Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.216
1.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824555

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Anti-Bacterial Agents , Dental Cements , Orthodontic Brackets , Silver , Tooth Remineralization , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Tooth Remineralization/methods , Dental Cements/pharmacology , Materials Testing , Nanostructures/therapeutic use , Streptococcus mutans/drug effects , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Glass/chemistry , Microscopy, Electron, Transmission , Ceramics , Humans , Composite Resins/pharmacology , Composite Resins/chemistry , Shear Strength , Hardness , Dental Bonding/methods , Dental Enamel/drug effects
2.
BMC Oral Health ; 24(1): 620, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807109

BACKGROUND: The mechanical properties of fully crystallized lithium aluminosilicate ceramics may be influenced by intraoral temperature variations and postmilling surface treatment. The purpose of this study is to explore the interplay among glazing, thermocycling, and the mechanical characteristics (namely, fracture toughness and hardness) of fully crystallized lithium aluminosilicate ceramics. METHODS: Bending bars (n = 40) cut from LisiCAD blocks (GC, Japan) were randomly assigned to glazed or unglazed groups (n = 20) and subjected to the single edge v-notch beam method to create notches. A glazing firing cycle was applied to the glazed group, while the unglazed group was not subjected to glazing. Half of the specimens (n = 10) from both groups underwent thermocycling before fracture toughness testing. The fracture toughness (KIC) was evaluated at 23 ± 1 °C using a universal testing machine configured for three-point bending, and the crack length was measured via light microscopy. Seven specimens per group were selected for the hardness test. Hardness was assessed using a Vickers microhardness tester with a 1 kg load for 20 s, and each specimen underwent five indentations following ISO 14705:2016. The Shapiro-Wilk and Kolmogorov-Smirnov tests were used to evaluate the normality of the data and a two-way ANOVA was utilized for statistical analysis. The significance level was set at (α = 0.05). RESULTS: Regardless of the thermocycling conditions, the glazed specimens exhibited significantly greater fracture toughness than did their unglazed counterparts (P < 0.001). Thermocycling had no significant impact on the fracture toughness of either the glazed or unglazed specimens. Furthermore, statistical analysis revealed no significant effects on hardness with thermocycling in either group, and glazing alone did not substantially affect hardness. CONCLUSIONS: The impact of glazing on the fracture toughness of LiSiCAD restorations is noteworthy, but it has no significant influence on their hardness. Furthermore, within the parameters of this study, thermocycling was found to exert negligible effects on both fracture toughness and hardness.


Aluminum Silicates , Ceramics , Computer-Aided Design , Hardness , Materials Testing , Ceramics/chemistry , Aluminum Silicates/chemistry , Dental Stress Analysis , Surface Properties , Crystallization
3.
Int J Esthet Dent ; 19(2): 186-194, 2024 May 10.
Article En | MEDLINE | ID: mdl-38726859

OBJECTIVE: A diagnostic mock-up is a key tool that allows a preview of the outcome of an esthetic restoration. With recent developments in CAD/CAM technology, it is important to understand the pros and cons of chairside digital dentistry and the restorative materials used. The aim of the present case report is to describe in detail the use of a 3D-printed mock-up fabricated from a polymer-based material for an esthetic treatment plan within a fully digital workflow. CASE REPORT: A 45-year-old female patient presented at the clinic concerned about her esthetic appearance and the color of her anterior incisors. After a conclusive diagnosis, a restoration was planned using ceramic veneers from maxillary premolar to premolar. For a preview visualization of the outcome, an intraoral scanner was used to obtain 3D images and to allow the design of a digital smile. The template STL file was exported to a 3D printer and a 0.6-mm mock-up in A3-shade 3D resin was produced after 25 min. The mock-up was tested through a try-in and approved by the patient. As a result, the printed mock-up was considered predictable and reliable for the final restoration. CONCLUSIONS: The ease, speed, and reduced costs derived from the digital workflow, in conjunction with the accuracy of the mock-up, made the procedure highly efficient and recommendable.


Computer-Aided Design , Esthetics, Dental , Printing, Three-Dimensional , Humans , Female , Middle Aged , Dental Veneers , Dental Prosthesis Design/methods , Ceramics , Incisor/diagnostic imaging
4.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38770704

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Ceramics , Dental Bonding , Materials Testing , Resin Cements , Shear Strength , Silicon Dioxide , Silicon Dioxide/chemistry , Ceramics/chemistry , Time Factors , Resin Cements/chemistry , Computer-Aided Design , Surface Properties , Dental Stress Analysis , Cementation/methods , Dental Porcelain/chemistry , Humans , Composite Resins/chemistry , Dental Cements/chemistry , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Temperature
5.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38771025

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Composite Resins , Dental Bonding , Materials Testing , Methacrylates , Resin Cements , Tensile Strength , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Dental Cements/chemistry , Ceramics/chemistry , Dental Stress Analysis , Humans , Time Factors , Water/chemistry , Temperature , Dental Porcelain/chemistry , Surface Properties , Dental Materials/chemistry , Glass Ionomer Cements
6.
BMJ Case Rep ; 17(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38749520

This case report focuses on the replacement of ceramic laminate veneers with suboptimal marginal fit and design, employing a digital workflow and CAD-CAM technology. The patient, a woman in her 30s, expressed concerns about the appearance and hygiene challenges of her existing veneers. A comprehensive assessment, including clinical examination, facial photographs and intraoral scanning, was conducted. Utilising CAD software, facial photographs and 3D models merged to create a digital wax-up, crucial in designing suitable veneers and addressing issues like overcontouring and a poor emergence profile. Following the removal of old veneers, a mock-up was performed and approved. Preparations ensured space for restorations with well-defined margins. The final restorations, milled with Leucite-reinforced vitreous ceramic, were cemented. At the 1 year follow-up, improved aesthetics, gingival health and functional restorations were observed. This report highlights the efficacy of digital workflows in achieving consistent and aesthetically pleasing outcomes in ceramic laminate veneer replacement.


Ceramics , Computer-Aided Design , Dental Veneers , Workflow , Humans , Female , Adult , Esthetics, Dental , Dental Prosthesis Design/methods , Dental Porcelain
7.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Article En | MEDLINE | ID: mdl-38747324

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Bone Substitutes , Nanoparticles , Animals , Bone Substitutes/chemistry , Nanoparticles/chemistry , Ceramics/chemistry , Materials Testing , Durapatite/chemistry , Sheep , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction , Bone Transplantation
8.
Am J Dent ; 37(2): 71-77, 2024 Apr.
Article En | MEDLINE | ID: mdl-38704849

PURPOSE: To investigate the effect of painless low-power Er:YAG laser irradiation of conventional and polymer-infiltrated ceramic network (PICN) type CAD-CAM resin-based composites (RBCs) on resin bonding. METHODS: An Er:YAG laser system, phosphoric acid etchant, universal adhesive, RBC, and two types of CAD-CAM RBC block were used. Microtensile bond strength, fracture mode, scanning electron microscopy (SEM) observations of bonding interfaces and CAD-CAM surfaces, and surface roughness of ground and pretreated surfaces were investigated. As pretreatment methods, low-power Er:YAG laser irradiation and air-abrasion with alumina particles were used. RESULTS: The effect of low-power Er:YAG laser irradiation of CAD-CAM RBCs on bonding to repair resin varied depending on the type of CAD-CAM RBCs. CLINICAL SIGNIFICANCE: The low-power Er:YAG laser irradiation of the conventional CAD-CAM RBCs was shown to be effective as a surface pretreatment for resin bonding, while the laser irradiation of PICN-type CAD-CAM RBCs was not effective.


Composite Resins , Computer-Aided Design , Dental Bonding , Lasers, Solid-State , Microscopy, Electron, Scanning , Surface Properties , Composite Resins/chemistry , Tensile Strength , Materials Testing , Humans , Ceramics/chemistry , Acid Etching, Dental
9.
J Appl Biomater Funct Mater ; 22: 22808000241250118, 2024.
Article En | MEDLINE | ID: mdl-38706266

Despite the development of implant-supported prostheses, there are still patients for whom conservative treatments such as resin-bonded fixed dental prostheses (RBFDPs) are more appropriate. This study's objective was to analyze the available research on full-ceramic RBFDPs. In this study, Web of Science, MEDLINE/PubMed, Scopus, Embase, Cochrane Library, and Google Scholar databases were searched for articles published in English between 2010 and 2020. A total of 14 studies were reviewed based on the eligibility criteria. The results showed that using a cantilever design with one abutment had an advantage over two abutments. Additionally, it was proposed that preparations designed with retentive aids, such as a proximal box, groove, and pinhole, could improve RBFDP survival rates. IPS e.max ZirCAD, In-Ceram alumina, and zirconia CAD/CAM were the most commonly used framework materials. Most studies used air abrasion, salinization, or hydrofluoric acid for surface treatment. Adhesive resin cements were the most frequently used type of cement. The survival rate of In-Ceram ceramics (85.3%-94.8%) was lower than that of In-Ceram zirconia and IPS e.max ZirCAD. Debonding, followed by framework fracture, was the leading cause of failure. Following 3-10 years follow-up, the survival percentage of all-ceramic RBFDPs ranged from 76% to 100%. Although RBFDPs have demonstrated satisfactory success as a conservative treatment, long-term follow-ups and higher sample sizes in clinical research are required to gain more reliable outcomes on the clinical success rate of various RBFDP designs.


Ceramics , Humans , Ceramics/chemistry , Resin Cements/chemistry , Dental Porcelain/chemistry , Dental Prosthesis, Implant-Supported , Denture, Partial, Fixed, Resin-Bonded , Zirconium/chemistry
10.
J Contemp Dent Pract ; 25(3): 226-230, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690694

AIM: To assess the effectiveness of various surface treatments and adhesives on the bond strength of zirconia-based ceramic to dentin. MATERIALS AND METHODS: Eighty samples of zirconia were subjected to the four-surface treatment protocols (sandblasting, 48% hydrofluoric acid (HF), 48% hydrofluoric acid + 70% nitric acid (HNO3) and no treatment (control) following which the samples from each group were subdivided into two subgroups (n = 10) based on the resin cement employed for cementation (RelyX U200 and G-Cem Linkforce). The bonded specimens were subjected to shear stress to measure the bond strength using Universal testing machine. To test the difference in bond strength among the eight study groups, the Kruskal-Wallis ANOVA test was applied and for comparison between cements in each group, Mann-Whitney U test was applied. RESULTS: The highest bond strength values were observed for 48% HF group cemented with G-Cem Linkforce resin cement (16.220 ± 1.574) and lowest for control group-RelyX (4.954 ± 0.972). G-Cem cement showed higher bond strength than RelyX for all surface treatments except 48% HF + 70% nitric acid. CONCLUSION: It can be inferred that 48% HF can etch zirconia and generate a porous structure that proves to be beneficial for bonding. CLINICAL SIGNIFICANCE: The increasing demand for esthetics has led to the replacement of metal-ceramic materials with zirconia-based ceramics. However, the chemical inertness of zirconia to various conventional surface treating agents has continuously challenged researchers to discover a new surface treatment protocol that could enhance the bond strength of zirconia. How to cite this article: Yenamandra MS, Joseph A, Singh P, et al. Effect of Various Surface Treatments of Zirconia on its Adhesive Properties to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):226-230.


Dental Bonding , Dentin , Materials Testing , Resin Cements , Surface Properties , Zirconium , Resin Cements/chemistry , Dental Bonding/methods , In Vitro Techniques , Humans , Dental Stress Analysis , Shear Strength , Hydrofluoric Acid/chemistry , Nitric Acid/chemistry , Ceramics/chemistry
11.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698366

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Benzophenones , Dental Bonding , Dental Porcelain , Dental Stress Analysis , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Resin Cements , Shear Strength , Surface Properties , Dental Bonding/methods , Acid Etching, Dental/methods , Sulfuric Acids , Ceramics/chemistry , Air Abrasion, Dental/methods , Aluminum Oxide , Dental Veneers , Dental Etching/methods , Humans
12.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791401

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Calcium Phosphates , Ceramics , Freeze Drying , Freeze Drying/methods , Calcium Phosphates/chemistry , Porosity , Ceramics/chemistry , Surface-Active Agents/chemistry , Materials Testing , X-Ray Diffraction
13.
BMC Oral Health ; 24(1): 602, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783312

BACKGROUND: The ceramic soft tissue trimming bur (CeraTip™) was initially introduced for use in gingivoplasty but has recently been used for gingival depigmentation. The aim of this study is to compare the efficacy of depigmentation between the novel CeraTip™ and the gold-standard surgical scalpel technique. METHODS: Eight healthy, nonsmokers with moderate to severe gingival hyperpigmentation in both arches were randomly assigned for CeraTip™ depigmentation in one arch as the test group (TG) and scalpel depigmentation in the opposite arch as the control group (CG). Pigmentation indices were used to assess clinical performance. Treatment time, pain level, and esthetic satisfaction were the parameters of patient experience. The assessments were performed at baseline, one week, one month, and three months. RESULTS: At all assessment visits, pigmentation intensity represented by the Dummet oral pigmentation index (DOPI), and pigmentation distribution represented by the Hedin melanin index (MI), were significantly lower than those at baseline (p < 0.001) in both groups. When comparing the two groups, Scalpel depigmentation had better initial clinical outcomes, while CeraTip™ had less visible repigmentation, pain scores, treatment time, and greater esthetic satisfaction. However, none of the differences were statistically significant. CONCLUSION: Both techniques successfully removed gingival hyperpigmentation with comparable clinical performance. The patients preferred CeraTip™ depigmentation. TRIAL REGISTRATION: The study protocol was registered on 11/09/2023 on the www. CLINICALTRIALS: gov database (NCT06031116) after the approval of the Ethics Committee, Faculty of Dentistry, Ain Shams University (FDASU-Rec012124).


Ceramics , Gingival Diseases , Patient Satisfaction , Humans , Female , Adult , Gingival Diseases/surgery , Male , Hyperpigmentation , Esthetics, Dental , Middle Aged , Gingiva/surgery , Gingiva/pathology , Treatment Outcome , Gingivoplasty/methods
14.
J Dent ; 145: 105033, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697505

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Anti-Bacterial Agents , Ceramics , Dental Abutments , Fibroblasts , Gingiva , Glass , Surface Properties , Zinc , Zirconium , Zirconium/pharmacology , Zirconium/chemistry , Humans , Zinc/pharmacology , Fibroblasts/drug effects , Anti-Bacterial Agents/pharmacology , Gingiva/cytology , Gingiva/drug effects , Glass/chemistry , Ceramics/pharmacology , Ceramics/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Antioxidants/pharmacology , Materials Testing , Collagen , Wound Healing/drug effects , Dental Materials/pharmacology , Dental Materials/chemistry , Cells, Cultured
15.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750469

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Calcium Phosphates , Ceramics , Monocytes , Monocytes/cytology , Ceramics/chemistry , Calcium Phosphates/chemistry , Humans , Bone Substitutes/chemistry , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Porosity
16.
BMC Oral Health ; 24(1): 570, 2024 May 15.
Article En | MEDLINE | ID: mdl-38802801

BACKGROUND: Erbium lasers safely offer the possibility of reuse for debonded restorations. Since these lasers have a high affinity for water molecules, they are absorbed by resin cement causing explosive ablation of the cement and thus, the restoration debonds. The efficiency of this process depends on many factors, including the ceramic type, its chemical composition and thickness. Therefore, this study was designed to test the time taken to debond ultrathin occlusal veneers made of three types of milled ceramic materials and evaluate the integrity of these restorations after debonding. METHODS: Three ceramic types were evaluated in this study: lithium disilicate (IPS Emax CAD), highly condensed lithium disilicate (GC initial®LiSi), and translucent zirconia (Katana zirconia STML). Each group consisted of 8 occlusal veneers of 0.5 mm thickness. The samples were cemented to the occlusal surfaces of the upper molar teeth. An Er; Cr: YSGG laser was applied to the occlusal veneers using the scanning method, and time until debonding was calculated. The debonded samples were then inspected under a stereomicroscope for possible damage. Numerical data are presented as the mean with 95% confidence interval (CI), standard deviation (SD), minimum (min.) and maximum (max.) values. Normality and variance homogeneity assumptions were confirmed using Shapiro-Wilk's and Levene's tests, respectively. Data were normally distributed and were analyzed using one-way ANOVA followed by Tukey's post hoc test. The significance level was set at p < 0.05 for all tests. Statistical analysis was performed with R statistical analysis software version 4.3.2 for Windows (R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). RESULTS: There was no significant difference in debonding time between the different materials (p = 0.995). The longest debonding time was found for Katana STML (87.52 ± 20.45) (seconds), followed by Emax (86.94 ± 20.63) (seconds), while the lowest value was found for LiSi initial (86.14 ± 25.16) (seconds). In terms of damage to the debonded veneers, The Emax and zirconia samples showed no damage. However, 40% of the LiSi samples fractured during debonding, and 20% exhibited cracks. Only 40% of the LiSi samples were sound after debonding. CONCLUSION: Er; Cr: YSGG laser can be used efficiently to remove ceramic occlusal veneers. However, its effect on LiSi restorations needs further research.


Ceramics , Computer-Aided Design , Dental Porcelain , Dental Veneers , Zirconium , Ceramics/chemistry , Dental Porcelain/chemistry , Humans , Zirconium/chemistry , Lasers, Solid-State/therapeutic use , Dental Debonding/methods , Materials Testing
17.
BMC Oral Health ; 24(1): 523, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702708

BACKGROUND: The rising demand for improved aesthetics has driven the utilization of recently introduced aesthetic materials for creating custom post and core restorations. However, information regarding the fracture resistance of these materials remains unclear, which limits their practical use as custom post and core restorations in clinical applications. AIM OF THE STUDY: This study aimed to evaluate the fracture resistance of three non-metallic esthetic post and core restorations and their modes of failure. MATERIALS AND METHODS: Thirty-nine single-rooted human maxillary central incisors were endodontically treated. A standardized post space preparation of 9mm length was performed to all teeth to receive custom-made post and core restorations. The prepared teeth were randomly allocated to receive a post and core restoration made of one of the following materials (n=13): glass fiber-reinforced composite (FRC), polyetheretherketone (PEEK) and polymer-infiltrated ceramic-network (PICN). An intraoral scanner was used to scan all teeth including the post spaces. Computer-aided design and computer-aided manufacturing (CAD-CAM) was used to fabricate post and core restorations. Post and core restorations were cemented using self-adhesive resin cement. All specimens were subjected to fracture resistance testing using a universal testing machine. Failure mode analysis was assessed using a stereomicroscope and SEM. The data was statistically analyzed using One-Way ANOVA test followed by multiple pairwise comparisons using Bonferroni adjusted significance level. RESULTS: Custom PEEK post and core restorations displayed the least fracture load values at 286.16 ± 67.09 N. In contrast, FRC exhibited the highest average fracture load at 452.60 ± 105.90 N, closely followed by PICN at 426.76 ± 77.99 N. In terms of failure modes, 46.2% of specimens with PICN were deemed non-restorable, while for PEEK and FRC, these percentages were 58.8% and 61.5%, respectively. CONCLUSIONS: Within the limitation of this study, both FRC and PICN demonstrated good performance regarding fracture resistance, surpassing that of PEEK.


Composite Resins , Computer-Aided Design , Dental Restoration Failure , Esthetics, Dental , Post and Core Technique , Humans , Ceramics , Dental Stress Analysis , Benzophenones , Incisor/injuries , Dental Materials/chemistry , Polyethylene Glycols , Ketones/chemistry , Polymers , Glass , Materials Testing , Dental Prosthesis Design
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124289, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38692101

Biphasic calcium phosphate (BCP), consisting of bioceramics such as HAp + ß-TCP and Ca10(PO4)6(OH)2 + Ca3(PO4)2, is a popular choice for optimizing performance due to its superior biological reabsorption and osseointegration. In this study, BCP was produced by calcining the bones of tilapia fish (Oreochromis niloticus) reared in net cages and slaughtered at an age ranging from 15 to 420 days. The bones were cleaned and dried, calcined at 900 °C for 8 h, and then subjected to high-energy grinding for 3 h to produce BCP powders. After the calcination process, the crystalline phase's hydroxyapatite (HAp) and/or beta-tricalcium phosphate (ß-TCP) were present in the composition of the bioceramic. The age-dependent variation in phase composition was confirmed by complementary vibrational spectroscopy techniques, revealing characteristic peaks and bands of the bioceramic. This variation was marked by an increase in HAp phase and a decrease in ß-TCP phase. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) from 25 to 1400 °C showed the characteristic mass losses of the material, with a greater loss observed for younger fish, indicating the complete removal of organic components at temperatures above 600 °C. Comparison of the results obtained by X-Ray Diffraction (XRD) and Rietveld refinement with Raman spectroscopy showed excellent agreement. These results showed that with temperature and environment control and adequate fish feeding, it is possible to achieve the desired amounts of each phase by choosing the ideal age of the fish. This bioceramic enables precise measurement of HAp and ß-TCP concentrations and Ca/P molar ratio, suitable for medical orthopedics and dentistry.


Bone and Bones , Ceramics , Spectrum Analysis, Raman , Animals , Ceramics/chemistry , Bone and Bones/chemistry , Tilapia/metabolism , X-Ray Diffraction , Hydroxyapatites/chemistry , Spectroscopy, Fourier Transform Infrared , Calcium Phosphates/chemistry , Thermogravimetry
19.
Water Environ Res ; 96(5): e11032, 2024 May.
Article En | MEDLINE | ID: mdl-38698675

In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.


Bioreactors , Ceramics , Membranes, Artificial , Ceramics/chemistry , Waste Disposal, Fluid/methods , Sewage/chemistry , Biofouling/prevention & control
20.
Acta Cir Bras ; 39: e392424, 2024.
Article En | MEDLINE | ID: mdl-38808817

PURPOSE: To evaluate the inductive capacity of F18 bioglass putty on the induced membrane technique in a segmental bone defect of the rabbit's radius. METHODS: Ten female Norfolk at 24 months of age were used. The animals were randomly separated based on postoperative time points: five rabbits at 21 and four at 42 days. A 1-cm segmental bone defect was created in both radii. The bone defects were filled with an F18 bioglass putty. RESULTS: Immediate postoperative radiographic examination revealed the biomaterial occupying the segmental bone defect as a well-defined radiopaque structure with a density close to bone tissue. At 21 and 42 days after surgery, a reduction in radiopacity and volume of the biomaterial was observed, with particle dispersion in the bone defect region. Histologically, the induced membrane was verified in all animals, predominantly composed of fibrocollagenous tissue. In addition, chondroid and osteoid matrices undergoing regeneration, a densely vascularized tissue, and a foreign body type reaction composed of macrophages and multinucleated giant cells were seen. CONCLUSIONS: the F18 bioglass putty caused a foreign body-type inflammatory response with the development of an induced membrane without expansion capacity to perform the second stage of the Masquelet technique.


Biocompatible Materials , Bone Regeneration , Bone Substitutes , Ceramics , Radius , Animals , Rabbits , Female , Bone Regeneration/drug effects , Radius/diagnostic imaging , Radius/surgery , Bone Substitutes/therapeutic use , Reproducibility of Results , Time Factors , Random Allocation , Membranes, Artificial
...