Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.788
1.
BMC Plant Biol ; 24(1): 503, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38840061

BACKGROUND: Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS: In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of ß-1,3-glucanase, endo-ß-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS: The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.


Cell Wall , Fruit , Oxygen , Pectins , Plant Proteins , Solanum lycopersicum , Cell Wall/metabolism , Fruit/growth & development , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Oxygen/metabolism , Plant Proteins/metabolism , Pectins/metabolism , Mucoproteins/metabolism
2.
Elife ; 132024 Jun 04.
Article En | MEDLINE | ID: mdl-38832933

Modification of pectin, a component of the plant cell wall, is required to facilitate signaling by a RALF peptide, which is essential for many physiological and developmental processes.


Pectins , Signal Transduction , Pectins/metabolism , Pectins/chemistry , Cell Wall/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
3.
Plant Cell Rep ; 43(7): 163, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842544

KEY MESSAGE: Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.


Cadmium , Malondialdehyde , Oryza , Oxidative Stress , Pectins , Oryza/drug effects , Oryza/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Pectins/metabolism , Malondialdehyde/metabolism , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Peptides/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Spectroscopy, Fourier Transform Infrared
4.
Sci Rep ; 14(1): 12592, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824196

The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.


Gene Expression Regulation, Plant , Polysaccharides , Populus , Promoter Regions, Genetic , Transcription Factors , Populus/genetics , Populus/metabolism , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Cell Wall/metabolism , Cell Wall/genetics
5.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825683

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Plant Bark , Quercus , Quercus/genetics , Quercus/growth & development , Plant Bark/genetics , Plant Bark/chemistry , Plant Bark/metabolism , Transcriptome , Hybridization, Genetic , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lipids
6.
J Phys Chem B ; 128(22): 5371-5377, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38787347

The cell envelope of Gram-negative bacteria is composed of an outer membrane (OM) and an inner membrane (IM) and a peptidoglycan cell wall (CW) between them. Combined with Braun's lipoprotein (Lpp), which connects the OM and the CW, and numerous membrane proteins that exist in both OM and IM, the cell envelope creates a mechanically stable environment that resists various physical and chemical perturbations to the cell, including turgor pressure caused by the solute concentration difference between the cytoplasm of the cell and the extracellular environment. Previous computational studies have explored how individual components (OM, IM, and CW) can resist turgor pressure although combinations of them have been less well studied. To that end, we constructed multiple OM-CW systems, including the Lpp connections with the CW under increasing degrees of strain. The results show that the OM can effectively resist the tension imposed by the CW, shrinking by only 3-5% in area even when the CW is stretched to 2.5× its relaxed area. The area expansion modulus of the system increases with increasing CW strain, although the OM remains a significant contributor to the envelope's mechanical stability. Additionally, we find that when the protein TolC is embedded in the OM, its stiffness increases.


Bacterial Outer Membrane Proteins , Cell Wall , Peptidoglycan , Cell Wall/chemistry , Cell Wall/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Molecular Dynamics Simulation
7.
Int J Food Microbiol ; 419: 110750, 2024 Jul 16.
Article En | MEDLINE | ID: mdl-38776709

Brown rot symptoms may be linked to alterations in the gene expression pattern of genes associated with cell wall degradation. In this study, we identify key carbohydrate-active enzymes (CAZymes) involved in cell wall degradation by Monilinia fructicola, including pme2 and pme3 (pectin methylesterases), cut1 (cutinase) and nep2 (necrosis-inducing factor). The expression of these genes is significantly modulated by red and blue light during early nectarine infection. The polygalacturonase gene pg1 and the cellulase gene cel1 also exhibit photoinduction albeit to a lesser extent. Red and blue light cause an acceleration in the initial stages of brown rot development caused by M. fructicola on nectarines. Disease symptoms like tissue maceration were evident after an incubation period of 24 h followed by 14 h of light exposition, in contrast to the usual incubation period of 48 to 72 h. Furthermore, the culture media exerts an impact on gene regulation, suggesting a complex interplay between light and nutrient signalling pathways in M. fructicola. In addition, we observe that red light promotes colony growth on a 12 h photoperiod and consistently reduces conidiation. In contrast, blue light hampers growth rate on both the 12 h and the 8 h photoperiod but only diminishes conidiation on the 12 h photoperiod. These findings enhance our comprehension of genes associated with cell wall degradation and the environmental factors influencing brown rot development.


Ascomycota , Cell Wall , Cell Wall/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Plant Diseases/microbiology , Light , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
8.
Microbiol Spectr ; 12(6): e0354623, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38695664

Antimicrobial resistance poses a significant global threat, reaching dangerously high levels as reported by the World Health Organization. The emergence and rapid spread of new resistance mechanisms, coupled with the absence of effective treatments in recent decades, have led to thousands of deaths annually from infections caused by drug-resistant microorganisms. Consequently, there is an urgent need for the development of new compounds capable of combating antibiotic-resistant bacteria. A promising class of molecules exhibiting potent bactericidal effects is peptidoglycan hydrolases. Previously, we cloned and characterized the biochemical properties of the M23 catalytic domain of the EnpA (EnpACD) protein from Enterococcus faecalis. Unlike other enzymes within the M23 family, EnpACD demonstrates broad specificity. However, its activity is constrained under low ionic strength conditions. In this study, we present the engineering of three chimeric enzymes comprising EnpACD fused with three distinct SH3b cell wall-binding domains. These chimeras exhibit enhanced tolerance to environmental conditions and sustained activity in bovine and human serum. Furthermore, our findings demonstrate that the addition of SH3b domains influences the activity of the chimeric enzymes, thereby expanding their potential applications in combating antimicrobial resistance.IMPORTANCEThese studies demonstrate that the addition of the SH3b-binding domain to the EnpACD results in generation of chimeras with a broader tolerance to ionic strength and pH values, enabling them to remain active over a wider range of conditions. Such approach offers a relatively straightforward method for obtaining antibacterial enzymes with tailored properties and emphasizes the potential for proteins' engineering with enhanced functionality, contributing to the ongoing efforts to address antimicrobial resistance effectively.


Anti-Bacterial Agents , Bacterial Proteins , Enterococcus faecalis , Protein Engineering , Osmolar Concentration , Enterococcus faecalis/genetics , Enterococcus faecalis/enzymology , Enterococcus faecalis/drug effects , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Animals , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Cattle , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Cell Wall/metabolism , Cell Wall/genetics , Catalytic Domain/genetics , Drug Resistance, Bacterial/genetics
9.
Biochem Biophys Res Commun ; 720: 150086, 2024 Aug 06.
Article En | MEDLINE | ID: mdl-38761478

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Disease Resistance , Gene Expression Regulation, Plant , Nicotiana , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Seedlings , Nicotiana/parasitology , Nicotiana/genetics , Nicotiana/metabolism , Animals , Seedlings/parasitology , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Disease Resistance/genetics , Plants, Genetically Modified/parasitology , Tylenchoidea/physiology , Cell Wall/metabolism , Cell Wall/parasitology , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics
10.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713211

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Chitinases , Gene Silencing , Laccase , Chitinases/genetics , Chitinases/metabolism , Chitinases/biosynthesis , Laccase/genetics , Laccase/metabolism , Laccase/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Agaricales/genetics , Agaricales/enzymology , Fermentation , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/genetics , Mycelium/growth & development , Mycelium/enzymology , Cell Wall/metabolism , Cell Wall/genetics
11.
mSphere ; 9(5): e0076423, 2024 May 29.
Article En | MEDLINE | ID: mdl-38722162

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Anti-Bacterial Agents , Bacillus subtilis , Microbial Sensitivity Tests , Staphylococcus aureus , Streptomyces , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Polyketides/pharmacology , Polyketides/metabolism , Glycosides/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Proteomics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA Gyrase/genetics , DNA Gyrase/metabolism
12.
World J Microbiol Biotechnol ; 40(7): 221, 2024 May 30.
Article En | MEDLINE | ID: mdl-38811440

Phenolic compounds are a group of non-essential dietary compounds that are widely recognized for their beneficial health effects, primarily due to their bioactive properties. These compounds which found in a variety of plant-based foods, including fruits, vegetables, and grains are known to possess antimicrobial, antioxidant, anti-inflammatory, and anti-carcinogenic properties. However, the health effects of these compounds depend on their bioaccessibility and bioavailability. In recent years, there has been growing interest in the use of probiotics for promoting human health. Saccharomyces cerevisiae is a yeast with potential probiotic properties and beneficial health effects. Biosorption of phenolic compounds on Saccharomyces cerevisiae cell walls improves their bioaccessibility. This characteristic has also allowed the use of this yeast as a biosorbent in the biosorption process due to its low cost, safety, and easy availability. S. cerevisiae enhances the bioaccessibility of phenolic compounds as a delivery system under in vitro digestion conditions. The reason for this phenomenon is the protective effects of yeast on various phenolic compounds under digestion conditions. This article shows the role of S. cerevisiae yeast on the bioaccessibility of various phenolic compounds and contributes to our understanding of the potential impact of yeasts in human health.


Biological Availability , Phenols , Probiotics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Phenols/metabolism , Humans , Probiotics/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Wall/metabolism , Cell Wall/chemistry
13.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797860

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Edible Grain , Endosperm , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , CRISPR-Cas Systems
14.
Nat Commun ; 15(1): 4486, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802389

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Adaptation, Physiological , Aspergillus niger , Bacillus subtilis , Lipopeptides , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Aspergillus niger/metabolism , Aspergillus niger/physiology , Aspergillus niger/growth & development , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Hyphae/growth & development , Hyphae/metabolism , Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coculture Techniques , Mutation , Cell Wall/metabolism
15.
J Hazard Mater ; 472: 134549, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38733789

Selenium nanoparticles (SeNPs) has been reported as a beneficial role in alleviating cadmium (Cd) toxicity in plant. However, underlying molecular mechanisms about SeNPs reducing Cd accumulation and alleviating Cd toxicity in wheat are not well understood. A hydroponic culture was performed to evaluate Cd and Se accumulation, cell wall components, oxidative stress and antioxidative system, and transcriptomic response of wheat seedlings after SeNPs addition under Cd stress. Results showed that SeNPs application notably reduced Cd concentration in root and in shoot by 56.9% and 37.3%, respectively. Additionally, SeNPs prompted Cd distribution in root cell wall by 54.7%, and increased lignin, pectin and hemicellulose contents by regulating cell wall biosynthesis and metabolism-related genes. Further, SeNPs alleviated oxidative stress caused by Cd in wheat through signal transduction pathways. We also observed that Cd addition reduced Se accumulation by downregulating the expression level of aquaporin 7. These results indicated that SeNPs alleviated Cd toxicity and reduced Cd accumulation in wheat, which were associated with the synergetic regulation of cell wall biosynthesis pathway, uptake transporters, and antioxidative system via signaling pathways.


Cadmium , Cell Wall , Selenium , Transcriptome , Triticum , Triticum/drug effects , Triticum/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Cadmium/toxicity , Selenium/pharmacology , Selenium/chemistry , Transcriptome/drug effects , Oxidative Stress/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Gene Expression Regulation, Plant/drug effects , Soil Pollutants/toxicity
16.
J Hazard Mater ; 472: 134611, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38754230

Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.


Cadmium , Fritillaria , Fritillaria/genetics , Fritillaria/metabolism , Cadmium/toxicity , Tibet , Oxidative Stress/drug effects , Photosynthesis/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Multiomics
17.
Sci Rep ; 14(1): 11890, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789465

Biofilm-associated candidiasis poses a significant challenge in clinical settings due to the limited effectiveness of existing antifungal treatments. The challenges include increased pathogen virulence, multi-drug resistance, and inadequate penetration of antimicrobials into biofilm structures. One potential solution to this problem involves the development of novel drugs that can modulate fungal virulence and biofilm formation, which is essential for pathogenesis. Resistance in Candida albicans is initiated by morphological changes from yeast to hyphal form. This transition triggers a series of events such as cell wall elongation, increased adhesion, invasion of host tissues, pathogenicity, biofilm formation, and the initiation of an immune response. The cell wall is a critical interface for interactions with host cells, primarily through various cell wall proteins, particularly mannoproteins. Thus, cell wall proteins and enzymes are considered potential antifungal targets. In this regard, we explored α-glucosidase as our potential target which plays a crucial role in processing mannoproteins. Previous studies have shown that inhibition of α-glucosidase leads to defects in cell wall integrity, reduced adhesion, diminished secretion of hydrolytic enzymes, alterations in immune recognition, and reduced pathogenicity. Since α-glucosidase, primarily converts carbohydrates, our study focuses on FDA-approved carbohydrate mimic drugs (Glycomimetics) with well-documented applications in various biological contexts. Through virtual screening of 114 FDA-approved carbohydrate-based drugs, a pseudo-sugar Acarbose, emerged as a top hit. Acarbose is known for its pharmacological potential in managing type 2 diabetes mellitus by targeting α-glucosidase. Our preliminary investigations indicate that Acarbose effectively inhibits C. albicans biofilm formation, reduces virulence, impairs morphological switching, and hinders the adhesion and invasion of host cells, all at very low concentrations in the nanomolar range. Furthermore, transcriptomic analysis reveals the mechanism of action of Acarbose, highlighting its role in targeting α-glucosidase.


Acarbose , Antifungal Agents , Candida albicans , Candidiasis , alpha-Glucosidases , Candida albicans/drug effects , Candida albicans/pathogenicity , Acarbose/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Antifungal Agents/pharmacology , Candidiasis/drug therapy , Candidiasis/microbiology , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Biofilms/drug effects , Biofilms/growth & development , Computer Simulation , Cell Wall/metabolism , Cell Wall/drug effects , Transcriptome , Fungal Proteins/metabolism , Fungal Proteins/genetics , Molecular Docking Simulation , Virulence/drug effects
18.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38690785

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Arabidopsis , Cellulose , Glucosylceramides , Glucosyltransferases , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism , Cellulose/biosynthesis , Glucosylceramides/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Cell Wall/metabolism
19.
Methods Mol Biol ; 2775: 225-237, 2024.
Article En | MEDLINE | ID: mdl-38758321

The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size varies widely between strains, has the ability to grow rapidly when introduced to stressful or low-nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. Inducing the growth of the C. neoformans capsule is used during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here, we describe one of the standard methods of capsule induction and detail two accepted methods of staining: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we outline how to measure capsule diameter manually and offer a protocol for automated diameter measurement of India ink-stained samples using computational image analysis.


Cryptococcus neoformans , Staining and Labeling , Cryptococcus neoformans/cytology , Staining and Labeling/methods , Microscopy, Confocal/methods , Cell Wall/metabolism , Cell Wall/ultrastructure , Fungal Capsules/metabolism , Image Processing, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Carbon
20.
Methods Mol Biol ; 2775: 329-347, 2024.
Article En | MEDLINE | ID: mdl-38758327

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.


Cell Wall , Chitin , Chitosan , Chitin/metabolism , Chitin/chemistry , Chitin/analysis , Chitosan/chemistry , Chitosan/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Cryptococcus neoformans/metabolism , Fluorescent Dyes/chemistry , Cryptococcus/metabolism , Microscopy, Fluorescence/methods
...