Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
APMIS ; 131(8): 419-425, 2023 Aug.
Article En | MEDLINE | ID: mdl-37294911

Ceftolozane-tazobactam is a new ß-lactam/ß-lactamase inhibitor combination approved by the U.S. Food and Drug Administration in 2019 for the treatment of hospital-acquired and ventilator-associated pneumonia. The combination is a particularly potent inhibitor of penicillin-binding proteins with higher affinity than other ß-lactam agents. Persons with cystic fibrosis (pwCF) often harbour resistant Gram-negative bacteria in the airways and need antibiotics to prevent declining lung function. To test whether the introduction of ceftolozane-tazobactam in the period 2015-2020 led to a bacterial population level increase in cephalosporin resistance in a Danish CF population. In vitro, activity of ceftolozane-tazobactam was evaluated by susceptibility testing of clinical Pseudomonas aeruginosa isolated from pwCF from January 1, 2015, to June 1, 2020. Six thousand three hundred thirty two isolates collected from 210 adult pwCF were included. Thirty pwCF were treated with ceftolozane-tazobactam at least once. Ceftolozane-tazobactam exposure did not increase cephalosporin resistance on an individual or population level. However, resistance to ceftolozane-tazobactam was recorded despite no prior exposure in four pwCF. Compared to ceftazidime, ceftolozane-tazobactam had a better in vitro activity on P. aeruginosa. The percentage of non-mucoid P. aeruginosa isolates susceptible to ceftolozane-tazobactam were higher or equal to 5 other ß-lactams. Ceftolozane-tazobactam expands the armamentaria against P. aeruginosa with acceptable levels for a selection of drug resistance.


Cystic Fibrosis , Pseudomonas Infections , Humans , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Pseudomonas aeruginosa , Cystic Fibrosis/microbiology , Cephalosporinase/pharmacology , Cephalosporinase/therapeutic use , Drug Resistance, Bacterial , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Tazobactam/pharmacology , Tazobactam/therapeutic use , Monobactams/pharmacology , Monobactams/therapeutic use , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial
2.
Microbiol Spectr ; 10(5): e0270022, 2022 10 26.
Article En | MEDLINE | ID: mdl-36214681

In the current scenario of growing antibiotic resistance, understanding the interplay between resistance mechanisms and biological costs is crucial for designing therapeutic strategies. In this regard, intrinsic AmpC ß-lactamase hyperproduction is probably the most important resistance mechanism of Pseudomonas aeruginosa, proven to entail important biological burdens that attenuate virulence mostly under peptidoglycan recycling alterations. P. aeruginosa can acquire resistance to new ß-lactam-ß-lactamase inhibitor combinations (ceftazidime-avibactam and ceftolozane-tazobactam) through mutations affecting ampC and its regulatory genes, but the impact of these mutations on the associated biological cost and the role that ß-lactamase activity plays per se in contributing to the above-mentioned virulence attenuation are unknown. The same questions remain unsolved for plasmid-encoded AmpC-type ß-lactamases such as FOX enzymes, some of which also provide resistance to new ß-lactam-ß-lactamase inhibitor combinations. Here, we assessed from different perspectives the effects of changes in the active center and, thus, in the hydrolytic spectrum resistance to inhibitors of AmpC-type ß-lactamases on the fitness and virulence of P. aeruginosa, using site-directed mutagenesis; the previously described AmpC variants T96I, G183D, and ΔG229-E247; and, finally, blaFOX-4 versus blaFOX-8. Our results indicate the essential role of AmpC activity per se in causing the reported full virulence attenuation (in terms of growth, motility, cytotoxicity, and Galleria mellonella larvae killing), although the biological cost of the above-mentioned AmpC-type variants was similar to that of the wild-type enzymes. This suggests that there is not an important biological burden that may limit the selection/spread of these variants, which could progressively compromise the future effectiveness of the above-mentioned drug combinations. IMPORTANCE The growing antibiotic resistance of the top nosocomial pathogen Pseudomonas aeruginosa pushes research to explore new therapeutic strategies, for which the resistance-versus-virulence balance is a promising source of targets. While resistance often entails significant biological costs, little is known about the bases of the virulence attenuations associated with a resistance mechanism as extraordinarily relevant as ß-lactamase production. We demonstrate that besides potential energy and cell wall alterations, the enzymatic activity of the P. aeruginosa cephalosporinase AmpC is essential for causing the full attenuation associated with its hyperproduction by affecting different features related to pathogenesis, a fact exploitable from the antivirulence perspective. Less encouraging, we also show that the production of different chromosomal/plasmid-encoded AmpC derivatives conferring resistance to some of the newest antibiotic combinations causes no significantly increased biological burdens, which suggests a free way for the selection/spread of these types of variants, potentially compromising the future effectiveness of these antipseudomonal therapies.


Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Cephalosporinase/metabolism , Cephalosporinase/pharmacology , Cephalosporinase/therapeutic use , Peptidoglycan/metabolism , Microbial Sensitivity Tests , beta-Lactamases/genetics , Tazobactam/metabolism , Tazobactam/pharmacology , Tazobactam/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Combinations , Pseudomonas Infections/drug therapy
4.
Rev. esp. quimioter ; 24(4): 223-232, dic. 2011. tab, ilus
Article En | IBECS | ID: ibc-93790

Introducción. El estudio SMART (Study for Monitoring Antimicrobial Resistance Trends) tiene como objetivo monitorizar la sensibilidad a los antimicrobianos de los microorganismos gramnegativos aislados en la infección intraabdominal, con especial seguimiento de los que producen Beta-lactamasas de espectro extendido (BLEE). Material y métodos. Se han analizado por microdulución los datos de sensibilidad de 8.869 aislados recogidos en el estudio SMART en España entre 2002 y 2010 en el que han participado 16 centros. Resultados. Escherichia coli fue el patógeno más frecuente (60,9% en la infección intraabdominal adquirida en la comunidad y 49,9% en la nosocomial) seguido de Klebsiella pneumoniae (8,9% vs 9,2%). Pseudomonas aeruginosa fue más habitual en la infección nosocomial (5,6% comunitaria y 8,6% nosocomial). La frecuencia de aislados con BLEE fue: E. coli 8,7%, K. pneumoniae 8,4%, Klebsiella oxytoca 1,4% y Proteus mirabilis 1,6%. En los pacientes de mayor edad aumentó la proporción global de aislados con BLEE (6,8% en pacientes >60 años). Ertapenem y meropenem fueron los antimicrobianos más activos en el conjunto de las enterobacterias (rango de sensibilidad con criterios EUCAST, 89- 100%) y también entre los aislados con BLEE (95,5-100%). La actividad de amoxicilina/ácido clavulánico y piperacilina/tazobactam fue considerablemente inferior, en particular en los aislados con BLEE. Ertapenem mantuvo una buena actividad (sensibilidad >95%) en los productores de BLEE resistentes a amoxicilina/ácido clavulánico, piperacilina/tazobactam o fluoroquinolonas. Conclusiones. Los datos de sensibilidad del estudio SMART en España avalan las guías terapéuticas actuales de infecciónintraabdominal que sitúan al ertapenem como tratamiento empírico de elección, teniendo en cuenta sobre todo la elevada frecuencia de aislados con BLEE en nuestro medio(AU)


Introduction. The SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance study records the antimicrobial susceptibility of Gram-negative bacilli obtain from intraabdominal infections with special focus in isolates with extended spectrum Beta-lactamases (ESBLs). Material and Methods. The antimicrobial susceptibility of 8,869 isolates was analyzed by microdilution during the SMART study performed in Spain from 2002 to 2010. Isolates were recovered in 16 centres. Results. Escherichia coli was the most prevalent pathogen (60.9% from intraabdominal infections acquired in the community and 49.9% in those from nosocomial origin) followed by Klebsiella pneumoniae (8.9% vs 9.2%). Pseudomonas aeruginosa was more common in intraabdominal infections from nosocomial origin (5.6% community and 8.6% nosocomial). Frequency of ESBL-producing isolates was: E. coli, 8.7%; K. pneumoniae, 8.4%; Klebsiella oxytoca, 1.4%; and Proteus mirabilis, 1.6%. Overall, ESBL-producing isolates were more frequently isolated from elderly patients (6.8% >60 years). Ertapenem and meropenem were the most active antimicrobials (susceptibility range with EUCAST criteria, 89.0-100%) when considering all Enterobacteriaceae isolates and also against ESBL producers (95.5-100%). Susceptibility of amoxicillin/clavulanic acid and piperacillin/tazobactam was lower, particularly among ESBL-producing isolates. Nevertheless, ertapenem maintained a good activity (susceptibility >95%) in ESBL-producers that were resistant to amoxicillin/clavulanic acid, piperacillin/tazobactam or fluoroquinolones. Conclusions. Antimicrobial susceptibility data from the SMART-Spain study reinforce current therapeutic guidelines of intraabdominal infections that include ertapenem as the empirical choice for treatment. This is also supported by the high frequency of ESBL-producers in our geographic area(AU)


51426 , Anti-Infective Agents/therapeutic use , Escherichia coli , Escherichia coli/isolation & purification , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Piperacillin/therapeutic use , Fluoroquinolones/therapeutic use , Cephalosporinase/therapeutic use , Products with Antimicrobial Action , Gram-Negative Aerobic Rods and Cocci , Gram-Negative Facultatively Anaerobic Rods , Klebsiella pneumoniae/isolation & purification , Epidemiological Monitoring/organization & administration , Epidemiological Monitoring
5.
Rev. clín. esp. (Ed. impr.) ; 211(4): 187-191, abr. 2011. tab
Article Es | IBECS | ID: ibc-87964

Objetivo. Describir un brote de Pseudomonas aeruginosa multirresistente productora de metalo-beta-lactamasa (MBL). Material y métodos. En mayo de 2009, se detectaron seis aislamientos consecutivos de P. aeruginosa con un mismo antibiotipo (perfil de resistencia a imipenem y cefalosporinas manteniendo sensibilidad a aztreonam) que indicaban la producción de carbapenemasas. Se investigó la posibilidad de su origen clonal y la presencia de MBL mediante caracterización fenotípica y genotípica de los seis aislados y se estudió si estos codificaban la MBL tipo VIM. Secundariamente, se analizaron de forma retrospectiva todos los aislamientos de las mismas características de todo el año 2009 con objeto de establecer la posibilidad de infección endémica. Resultados. Se encontraron dos clones según el perfil en electroforesis de campo pulsado, el más frecuente representado por 4 aislados. Todas procedían de la unidad de cuidados intensivos. El 100% de las cepas del brote se consideran multirresistentes. Se confirmó mediante PCR la presencia de genes del tipo VIM relacionadas con la producción de MBL en el 100% de los aislados correspondientes al pulsotipo 1. Conclusiones. Se detecta la existencia de un brote de P. aeruginosa productora de MBL. Se plantea un evidente problema terapéutico y de control de la infección nosocomial. Se debe extremar las medidas de aislamiento y realizar controles sistemáticos de presencia de MBL, dada la prevalencia elevada en nuestro entorno(AU)


Objective. To describe the nosocomial outbreak of multiresistant Pseudomonas aeruginosa producing metallo-beta-lactamase (MBL) in Cartagena (Murcia, Spain). Material and methods. In May 2009, six consecutive isolations of multiresistant Pseudomonas aeruginosa were detected. These were characterized by their profile of resistance to imipenem and cephalosporins and sensibility to aztreonam, this suggesting the production of carbapenemases. The isolations were screened for MBL and a PCR for the detection of the VIM gene was performed. Secondary, all of the isolations having the same characteristics in the year 2009 were analyzed retrospectively in order to establish the possibility of an endemic infection. Results. The molecular typing of the isolates revealed two clones in Pulsed Field Gel Electrophoresis (PFGE), the most frequent (Type 1) being represented by 4 isolates. All of them came from patients who were in the Intensive Care Unit. All (100%) of the isolates of the outbreak were considered to be multiresistant. PCR confirmed the presence of the VIM gene related with the production of MBL in 100% of the isolates corresponding to pulsotype 1. Conclusions. We detected the existence of an outbreak of carbapenem-resistant Pseudomonas aeruginosa producing metallo-beta-lactamase. Am evident therapeutic problem as well as a problem of nosocomial infection was considered. The isolation means should be maximized and routine controls performed for the presence of MBL given its elevated prevalence in our setting(AU)


Humans , Male , Female , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Cross Infection/complications , Cross Infection/diagnosis , Drug Resistance/physiology , Electrophoresis, Gel, Pulsed-Field , Disease Outbreaks , Cephalosporinase/therapeutic use , Cross Infection/therapy , Aztreonam/therapeutic use , Electrophoresis, Gel, Pulsed-Field/trends
6.
Cleve Clin J Med ; 70(9): 793-800, 2003 Sep.
Article En | MEDLINE | ID: mdl-14518574

To reduce antimicrobial resistance in the intensive care unit, hospitals are developing strategies such as improving infection control, adhering to prescribed formularies, requiring prior approval for using certain antibiotics, setting limits on the duration of antimicrobial therapy, and rotating the use of antimicrobial drugs on a regular schedule. Each strategy has theoretical benefits and limitations, but good data on their efficacy in controlling antimicrobial resistance are limited.


Drug Resistance, Bacterial , Infection Control , Intensive Care Units , Anti-Bacterial Agents/therapeutic use , Cephalosporinase/therapeutic use , Enterococcus faecium/drug effects , Humans , Intensive Care Units/economics , Intensive Care Units/standards , Klebsiella pneumoniae/drug effects , Methicillin/therapeutic use , Practice Guidelines as Topic/standards , Staphylococcus aureus/drug effects , Vancomycin/therapeutic use
...