the underlying molecular mechanisms, based on RNA-sequencing and gene expression data from a public database (TARGET-OS). In osteosarcoma patients, the expression of NGF was significantly higher than that of other growth factors. This observation was confirmed in bone tissue arrays from 91 osteosarcoma patients, in which the expression levels of NGF and matrix metallopeptidase-2 (MMP-2) protein were significantly higher than in normal bone, and strongly correlated with tumor stage. In summary, NGF is positively correlated with MMP-2 in human osteosarcoma tissue and NGF promotes osteosarcoma cell metastasis by upregulating MMP-2 expression. In cellular experiments using human osteosarcoma cells (143B and MG63), NGF upregulated MMP-2 expression and promoted wound healing, cell migration, and cell invasion. Pre-treatment with MEK and ERK inhibitors or siRNA attenuated the effects of NGF on cell migration and invasion. Stimulation with NGF was shown to promote phosphorylation along the MEK/ERK signaling pathway and decrease the expression of microRNA-92a-1-5p (miR-92a-1-5p). In in vivo experiments involving an orthotopic mouse model, the overexpression of NGF enhanced the effects of NGF on lung metastasis. Note that larotrectinib (a tropomyosin kinase receptor) strongly inhibited the effect of NGF on lung metastasis. In conclusion, it appears that NGF promotes MMP-2-dependent cell migration by inhibiting the effects of miR-92a-1-5p via the MEK/ERK signaling cascade. Larotrectinib emerged as a potential drug for the treatment of NGF-mediated metastasis in osteosarcoma.


Bone Neoplasms , Cell Movement , Matrix Metalloproteinase 2 , Nerve Growth Factor , Osteosarcoma , Pyrazoles , Pyrimidines , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Nerve Growth Factor/metabolism , Animals , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Mice, Nude , Male , Neoplasm Metastasis , Female , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C
12.
Sci Rep ; 14(1): 12477, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816533

Dysregulated Wnt/ß-catenin signaling is a common feature of colorectal cancer (CRC). The T-cell factor/lymphoid enhancer factor (TCF/LEF; hereafter, TCF) family of transcription factors are critical regulators of Wnt/ß-catenin target gene expression. Of the four TCF family members, TCF7L1 predominantly functions as a transcriptional repressor. Although TCF7L1 has been ascribed an oncogenic role in CRC, only a few target genes whose expression it regulates have been characterized in this cancer. Through transcriptome analyses of TCF7L1 regulated genes, we noted enrichment for those associated with cellular migration. By silencing and overexpressing TCF7L1 in CRC cell lines, we demonstrated that TCF7L1 promoted migration, invasion, and adhesion. We localized TCF7L1 binding across the CRC genome and overlapped enriched regions with transcriptome data to identify candidate target genes. The growth arrest-specific 1 (GAS1) gene was among these and we demonstrated that GAS1 is a critical mediator of TCF7L1-dependent CRC cell migratory phenotypes. Together, these findings uncover a novel role for TCF7L1 in repressing GAS1 expression to enhance migration and invasion of CRC cells.


Cell Movement , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Transcription Factor 7-Like 1 Protein , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cell Movement/genetics , Cell Line, Tumor , Transcription Factor 7-Like 1 Protein/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neoplasm Invasiveness , Cell Adhesion/genetics , Wnt Signaling Pathway
13.
Sci Rep ; 14(1): 12487, 2024 05 31.
Article En | MEDLINE | ID: mdl-38816545

Peritoneal metastases (PM) in colorectal cancer (CRC) is associated with a dismal prognosis. Identifying and exploiting new biomarkers, signatures, and molecular targets for personalised interventions in the treatment of PM in CRC is imperative. We conducted transcriptomic profiling using RNA-seq data generated from the primary tissues of 19 CRC patients with PM. Using our dataset established in a previous study, we identified 1422 differentially expressed genes compared to non-metastatic CRC. The profiling demonstrated no differential expression in liver and lung metastatic CRC. We selected 12 genes based on stringent criteria and evaluated their expression patterns in a validation cohort of 32 PM patients and 84 without PM using real-time reverse transcription-polymerase chain reaction. We selected cartilage intermediate layer protein 2 (CILP2) because of high mRNA expression in PM patients in our validation cohort and its association with a poor prognosis in The Cancer Genome Atlas. Kaplan-Meier survival analysis in our validation cohort demonstrated that CRC patients with high CILP2 expression had significantly poor survival outcomes. Knockdown of CILP2 significantly reduced the proliferation, colony-forming ability, invasiveness, and migratory capacity and downregulated the expression of molecules related to epithelial-mesenchymal transition in HCT116 cells. In an in vivo peritoneal dissemination mouse knockdown of CILP2 also inhibited CRC growth. Therefore, CILP2 is a promising biomarker for the prediction and treatment of PM in CRC.


Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Peritoneal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Animals , Mice , Male , Female , Prognosis , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , HCT116 Cells , Gene Expression Profiling , Middle Aged , Cell Movement , Aged
14.
Commun Biol ; 7(1): 655, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806706

The gut microbiota influences human health and the development of chronic diseases. However, our understanding of potentially protective or harmful microbe-host interactions at the molecular level is still in its infancy. To gain further insights into the hidden gut metabolome and its impact, we identified a cryptic non-ribosomal peptide BGC in the genome of Bacillus cereus DSM 28590 from the mouse intestine ( www.dsmz.de/miBC ), which was predicted to encode a thiazol(in)e substructure. Cloning and heterologous expression of this BGC revealed that it produces bacillamide D. In-depth functional evaluation showed potent cytotoxicity and inhibition of cell migration using the human cell lines HCT116 and HEK293, which was validated using primary mouse organoids. This work establishes the bacillamides as selective cytotoxins from a bacterial gut isolate that affect mammalian cells. Our targeted structure-function-predictive approach is demonstrated to be a streamlined method to discover deleterious gut microbial metabolites with potential effects on human health.


Bacillus cereus , Gastrointestinal Microbiome , Bacillus cereus/metabolism , Bacillus cereus/genetics , Animals , Mice , Humans , HEK293 Cells , Cytotoxins/metabolism , Cytotoxins/genetics , HCT116 Cells , Intestines/microbiology , Cell Movement , Organoids/metabolism
15.
BMC Oral Health ; 24(1): 625, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807101

BACKGROUND: Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS: FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS: FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION: FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.


Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , MicroRNAs , Mouth Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
16.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821596

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Apoptosis , Ferroptosis , Prostatic Neoplasms , Reactive Oxygen Species , Humans , Male , Ferroptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Pyridones/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Pyrones
17.
Anticancer Res ; 44(6): 2497-2509, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821603

BACKGROUND/AIM: Diffuse-type gastric cancer (DGC) often forms peritoneal metastases, leading to poor prognosis. However, the underlying mechanism of DGC-mediated peritoneal metastasis is poorly understood. DGC is characterized by desmoplastic stroma, in which heterogeneous cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs (myCAFs) and senescent CAFs (sCAFs), play a crucial role during tumor progression. This study investigated the CAF subtypes induced by GC cells and the role of sCAFs in peritoneal metastasis of DGC cells. MATERIALS AND METHODS: Conditioned medium of human DGC cells (KATOIII, NUGC-4) and human intestinal-type GC (IGC) cells (MKN-7, N87) was used to induce CAFs. CAF subtypes were evaluated by analyzing the expression of α-smooth muscle actin (α-SMA), senescence-associated ß-galactosidase (SA-ß-gal), and p16 in human normal fibroblasts (GF, FEF-3). A cytokine array was used to explore the underlying mechanism of GC-induced CAF subtype development. The role of sCAFs in peritoneal metastasis of DGC cells was analyzed using a peritoneally metastatic DGC tumor model. The relationships between GC subtypes and CAF-related markers were evaluated using publicly available datasets. RESULTS: IGC cells significantly induced α-SMA+ myCAFs by secreting transforming growth factor-ß, whereas DGC cells induced SA-ß-gal+/p16+ sCAFs by secreting interleukin (IL)-8. sCAFs further secreted IL-8 to promote DGC cell migration. In vivo experiments demonstrated that co-inoculation of sCAFs significantly enhanced peritoneal metastasis of NUGC-4 cells, which was attenuated by administration of the IL-8 receptor antagonist navarixin. p16 and IL-8 expression was significantly associated with poor prognosis of DGC patients. CONCLUSION: sCAFs promote peritoneal metastasis of DGC via IL-8-mediated crosstalk.


Cancer-Associated Fibroblasts , Cellular Senescence , Interleukin-8 , Peritoneal Neoplasms , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Interleukin-8/metabolism , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Animals , Cell Line, Tumor , Mice , Cell Movement
18.
Anticancer Res ; 44(6): 2545-2554, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821599

BACKGROUND/AIM: Epidermal growth factor receptor (EGFR) over-expression is commonly observed in advanced head and neck squamous cell carcinoma (HNSCC) and is correlated with poor patient outcomes. However, the role of dual-specificity phosphatase 6 (DUSP6) in EGFR-associated HNSCC progression remains poorly understood. This study aimed to investigate the correlation between DUSP6 expression and EGFR signaling in malignant HNSCC tissues. MATERIALS AND METHODS: Data mining and in vitro assays were employed to assess DUSP6 expression levels in HNSCC tissues compared to normal tissues. Additionally, the correlation between DUSP6 and EGFR expression was examined. Functional assays were conducted to investigate the modulation of DUSP6 expression by EGFR signaling and its involvement in EGF-induced cell migration and anoikis resistance. RESULTS: Our analysis revealed a significant elevation in DUSP6 expression in HNSCC tissues compared to normal tissues and a strong correlation between DUSP6 and EGFR expression. EGFR signaling modulated DUSP6 expression in a dose- and time-dependent manner, primarily through the extracellular signal-regulated kinase (ERK) pathway. Knockdown experiments demonstrated the functional role of DUSP6 in EGF-induced cell migration and anoikis resistance. CONCLUSION: The findings of this study elucidate the intricate signaling networks governing DUSP6 expression and its interplay with EGFR signaling in HNSCC. Moreover, the results provide insights into the potential role of DUSP6 as a therapeutic target and highlight the importance of personalized treatment strategies in HNSCC management.


Cell Movement , Disease Progression , Dual Specificity Phosphatase 6 , ErbB Receptors , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Movement/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Anoikis/genetics , Signal Transduction , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism
19.
Anticancer Res ; 44(6): 2555-2565, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821604

BACKGROUND/AIM: Breast cancer is the most prevalent form of cancer among women worldwide, with a high mortality rate. While the most common cause of breast cancer death is metastasis, there is currently no potential treatment for patients at the metastatic stage. The present study investigated the potential of using a combination of HSP90 and mTOR inhibitor in the treatment of breast cancer cell growth, migration, and invasion. MATERIALS AND METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) was used to investigate the gene expression profiles. Western blot analysis and fluorescence staining were used for protein expression and localization, respectively. MTT, wound healing, and transwell invasion assays were used for cell proliferation, migration, and invasion, respectively. RESULTS: GEPIA demonstrated that HSP90 expression was significantly higher in breast invasive carcinoma compared to other tumor types, and this expression correlated with mTOR levels. Treatment with 17-AAG, an HSP90 inhibitor, and Torkinib, an mTORC1/2 inhibitor, significantly inhibited cell proliferation. Moreover, combination treatment led to down-regulation of AKT. Morphological changes revealed a reduction in F-actin intensity, a marked reduction of YAP, with interference in nuclear localization. CONCLUSION: Targeting HSP90 and mTOR has the potential to suppress breast cancer cell growth and progression by disrupting AKT signaling and inhibiting F-actin polymerization. This combination treatment may hold promise as a therapeutic strategy for breast cancer treatment that ameliorates adverse effects of a single treatment.


Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Phosphorylation/drug effects , Actins/metabolism , Actins/genetics , Cell Line, Tumor , Neoplasm Invasiveness , Signal Transduction/drug effects , Lactams, Macrocyclic/pharmacology , Benzoquinones/pharmacology , MTOR Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
20.
Cell Cycle ; 23(5): 588-601, 2024 Mar.
Article En | MEDLINE | ID: mdl-38743408

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/ß-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.


Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Wnt Signaling Pathway , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Mice , Mice, Nude , Disease Progression , Female , Male , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice, Inbred BALB C , beta Catenin/metabolism
...