Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 485
Filter
1.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39174030

ABSTRACT

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , Naegleria fowleri/isolation & purification , Naegleria fowleri/genetics , Taiwan/epidemiology , Central Nervous System Protozoal Infections/parasitology , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/epidemiology , Fatal Outcome , Male , Meningoencephalitis/parasitology , Meningoencephalitis/diagnosis , Amebiasis/diagnosis , Amebiasis/parasitology , Adult
2.
J Parasitol ; 110(4): 360-374, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39134068

ABSTRACT

Naegleria fowleri is a protozoan that causes primary amebic meningoencephalitis (PAM). The infection occurs when the trophozoites enter the nasal cavity, adhere to the nasal mucosa, invade the epithelium, and migrate until they reach the olfactory bulb. Like other pathogens, there is evidence that the adhesion of N. fowleri to host cells is an important factor in the process of cytopathogenicity and disease progression. However, the factors involved in the adhesion of the pathogen to the cells of the nasal epithelium have not been characterized. The objective of this study was to identify a protein on the surface of N. fowleri, which could act as adhesin to the mouse nasal epithelium in the PAM model. The interaction between proteins of extracts of N. fowleri and cells of the nasal epithelium of BALB/c mice was analyzed using overlay and Western blot assays. A 72-kDa band of N. fowleri interacted directly with epithelial cell proteins, this polypeptide band was purified and analyzed by mass spectrometry. Analysis revealed that polypeptide bands of 72 kDa contained peptides that matched the membrane protein, actin 1 and 2, and Hsp70. Moreover, the N. fowleri extracts resolved in 2D-SDS-PAGE showed that 72-kDa spot interacted with proteins of mouse epithelial cells, which include characteristics of the theoretical data of molecular weight and pH obtained in the analysis by mass spectrometry. Immunofluorescence tests showed that this protein is located on the surface of trophozoites and plays an important role in the adhesion of amoeba either in vitro or in vivo assays, suggesting that this protein contributes during the N. fowleri invasion and migration to the brain, causing primary amoebic meningoencephalitis.


Subject(s)
Central Nervous System Protozoal Infections , Mice, Inbred BALB C , Naegleria fowleri , Nasal Mucosa , Protozoan Proteins , Trophozoites , Animals , Mice , Nasal Mucosa/parasitology , Protozoan Proteins/metabolism , Central Nervous System Protozoal Infections/parasitology , Blotting, Western , Cell Adhesion , Female , Amebiasis/parasitology
3.
PLoS Pathog ; 20(8): e1012412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088549

ABSTRACT

Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amoebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate these agents are potent inhibitors of N. fowleri ENO (NfENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC50 = 0.14 ± 0.04 µM) that was toxic to trophozoites (EC50 = 0.21 ± 0.02 µM) while the reported CC50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of NfENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of NfENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the end of the one-week observation, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. However, intranasal HEX delivery was not curative as brains of six of the eight survivors were positive for amoebae. These findings suggest that HEX requires further evaluation to develop as a lead for treatment of PAM.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Phosphopyruvate Hydratase , Animals , Naegleria fowleri/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice , Rats , Humans , Molecular Docking Simulation
6.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Article in English | MEDLINE | ID: mdl-38835258

ABSTRACT

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Subject(s)
Naegleria fowleri , Pinus , Plant Extracts , Plant Leaves , Naegleria fowleri/drug effects , Naegleria fowleri/genetics , Plant Extracts/pharmacology , Pinus/chemistry , Plant Leaves/chemistry , Animals , Rats , Antiprotozoal Agents/pharmacology , Cell Line , Trophozoites/drug effects , Brain/drug effects , Brain/parasitology , Brain/metabolism , Brain/pathology , Gene Expression Profiling , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Inhibitory Concentration 50 , Cell Survival/drug effects
7.
ACS Infect Dis ; 10(6): 2063-2073, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38757533

ABSTRACT

Primary amoebic meningoencephalitis (PAM) is a rare and fulminant neurodegenerative disease caused by the free-living amoeba Naegleria fowleri. Currently, there is a lack of standardized protocols for therapeutic action. In response to the critical need for effective therapeutic agents, we explored the Global Health Priority Box, a collection of 240 compounds provided by the Medicines for Malaria Venture (MMV). From this pool, flucofuron emerged as a promising candidate, exhibiting high efficacy against trophozoites of both N. fowleri strains (ATCC 30808 IC50 : 2.58 ± 0.64 µM and ATCC 30215 IC50: 2.47 ± 0.38 µM), being even active against the resistant cyst stage (IC50: 0.88 ± 0.07 µM). Moreover, flucofuron induced diverse metabolic events that suggest the triggering of apoptotic cell death. This study highlights the potential of repurposing medications for treating challenging diseases, such as PAM.


Subject(s)
Naegleria fowleri , Naegleria fowleri/drug effects , Humans , Trophozoites/drug effects , Antiprotozoal Agents/pharmacology , Drug Repositioning , Apoptosis/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Amebiasis/drug therapy , Amebiasis/parasitology
9.
Int J Parasitol Drugs Drug Resist ; 25: 100545, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718717

ABSTRACT

Naegleria fowleri, known as the brain-eating amoeba, is the pathogen that causes the primary amoebic meningoencephalitis (PAM), a severe neurodegenerative disease with a fatality rate exceeding 95%. Moreover, PAM cases commonly involved previous activities in warm freshwater bodies that allow amoebae-containing water through the nasal passages. Hence, awareness among healthcare professionals and the general public are the key to contribute to a higher and faster number of diagnoses worldwide. Current treatment options for PAM, such as amphotericin B and miltefosine, are limited by potential cytotoxic effects. In this context, the repurposing of existing compounds has emerged as a promising strategy. In this study, the evaluation of the COVID Box which contains 160 compounds demonstrated significant in vitro amoebicidal activity against two type strains of N. fowleri. From these compounds, terconazole, clemastine, ABT-239 and PD-144418 showed a higher selectivity against the parasite compared to the remaining products. In addition, programmed cell death assays were conducted with these four compounds, unveiling compatible metabolic events in treated amoebae. These compounds exhibited chromatin condensation and alterations in cell membrane permeability, indicating their potential to induce programmed cell death. Assessment of mitochondrial membrane potential disruption and a significant reduction in ATP production emphasized the impact of these compounds on the mitochondria, with the identification of increased ROS production underscoring their potential as effective treatment options. This study emphasizes the potential of the mentioned COVID Box compounds against N. fowleri, providing a path for enhanced PAM therapies.


Subject(s)
Central Nervous System Protozoal Infections , Drug Repositioning , Naegleria fowleri , Naegleria fowleri/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , COVID-19
13.
Emerg Infect Dis ; 30(4): 803-805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526236

ABSTRACT

Primary amebic meningoencephalitis caused by Naegleria fowleri is a rare but nearly always fatal parasitic infection of the brain. Globally, few survivors have been reported, and the disease has no specific treatment. We report a confirmed case in Pakistan in a 22-year-old man who survived after aggressive therapy.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Male , Humans , Young Adult , Adult , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/drug therapy , Brain , Pakistan/epidemiology , Survivors
14.
Infect Genet Evol ; 119: 105570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382768

ABSTRACT

INTRODUCTION: Balamuthia amoebic encephalitis (BAE), caused by Balamuthia mandrillaris, is a rare and life-threatening infectious disease with no specific and effective treatments available. The diagnosis of BAE at an early stage is difficult because of the non-specific clinical manifestations and neuroimaging. CASE DESCRIPTION: A 52-year-old male patient, who had no previous history of skin lesions, presented to the emergency department with an acute headache, walking difficulties, and disturbance of consciousness. The patient underwent a series of examinations, including regular cerebrospinal fluid (CSF) studies and magnetic resonance imaging, and tuberculous meningoencephalitis was suspected. Despite being treated with anti-TB drugs, no clinical improvement was observed in the patient. Following corticosteroid therapy, the patient developed a rapid deterioration in consciousness with dilated pupils. Metagenomic next-generation sequencing (mNGS) revealed an unexpected central nervous system (CNS) amoebic infection, and the patient died soon after the confirmed diagnosis. CONCLUSION: This study highlights the application of mNGS for the diagnosis of patients with suspected encephalitis or meningitis, especially those caused by rare opportunistic infections.


Subject(s)
Amebiasis , Balamuthia mandrillaris , Central Nervous System Protozoal Infections , Encephalitis , Infectious Encephalitis , Male , Humans , Middle Aged , Infectious Encephalitis/diagnosis , Encephalitis/diagnosis , Encephalitis/pathology , Balamuthia mandrillaris/genetics , Central Nervous System Protozoal Infections/diagnosis , Amebiasis/diagnosis , High-Throughput Nucleotide Sequencing
15.
Sci Rep ; 14(1): 767, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191579

ABSTRACT

More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , mRNA Vaccines , Naegleria fowleri/genetics , Central Nervous System Protozoal Infections/prevention & control , Epitopes, T-Lymphocyte/genetics , RNA, Messenger/genetics
16.
Parasitol Res ; 123(1): 84, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38182931

ABSTRACT

Primary amebic meningoencephalitis (PAM) is a necrotizing and hemorrhagic inflammation of the brain and meninges caused by Naegleria fowleri, a free-living thermophilic ameba of freshwater systems. PAM remains a neglected disease that disproportionately affects children in tropical and subtropical climates, with an estimated mortality rate of 95-98%. Due to anthropogenic climate change, the average temperature in the USA has increased by 0.72 to 1.06 °C in the last century, promoting the poleward spread of N. fowleri. PAM is often misdiagnosed as bacterial meningitis or viral encephalitis, which shortens the window for potentially life-saving treatment. Diagnosis relies on the patient's history of freshwater exposure and the physician's high index of suspicion, supported by cerebrospinal fluid studies. While no experimental trials have been conducted to assess the relative efficacy of treatment regimens, anti-amebic therapy with adjunctive neuroprotection is standard treatment in the USA. We performed a literature review and identified five patients from North America between 1962 and 2022 who survived PAM with various degrees of sequelae.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Child , Humans , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/drug therapy , Brain , Climate Change , Disease Progression
17.
Am J Trop Med Hyg ; 110(2): 246-249, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38190743

ABSTRACT

Acanthamoeba spp. are rare etiological agents of meningoencephalitis with high mortality. We present three cases of Acanthamoeba meningoencephalitis in immunocompetent individuals from Eastern India. The first patient presented with fever and headache; the second with headache, visual disturbance, and squint; and the third presented in a drowsy state. The cases presented on March 3, 18, and 21, 2023 respectively. The first two patients had concomitant tubercular meningitis for which they received antitubercular therapy and steroid. Their cerebrospinal fluid showed slight lymphocytic pleocytosis and increased protein. The diagnosis was done by microscopy, culture, and polymerase chain reaction. They received a combination therapy comprising rifampicin, fluconazole, and trimethoprim-sulfamethoxazole. The first patient additionally received miltefosine. She responded well to therapy and survived, but the other two patients died despite intensive care. Detection of three cases within a period of 1 month from Eastern India is unusual. It is imperative to sensitize healthcare providers about Acanthamoeba meningoencephalitis to facilitate timely diagnosis and treatment of the disease.


Subject(s)
Acanthamoeba , Amebiasis , Central Nervous System Protozoal Infections , Meningoencephalitis , Humans , Female , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/drug therapy , Amebiasis/diagnosis , Amebiasis/drug therapy , Meningoencephalitis/diagnosis , Meningoencephalitis/drug therapy , India , Headache
19.
Neuropathology ; 44(1): 68-75, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37381626

ABSTRACT

A 76-year-old female with no apparent immunosuppressive conditions and no history of exposure to freshwater and international travel presented with headache and nausea 3 weeks before the presentation. On admission, her consciousness was E4V4V6. Cerebrospinal fluid analysis showed pleocytosis with mononuclear cell predominance, elevated protein, and decreased glucose. Despite antibiotic and antiviral therapy, her consciousness and neck stiffness gradually worsened, right eye-movement restriction appeared, and the right direct light reflex became absent. Brain magnetic resonance imaging revealed hydrocephalus in the inferior horn of the left lateral ventricle and meningeal enhancement around the brainstem and cerebellum. Tuberculous meningitis was suspected, and pyrazinamide, ethambutol, rifampicin, isoniazid, and dexamethasone were started. In addition, endoscopic biopsy was performed from the white matter around the inferior horn of the left lateral ventricle to exclude brain tumor. A brain biopsy specimen revealed eosinophilic round cytoplasm with vacuoles around blood vessels, and we diagnosed with amoebic encephalitis. We started azithromycin, flucytosine, rifampicin, and fluconazole, but her symptoms did not improve. She died 42 days after admission. In autopsy, the brain had not retained its structure due to autolysis. Hematoxylin and eosin staining of her brain biopsy specimen showed numerous amoebic cysts in the perivascular brain tissue. Analysis of the 16S ribosomal RNA region of amoebas from brain biopsy and autopsy specimens revealed a sequence consistent with Balamuthia mandrillaris. Amoebic meningoencephalitis can present with features characteristic of tuberculous meningitis, such as cranial nerve palsies, hydrocephalus, and basal meningeal enhancement. Difficulties in diagnosing amoebic meningoencephalitis are attributed to the following factors: (1) excluding tuberculous meningitis by microbial testing is difficult, (2) amoebic meningoencephalitis has low incidence and can occur without obvious exposure history, (3) invasive brain biopsy is essential in diagnosing amoebic meningoencephalitis. We should recognize the possibility of amoebic meningoencephalitis when evidence of tuberculosis meningitis cannot be demonstrated.


Subject(s)
Amebiasis , Amoeba , Balamuthia mandrillaris , Central Nervous System Protozoal Infections , Hydrocephalus , Infectious Encephalitis , Tuberculosis, Meningeal , Humans , Female , Aged , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/pathology , Central Nervous System Protozoal Infections/diagnosis , Rifampin , Amebiasis/diagnosis , Amebiasis/pathology , Brain/diagnostic imaging , Brain/pathology , Infectious Encephalitis/diagnosis , Infectious Encephalitis/pathology , Hydrocephalus/pathology
20.
Trop Doct ; 54(2): 165-166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130144

ABSTRACT

Annual reported cases of Naegleria fowleri (NF), popularly known as brain eating amoeba, are becoming a huge challenge for Pakistani health authorities. Karachi has seen cases regularly up till the present but Lahore has not. The spread of this amoeba in non-chlorinated water is a major concern for the authorities. NF is an amoeba commonly found in warm freshwater environments such as lakes, hot springs and poorly chlorinated swimming pools. It poses a significant risk during hot weather when water-related recreational activities are popular. Where there is a non-chlorinated water supply, its spread is aggravated.


Subject(s)
Amebiasis , Central Nervous System Protozoal Infections , Infectious Encephalitis , Naegleria fowleri , Humans , Pakistan/epidemiology , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/epidemiology , Amebiasis/diagnosis , Amebiasis/epidemiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL