Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 844
1.
Int J Geriatr Psychiatry ; 39(5): e6098, 2024 May.
Article En | MEDLINE | ID: mdl-38777619

OBJECTIVES: Cerebral Small Vessel Disease (CSVD) is a chronic, progressive vascular disorder that confers increased vulnerability to psychiatric syndromes, including late-life mood disorders. In this study, we investigated the impact of CSVD on electroconvulsive therapy (ECT) outcomes in patients with late-onset bipolar disorder (BD). METHODS: A sample of 54 non-demented elderly patients (≥60 years) with late-onset BD and treatment-resistant major depression, mixed state, or catatonia who underwent bilateral ECT were included in this naturalistic observational study. A diagnosis of CSVD was established based on brain neuroimaging performed before ECT. All patients were evaluated before and after ECT using the Brief Psychiatric Rating Scale (BPRS), the Hamilton Rating Scale for Depression (HAM-D), and the Clinical Global Impression scale (CGI). RESULTS: Of the total sample, 19 patients were diagnosed with CSVD (35.2%). No significant differences were observed at baseline between patients with and without CSVD. Overall, a response was obtained in 66%-68.5% of patients, with remission in 56.2%. No significant differences in ECT outcomes were found between those with and without CSVD, and both groups exhibited substantial improvements in symptom severity following ECT. CONCLUSIONS: The outcome of ECT in late-onset BD was not influenced by the presence of CSVD. This finding aligns with previous research on unipolar depression. Accordingly, ECT should be considered for elderly patients with late-onset BD, regardless of the presence of CSVD.


Bipolar Disorder , Cerebral Small Vessel Diseases , Electroconvulsive Therapy , Humans , Electroconvulsive Therapy/methods , Female , Male , Aged , Cerebral Small Vessel Diseases/therapy , Cerebral Small Vessel Diseases/diagnostic imaging , Bipolar Disorder/therapy , Middle Aged , Aged, 80 and over , Psychiatric Status Rating Scales , Treatment Outcome , Depressive Disorder, Major/therapy , Late Onset Disorders/therapy
2.
Neurology ; 102(10): e209310, 2024 May 28.
Article En | MEDLINE | ID: mdl-38713890

BACKGROUND AND OBJECTIVES: Pathogenic variants in NOTCH3 are the main cause of hereditary cerebral small vessel disease (SVD). SVD-associated NOTCH3 variants have recently been categorized into high risk (HR), moderate risk (MR), or low risk (LR) for developing early-onset severe SVD. The most severe NOTCH3-associated SVD phenotype is also known as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to investigate whether NOTCH3 variant risk category is associated with 2-year progression rate of SVD clinical and neuroimaging outcomes in CADASIL. METHODS: A single-center prospective 2-year follow-up study was performed of patients with CADASIL. Clinical outcomes were incident stroke, disability (modified Rankin Scale), and executive function (Trail Making Test B given A t-scores). Neuroimaging outcomes were mean skeletonized mean diffusivity (MSMD), normalized white matter hyperintensity volume (nWMHv), normalized lacune volume (nLV), and brain parenchymal fraction (BPF). Cox regression and mixed-effect models, adjusted for age, sex, and cardiovascular risk factors, were used to study 2-year changes in outcomes and differences in disease progression between patients with HR-NOTCH3 and MR-NOTCH3 variants. RESULTS: One hundred sixty-two patients with HR (n = 90), MR (n = 67), and LR (n = 5) NOTCH3 variants were included. For the entire cohort, there was 2-year mean progression for MSMD (ß = 0.20, 95% CI 0.17-0.23, p = 7.0 × 10-24), nLV (ß = 0.13, 95% CI 0.080-0.19, p = 2.1 × 10-6), nWMHv (ß = 0.092, 95% CI 0.075-0.11, p = 8.8 × 10-20), and BPF (ß = -0.22, 95% CI -0.26 to -0.19, p = 3.2 × 10-22), as well as an increase in disability (p = 0.002) and decline of executive function (ß = -0.15, 95% CI -0.30 to -3.4 × 10-5, p = 0.05). The HR-NOTCH3 group had a higher probability of 2-year incident stroke (hazard ratio 4.3, 95% CI 1.4-13.5, p = 0.011), and a higher increase in MSMD (ß = 0.074, 95% CI 0.013-0.14, p = 0.017) and nLV (ß = 0.14, 95% CI 0.034-0.24, p = 0.0089) than the MR-NOTCH3 group. Subgroup analyses showed significant 2-year progression of MSMD in young (n = 17, ß = 0.014, 95% CI 0.0093-0.019, p = 1.4 × 10-5) and premanifest (n = 24, ß = 0.012, 95% CI 0.0082-0.016, p = 1.1 × 10-6) individuals. DISCUSSION: In a trial-sensitive time span of 2 years, we found that patients with HR-NOTCH3 variants have a significantly faster progression of major clinical and neuroimaging outcomes, compared with patients with MR-NOTCH3 variants. This has important implications for clinical trial design and disease prediction and monitoring in the clinic. Moreover, we show that MSMD is a promising outcome measure for trials enrolling premanifest individuals.


CADASIL , Cerebral Small Vessel Diseases , Disease Progression , Receptor, Notch3 , Humans , Receptor, Notch3/genetics , CADASIL/genetics , CADASIL/diagnostic imaging , Female , Male , Middle Aged , Prospective Studies , Follow-Up Studies , Adult , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Magnetic Resonance Imaging , Aged , Executive Function/physiology , Risk Factors
3.
Brain Behav ; 14(5): e3526, 2024 May.
Article En | MEDLINE | ID: mdl-38783554

OBJECTIVE: This study investigated the correlation between the pulsatility index (PI) of the middle cerebral artery with the total burden of cerebral small vessel disease and cognitive impairment. METHOD: Information on patients hospitalized in the Department of Neurology was collected retrospectively. These patients had complete clinical and laboratory data. The middle cerebral artery PI was measured using transcranial Doppler, a Mini-Mental State Examination (MMSE) was used to assess cognitive function, and the total cerebral small vessel disease burden was assessed using magnetic resonance imaging. Patients were grouped according to their scores for total imaging burden of cerebral small vessel disease and cognitive function. Logistic regression analysis assessed the association between the PI, total imaging burden, and cognitive impairment. Spearman analysis was used to evaluate the correlation between the PI and total imaging burden and cognitive impairment, and receiver operating characteristic (ROC) curves were used to determine the predictive value of the PI for cognitive function. RESULTS: The PI was higher in the cognitive impairment (CI) group than in the no-CI group. Binary logistic regression analysis showed that increased PI was an independent risk factor for CI (OR = 1.582; 95% CI: 1.043-2.401; p = .031) and total imaging burden (OR = 1.842; 95% CI: 1.274-2.663; p = .001). Spearman analysis found that the PI correlated negatively with the MMSE score (r = -.627, p < .001). ROC curve analysis showed the PI predicted CI with an area under the curve of 0.784. The PI combined with the total imaging burden predicted CI in cerebral small vessel disease with an area under the curve of 0.832. CONCLUSION: An increased PI was associated with CI and a high imaging burden in cerebral small vessel disease patients. The PI combined with the total burden score shows a high predictive value for CI.


Cerebral Small Vessel Diseases , Cognitive Dysfunction , Magnetic Resonance Imaging , Middle Cerebral Artery , Pulsatile Flow , Ultrasonography, Doppler, Transcranial , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Male , Female , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Aged , Middle Aged , Retrospective Studies , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiopathology , Pulsatile Flow/physiology , Mental Status and Dementia Tests
4.
Cardiovasc Diabetol ; 23(1): 157, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715111

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) and SGLT1 inhibitors may have additional beneficial metabolic effects on circulating metabolites beyond glucose regulation, which could contribute to a reduction in the burden of cerebral small vessel disease (CSVD). Accordingly, we used Mendelian Randomization (MR) to examine the role of circulating metabolites in mediating SGLT2 and SGLT1 inhibition in CSVD. METHODS: Genetic instruments for SGLT1/2 inhibition were identified as genetic variants, which were both associated with the expression of encoding genes of SGLT1/2 inhibitors and glycated hemoglobin A1c (HbA1c) level. A two-sample two-step MR was used to determine the causal effects of SGLT1/2 inhibition on CSVD manifestations and the mediating effects of 1400 circulating metabolites linking SGLT1/2 inhibition with CSVD manifestations. RESULTS: A lower risk of deep cerebral microbleeds (CMBs) and small vessel stroke (SVS) was linked to genetically predicted SGLT2 inhibition. Better white matter structure integrity was also achieved, as evidenced by decreased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), as well as lower deep (DWMH) and periventrivular white matter hyperintensity (PWMH) volume. Inhibiting SGLT2 could also lessen the incidence of severe enlarged perivascular spaces (EPVS) located at white matter, basal ganglia (BG) and hippocampus (HIP). SGLT1 inhibition could preserve white matter integrity, shown as decreased MD of white matter and DWMH volume. The effect of SGLT2 inhibition on SVS and MD of white matter through the concentration of 4-acetamidobutanoate and the cholesterol to oleoyl-linoleoyl-glycerol (18:1 to 18:2) ratio, with a mediated proportion of 30.3% and 35.5% of the total effect, respectively. CONCLUSIONS: SGLT2 and SGLT1 inhibition play protective roles in CSVD development. The SGLT2 inhibition could lower the risk of SVS and improve the integrity of white matter microstructure via modulating the level of 4-acetamidobutanoate and cholesterol metabolism. Further mechanistic and clinical studies research are needed to validate our findings.


Biomarkers , Cerebral Small Vessel Diseases , Mendelian Randomization Analysis , Sodium-Glucose Transporter 1 , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/metabolism , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/blood , Cerebral Small Vessel Diseases/metabolism , Risk Factors , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Biomarkers/blood , Risk Assessment , Glycated Hemoglobin/metabolism , Pharmacogenomic Variants , Treatment Outcome , Phenotype , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/epidemiology , Protective Factors , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Genetic Predisposition to Disease
5.
Comput Biol Med ; 176: 108530, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749324

As an autoimmune-mediated inflammatory demyelinating disease of the central nervous system, multiple sclerosis (MS) is often confused with cerebral small vessel disease (cSVD), which is a regional pathological change in brain tissue with unknown pathogenesis. This is due to their similar clinical presentations and imaging manifestations. That misdiagnosis can significantly increase the occurrence of adverse events. Delayed or incorrect treatment is one of the most important causes of MS progression. Therefore, the development of a practical diagnostic imaging aid could significantly reduce the risk of misdiagnosis and improve patient prognosis. We propose an interpretable deep learning (DL) model that differentiates MS and cSVD using T2-weighted fluid-attenuated inversion recovery (FLAIR) images. Transfer learning (TL) was utilized to extract features from the ImageNet dataset. This pioneering model marks the first of its kind in neuroimaging, showing great potential in enhancing differential diagnostic capabilities within the field of neurological disorders. Our model extracts the texture features of the images and achieves more robust feature learning through two attention modules. The attention maps provided by the attention modules provide model interpretation to validate model learning and reveal more information to physicians. Finally, the proposed model is trained end-to-end using focal loss to reduce the influence of class imbalance. The model was validated using clinically diagnosed MS (n=112) and cSVD (n=321) patients from the Beijing Tiantan Hospital. The performance of the proposed model was better than that of two commonly used DL approaches, with a mean balanced accuracy of 86.06 % and a mean area under the receiver operating characteristic curve of 98.78 %. Moreover, the generated attention heat maps showed that the proposed model could focus on the lesion signatures in the image. The proposed model provides a practical diagnostic imaging aid for the use of routinely available imaging techniques such as magnetic resonance imaging to classify MS and cSVD by linking DL to human brain disease. We anticipate a substantial improvement in accurately distinguishing between various neurological conditions through this novel model.


Cerebral Small Vessel Diseases , Deep Learning , Multiple Sclerosis , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Male , Magnetic Resonance Imaging/methods , Female , Neural Networks, Computer , Image Interpretation, Computer-Assisted/methods , Middle Aged , Adult , Neuroimaging/methods
6.
Alzheimers Dement ; 20(5): 3687-3695, 2024 May.
Article En | MEDLINE | ID: mdl-38574400

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Alzheimer Disease , Amyloid beta-Peptides , Cerebral Small Vessel Diseases , Hippocampus , Positron-Emission Tomography , Humans , Hippocampus/pathology , Hippocampus/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Aged , Female , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/pathology , White Matter/diagnostic imaging , Atrophy/pathology , Magnetic Resonance Imaging , Aged, 80 and over , Neuroimaging , Cohort Studies
7.
J Am Heart Assoc ; 13(9): e033081, 2024 May 07.
Article En | MEDLINE | ID: mdl-38639343

BACKGROUND: Retinal ischemic perivascular lesions (RIPLs) are an indicator of ischemia in the middle retina. We aimed to determine the relationship between RIPLs and single subcortical infarction (SSI). We also investigated the differences in cerebral small vessel disease imaging burden between groups with and without RIPLs in SSI. METHODS AND RESULTS: In this case-control study, we enrolled 82 patients with SSI and 72 nonstroke controls. All participants underwent magnetic resonance imaging and swept-source optical coherence tomography/optical coherence tomography angiography. Small vessel disease markers such as lacunes, cerebral microbleeds, white matter hyperintensity, and perivascular spaces were rated on brain imaging. RIPLs were assessed via swept-source optical coherence tomography. Optical coherence tomography angiography was used to measure the superficial vascular complex and deep vascular complex of the retina. After adjusting for risk factors, the presence of RIPLs was significantly associated with SSI (odds ratio [OR], 1.506 [95% CI, 1.365-1.662], P<0.001). Eyes with RIPLs showed lower deep vascular complex density (P=0.035) compared with eyes without RIPLs in patients with SSI. After adjusting for vascular risk factors, the presence of RIPLs in patients with SSI was associated with an increased periventricular white matter hyperintensity burden (ß=0.414 [95% CI, 0.181-0.647], P<0.001) and perivascular spaces-basal ganglia (ß=0.296 [95% CI, 0.079-0.512], P=0.008). CONCLUSIONS: RIPLs are associated with SSI independent of underlying risk factors. The relationship between the presence of RIPLs and small vessel disease markers provides evidence that RIPLs might be an additional indicator of cerebral ischemic changes.


Cerebral Small Vessel Diseases , Retinal Vessels , Tomography, Optical Coherence , Humans , Male , Female , Tomography, Optical Coherence/methods , Aged , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Middle Aged , Case-Control Studies , Retinal Vessels/pathology , Retinal Vessels/diagnostic imaging , Magnetic Resonance Imaging , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Cerebral Infarction/diagnostic imaging , Risk Factors
9.
Immun Inflamm Dis ; 12(4): e1228, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578037

BACKGROUND: High neutrophil/lymphocyte ratio (NLR) is associated with poor prognosis in ischemic stroke. However, the role of NLR in cerebral small vessel disease (CSVD) is controversial. Herein, we evaluated the value of NLR in identifying CSVD and its relationship with the common imaging markers of CSVD. METHODS: A total of 667 patients were enrolled in this study, including 368 in the CSVD group and 299 in the non-CSVD group. Clinical, laboratory, and imaging data were collected. The relationship of NLR with CSVD and common imaging markers of CSVD were analyzed with univariate and multivariate logistic regression analysis. The predictive value of NLR was assessed with the receiver operating characteristic curve. RESULTS: NLR (odds ratio [OR] = 1.929, 95% confidence interval [CI] = 1.599-2.327, p < .001) was an independent risk factor for CSVD. NLR was also independently associated with moderate to severe white matter hyperintensity (WMH) (OR = 2.136, 95% CI = 1.768-2.580, p < .001), moderate to severe periventricular WMH (OR = 2.138, 95% CI = 1.771-2.579, p < .001), and moderate to severe deep WMH (OR = 1.654, 95% CI = 1.438-1.902, p < .001), moderately to severely enlarged perivascular spaces (EPVS) (OR = 1.248, 95% CI = 1.110-1.402, p < .001), moderately to severely EPVS in the basal ganglia (OR = 1.136, 95% CI = 1.012-1.275, p = .030), and moderately to severely EPVS in the centrum semiovale (OR = 1.140, 95% CI = 1.027-1.266, p = .014). However, NLR was not statistically significantly associated with lacune. The optimal cutoff point of NLR in predicting CSVD was 2.47, with sensitivity and specificity of 84.2% and 66.9%, respectively (p < .01). The diagnostic effect was maximized when NLR was combined with other risk factors. CONCLUSIONS: NLR is an independent risk factor for CSVD and is independently associated with common imaging markers of CSVD. NLR may serve as a valid and convenient biomarker for assessing CSVD.


Cerebral Small Vessel Diseases , Neutrophils , Humans , Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Basal Ganglia , Risk Factors
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38602738

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Eye-Tracking Technology , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition
11.
J Clin Neurosci ; 123: 179-185, 2024 May.
Article En | MEDLINE | ID: mdl-38583374

BACKGROUND: Cerebral small vessel disease (CSVD) is prevalent in the population, especially among the elderly. Various types of CSVD markers commonly coexist, and the neurological function outcome is affected by their combined effect. Studies investigating the association between total CSVD burden and stroke outcomes in large vessel occlusion (LVO) stroke receiving endovascular treatment (EVT) are expanding but have not been systematically assessed. METHODS: We systematically searched the PubMed, Embase, and Cochrane databases for relevant clinical studies. The total CSVD burden score summarized the markers of CSVD, including lacunes, white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVSs), which was a comprehensive index of overall CSVD burden. The pooled odds ratios (ORs) were used to calculate the association between high total CSVD burden score and outcomes of EVT in patients with LVO stroke. The primary outcome was poor functional outcome, which was defined as a modified Rankin Scale score (mRS) ≥ 3 at 90 days after EVT. The secondary outcomes were symptomatic intracranial hemorrhage (sICH) and poor collateral flow. RESULTS: Overall, 6 eligible studies with 1,774 patients with LVO stroke undergoing EVT were pooled in meta-analysis. High overall CSVD burden score was significantly associated with increased risks of poor functional outcome at 90 days (pooled OR 2.86, 95 % CI 1.31-6.25, p = 0.008). Besides, high overall CSVD burden score was associated with sICH (pooled OR 2.07, 95 % CI 0.38-5.17; p = 0.118) and poor collateral flow (pooled OR 1.57, 95 % CI 0.75-3.27; p = 0.232), but were not statistically significant. CONCLUSIONS: High overall CSVD burden was associated with increased risks of unfavorable outcomes in patients with LVO stroke undergoing EVT.


Cerebral Small Vessel Diseases , Endovascular Procedures , Humans , Cerebral Small Vessel Diseases/epidemiology , Cerebral Small Vessel Diseases/diagnostic imaging , Endovascular Procedures/methods , Endovascular Procedures/adverse effects , Stroke/epidemiology , Stroke/etiology , Treatment Outcome
12.
Stroke ; 55(6): 1676-1679, 2024 Jun.
Article En | MEDLINE | ID: mdl-38572634

BACKGROUND: The effects of lipid-lowering drug targets on different ischemic stroke subtypes are not fully understood. We aimed to explore the mechanisms by which lipid-lowering drug targets differentially affect the risk of ischemic stroke subtypes and their underlying pathophysiology. METHODS: Using a 2-sample Mendelian randomization approach, we assessed the effects of genetically proxied low-density lipoprotein cholesterol (LDL-c) and 3 clinically approved LDL-lowering drugs (HMGCR [3-hydroxy-3-methylglutaryl-CoA reductase], PCSK9 [proprotein convertase subtilisin/kexin type 9], and NPC1L1 [Niemann-Pick C1-Like 1]) on stroke subtypes and brain imaging biomarkers associated with small vessel stroke (SVS), including white matter hyperintensity volume and perivascular spaces. RESULTS: In genome-wide Mendelian randomization analyses, lower genetically predicted LDL-c was significantly associated with a reduced risk of any stroke, ischemic stroke, and large artery stroke, supporting previous findings. Significant associations between genetically predicted LDL-c and cardioembolic stroke, SVS, and biomarkers, perivascular space and white matter hyperintensity volume, were not identified in this study. In drug-target Mendelian randomization analysis, genetically proxied reduced LDL-c through NPC1L1 inhibition was associated with lower odds of perivascular space (odds ratio per 1-mg/dL decrease, 0.79 [95% CI, 0.67-0.93]) and with lower odds of SVS (odds ratio, 0.29 [95% CI, 0.10-0.85]). CONCLUSIONS: This study provides supporting evidence of a potentially protective effect of LDL-c lowering through NPC1L1 inhibition on perivascular space and SVS risk, highlighting novel therapeutic targets for SVS.


Cerebral Small Vessel Diseases , Cholesterol, LDL , Ischemic Stroke , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Ischemic Stroke/genetics , Ischemic Stroke/diagnostic imaging , Cholesterol, LDL/blood , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Proprotein Convertase 9/genetics , Biomarkers/blood , Membrane Transport Proteins/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Brain/diagnostic imaging , Membrane Proteins/genetics , Genome-Wide Association Study , Female
13.
Clin Radiol ; 79(7): e933-e940, 2024 Jul.
Article En | MEDLINE | ID: mdl-38670919

BACKGROUND: This study aimed to establish an intelligent segmentation algorithm to count the number of deep medullary veins (DMVs) and analyze the relationship between DMVs and imaging markers of cerebral small vessel disease (CSVD). METHODS: DMVs on magnetic resonance imaging (MRI) of patients with CSVD were counted by intelligent segmentation and manual counting. The dice coefficient and intraclass correlation coefficient (ICC) were used to evaluate their consistency and correlation. Structural MR images were used to assess imaging markers and total burden of CSVD. A multivariate linear regression model was used to evaluate the correlation between the number of DMVs counted by intelligent segmentation and imaging markers of CSVD, including white matter hyperintensities of the presumed vascular origin, lacune, perivascular spaces, cerebral microbleeds, and total CSVD burden. RESULTS: A total of 305 patients with CSVD were enrolled. An intelligent segmentation algorithm was established to calculate the number of DMVs, and it was validated and tested. The number of DMVs counted intelligently significantly correlated with the manual counting method (r = 0.761, P< 0.001). The number of smart-counted DMVs negatively correlated with the imaging markers and total burden of CSVD (P< 0.001), and the correlation remained after adjusting for age and hypertension (P< 0.05). CONCLUSIONS: The proposed intelligent segmentation algorithm, which was established to count DMVs, can provide objective and quantitative imaging information for the follow-up of patients with CSVD. DMVs are involved in CSVD pathogenesis and a likely new imaging marker for CSVD.


Algorithms , Cerebral Small Vessel Diseases , Cerebral Veins , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Female , Male , Middle Aged , Magnetic Resonance Imaging/methods , Cerebral Veins/diagnostic imaging , Aged , Medulla Oblongata/diagnostic imaging , Medulla Oblongata/blood supply
14.
Comput Methods Programs Biomed ; 250: 108162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631129

BACKGROUND AND OBJECTIVES: Sensor-based wearable devices help to obtain a wide range of quantitative gait parameters, which provides sufficient data to investigate disease-specific gait patterns. Although cerebral small vessel disease (CSVD) plays a significant role in gait impairment, the specific gait pattern associated with a high burden of CSVD remains to be explored. METHODS: We analyzed the gait pattern related to high CSVD burden from 720 participants (aged 55-65 years, 42.5 % male) free of neurological disease in the Taizhou Imaging Study. All participants underwent detailed quantitative gait assessments (obtained from an insole-like wearable gait tracking device) and brain magnetic resonance imaging examinations. Thirty-three gait parameters were summarized into five gait domains. Sparse sliced inverse regression was developed to extract the gait pattern related to high CSVD burden. RESULTS: The specific gait pattern derived from several gait domains (i.e., angles, phases, variability, and spatio-temporal) was significantly associated with the CSVD burden (OR=1.250, 95 % CI: 1.011-1.546). The gait pattern indicates that people with a high CSVD burden were prone to have smaller gait angles, more stance time, more double support time, larger gait variability, and slower gait velocity. Furthermore, people with this gait pattern had a 25 % higher risk of a high CSVD burden. CONCLUSIONS: We established a more stable and disease-specific quantitative gait pattern related to high CSVD burden, which is prone to facilitate the identification of individuals with high CSVD burden among the community residents or the general population.


Cerebral Small Vessel Diseases , Gait , Wearable Electronic Devices , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Male , Middle Aged , Female , Aged , Magnetic Resonance Imaging , Gait Analysis/methods
15.
Alzheimer Dis Assoc Disord ; 38(2): 201-204, 2024.
Article En | MEDLINE | ID: mdl-38563235

We examined whether there were differences in the presence of centrum semiovale-enlarged perivascular spaces (CSO-ePVS) and basal ganglia-ePVS (BG-ePVS) among patients with Alzheimer disease-related cognitive impairment (ADCI) based on their age of onset. Out of a total of 239 patients with cognitive impairment, 155 with positive amyloid-PET results were included. Among these, 43 had early-onset ADCI (EOADCI) and 112 had late-onset ADCI (LOADCI). Patients with LOADCI exhibited a higher prevalence of hypertension, lacunes, white matter hyperintensities, and BG-ePVS than those with EOADCI. BG-ePVS showed a significant correlation with age at the onset and the number of lacunes, whereas CSO-ePVS did not exhibit any association. The higher prevalence of BG-ePVS in patients with LOADCI might be attributable to vascular risk factors (hypertension) and cerebral small vessel disease (CSVD). These findings support the hypothesis that BG-ePVS is associated with CSVD and vascular risk factors, whereas CSO-ePVS is associated with cerebral amyloid angiopathy.


Alzheimer Disease , Cognitive Dysfunction , Humans , Republic of Korea/epidemiology , Male , Female , Alzheimer Disease/epidemiology , Alzheimer Disease/pathology , Cognitive Dysfunction/epidemiology , Aged , Age of Onset , Glymphatic System/pathology , Glymphatic System/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging , Positron-Emission Tomography , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/epidemiology , Risk Factors
16.
BMC Nephrol ; 25(1): 93, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481159

BACKGROUND: Cerebral small vessel disease can be identified using magnetic resonance imaging, and includes white matter hyperintensities, lacunar infarcts, cerebral microbleeds, and brain atrophy. Cerebral small vessel disease and chronic kidney disease share many risk factors, including hypertension. This study aims to explore an association between chronic kidney disease and cerebral small vessel disease, and also to explore the role of hypertension in this relationship. METHODS: With a cross sectional study design, data from 390 older adults was retrieved from the general population study Good Aging in Skåne. Chronic kidney disease was defined as glomerular filtration rate < 60 ml/min/1,73m2. Associations between chronic kidney disease and magnetic resonance imaging markers of cerebral small vessel disease were explored using logistic regression models adjusted for age and sex. In a secondary analysis, the same calculations were performed with the study sample stratified based on hypertension status. RESULTS: In the whole group, adjusted for age and sex, chronic kidney disease was not associated with any markers of cerebral small vessel disease. After stratification by hypertension status and adjusted for age and sex, we observed that chronic kidney disease was associated with cerebral microbleeds (OR 1.93, CI 1.04-3.59, p-value 0.037), as well as with cortical atrophy (OR 2.45, CI 1.34-4.48, p-value 0.004) only in the hypertensive group. In the non-hypertensive group, no associations were observed. CONCLUSIONS: In this exploratory cross-sectional study, we observed that chronic kidney disease was associated with markers of cerebral small vessel disease only in the hypertensive subgroup of a general population of older adults. This might indicate that hypertension is an important link between chronic kidney disease and cerebral small vessel disease. Further studies investigating the relationship between CKD, CSVD, and hypertension are warranted.


Cerebral Small Vessel Diseases , Hypertension , Renal Insufficiency, Chronic , Humans , Aged , Cross-Sectional Studies , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/epidemiology , Hypertension/complications , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/complications , Magnetic Resonance Imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Atrophy
17.
Article Ru | MEDLINE | ID: mdl-38529861

OBJECTIVE: To develop individualized approaches to the use of neuromodulation as a non-pharmacological treatment of cognitive impairment (CI) based on the assessment of compensatory brain reserves in functional MRI (fMRI). MATERIAL AND METHODS: Twenty-one adults over 45 years of age, representing a continuum from healthy norm to mild cognitive impairment due to aging and early cerebral small vessel disease, were studied. All participants underwent fMRI while performing two executive tasks - a modified Stroop task and selective counting. To assess the ability to compensate for CI in real life, functional activation and connectivity were analyzed using the BRIEF-MoCA score as a covariate, which is the difference in ratings between the Behavior Rating Inventory of Executive Function (BRIEF) and the Montreal Cognitive Assessment Scale (MoCA). RESULTS: Both fMRI tasks were associated with activation of areas of the frontoparietal control network, as well as supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. An increase in pre- SMA connectivity was observed during the tasks. The BRIEF-MoCA score correlated firstly with connectivity of the left dorsolateral prefrontal cortex (DLPFC) and secondly with involvement of the occipital cortex during the counting task. CONCLUSIONS: The developed technique allows identification of the functionally relevant target within the left DLPFC in patients with CI in aging and early cerebral microangiopathy.


Cerebral Small Vessel Diseases , Cognitive Dysfunction , Motor Cortex , Adult , Humans , Brain , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/therapy , Motor Cortex/physiology , Magnetic Resonance Imaging , Aging , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/therapy
18.
Neurology ; 102(8): e209267, 2024 Apr.
Article En | MEDLINE | ID: mdl-38552192

BACKGROUND AND OBJECTIVES: Cerebral small vessel disease (cSVD) causes lacunar and hemorrhagic stroke and is an important contributor to vascular cognitive impairment. Other potential physical and psychological consequences of cSVD have been described across various body systems. Descriptions of cSVD are available in journals specific to those individual body systems, but a comprehensive assessment of clinical manifestations across this disparate literature is lacking. We conducted an overview of systematic reviews describing clinical cSVD phenotypes. METHODS: We searched multidisciplinary databases from inception to December 2023. We included reviews describing concurrent clinical phenotypes in individuals with neuroimaging evidence of cSVD, defined using the STandards for ReportIng Vascular changes on nEuroimaging criteria. We broadly classified phenotypes into cognitive, mood and neuropsychiatric, respiratory, cardiovascular, renal-urinary, peripheral nervous system, locomotor, and gastrointestinal. We included both studies assessing multiple cSVD features and studies examining individual cSVD markers. We extracted risk factor-adjusted effect estimates, where possible, and assessed methodologic quality using the Assessment of Multiple Systematic Reviews-2 tool. RESULTS: After screening 6,156 publications, we included 24 systematic reviews reporting on 685 original studies and 1,135,943 participants. Cognitive and neuropsychiatric phenotypes were examined most often, particularly in relation to white matter hyperintensities (range of risk ratios [RRs] for cognitive phenotypes 1.21-1.49, range of 95% CI 1.01-1.84; for neuropsychiatric, RR 1.02-5.71, 95% CI 0.96-19.69). Two reviews focused solely on perivascular spaces. No reviews assessed lacunes or small subcortical infarcts separately from other cSVD features. Reviews on peripheral nervous system, urinary, or gastrointestinal phenotypes were lacking. Fourteen reviews had high methodologic quality, 5 had moderate quality, and 5 had low quality. Heterogeneity in cSVD definitions and phenotypic assessments was substantial. DISCUSSION: Neuroimaging markers of cSVD are associated with various clinical manifestations, suggesting a multisystem phenotype. However, features classically associated with cSVD, for example, gait, had limited supporting evidence, and for many body systems, there were no available reviews. Similarly, while white matter hyperintensities were relatively well studied, there were limited data on phenotypes associated with other cSVD features. Future studies should characterize the full clinical spectrum of cSVD and explore clinical associations beyond neurocognitive and neuropsychiatric presentations.


Cerebral Small Vessel Diseases , Humans , Systematic Reviews as Topic , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , Neuroimaging , Risk Factors , Phenotype , Magnetic Resonance Imaging/methods
19.
Stroke ; 55(4): 1032-1040, 2024 Apr.
Article En | MEDLINE | ID: mdl-38465597

BACKGROUND: Recent studies, using diffusion tensor image analysis along the perivascular space (DTI-ALPS), suggest impaired perivascular space (PVS) function in cerebral small vessel disease, but they were cross-sectional, making inferences on causality difficult. We determined associations between impaired PVS, measured using DTI-ALPS and PVS volume, and cognition and incident dementia. METHODS: In patients with lacunar stroke and confluent white matter hyperintensities, without dementia at baseline, recruited prospectively in a single center, magnetic resonance imaging was performed annually for 3 years, and cognitive assessments, including global, memory, executive function, and processing speed, were performed annually for 5 years. We determined associations between DTI-ALPS and PVS volume with cerebral small vessel disease imaging markers (white matter hyperintensity volume, lacunes, and microbleeds) at baseline and with changes in imaging markers. We determined whether DTI-ALPS and PVS volume at baseline and change over 3 years predicted incident dementia. Analyses were controlled for conventional diffusion tensor image metrics using 2 markers (median mean diffusivity [MD] and peak width of skeletonized MD) and adjusted for age, sex, and vascular risk factors. RESULTS: A total of 120 patients, mean age 70.0 years and 65.0% male, were included. DTI-ALPS declined over 3 years, while no change in PVS volume was found. Neither DTI-ALPS nor PVS volume was associated with cerebral small vessel disease imaging marker progression. Baseline DTI-ALPS was associated with changes in global cognition (ß=0.142, P=0.032), executive function (ß=0.287, P=0.027), and long-term memory (ß=0.228, P=0.027). Higher DTI-ALPS at baseline predicted a lower risk of dementia (hazard ratio, 0.328 [0.183-0.588]; P<0.001), and this remained significant after including median MD as a covariate (hazard ratio, 0.290 [0.139-0.602]; P<0.001). Change in DTI-ALPS predicted dementia conversion (hazard ratio, 0.630 [0.428-0.964]; P=0.048), but when peak width of skeletonized MD and median MD were entered as covariates, the association was not significant. There was no association between baseline PVS volume, or PVS change over 3 years, and conversion to dementia. CONCLUSIONS: DTI-ALPS predicts future dementia risk in patients with lacunar strokes and confluent white matter hyperintensities. However, the weakening of the association between change in DTI-ALPS and incident dementia after controlling for peak width of skeletonized MD and median MD suggests part of the signal may represent conventional diffusion tensor image metrics. PVS volume is not a predictor of future dementia risk.


Cerebral Small Vessel Diseases , Cognition Disorders , Dementia , Stroke, Lacunar , White Matter , Humans , Male , Aged , Female , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/epidemiology , Cerebral Small Vessel Diseases/complications , Cognition , Cognition Disorders/etiology , Magnetic Resonance Imaging/adverse effects , Stroke, Lacunar/diagnostic imaging , Stroke, Lacunar/epidemiology , Stroke, Lacunar/complications , Dementia/diagnostic imaging , Dementia/epidemiology , Dementia/complications , White Matter/pathology
20.
Stroke ; 55(4): 934-942, 2024 Apr.
Article En | MEDLINE | ID: mdl-38527140

BACKGROUND: The importance of thromboembolism in the pathogenesis of lacunar stroke (LS), resulting from cerebral small vessel disease (cSVD), is debated, and although antiplatelets are widely used in secondary prevention after LS, there is limited trial evidence from well-subtyped patients to support this approach. We sought to evaluate whether altered anticoagulation plays a causal role in LS and cSVD using 2-sample Mendelian randomization. METHODS: From a recent genome-wide association study (n=81 190), we used 119 genetic variants associated with venous thrombosis at genome-wide significance (P<5*10-8) and with a linkage disequilibrium r2<0.001 as instrumental variables. We also used genetic associations with stroke from the GIGASTROKE consortium (62 100 ischemic stroke cases: 10 804 cardioembolic stroke, 6399 large-artery stroke, and 6811 LS). In view of the lower specificity for LS with the CT-based phenotyping mainly used in GIGASTROKE, we also used data from patients with magnetic resonance imaging-confirmed LS (n=3199). We also investigated associations with more chronic magnetic resonance imaging features of cSVD, namely, white matter hyperintensities (n=37 355) and diffusion tensor imaging metrics (n=36 533). RESULTS: Mendelian randomization analyses showed that genetic predisposition to venous thrombosis was associated with an increased odds of any ischemic stroke (odds ratio [OR], 1.19 [95% CI, 1.13-1.26]), cardioembolic stroke (OR, 1.32 [95% CI, 1.21-1.45]), and large-artery stroke (OR, 1.41 [95% CI, 1.26-1.57]) but not with LS (OR, 1.07 [95% CI, 0.99-1.17]) in GIGASTROKE. Similar results were found for magnetic resonance imaging-confirmed LS (OR, 0.94 [95% CI, 0.81-1.09]). Genetically predicted risk of venous thrombosis was not associated with imaging markers of cSVD. CONCLUSIONS: These findings suggest that altered thrombosis plays a role in the risk of cardioembolic and large-artery stroke but is not a causal risk factor for LS or imaging markers of cSVD. This raises the possibility that antithrombotic medication may be less effective in cSVD and underscores the necessity for further trials in well-subtyped cohorts with LS to evaluate the efficacy of different antithrombotic regimens in LS.


Cerebral Small Vessel Diseases , Embolic Stroke , Stroke, Lacunar , Stroke , Thrombosis , Venous Thrombosis , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , Diffusion Tensor Imaging , Embolic Stroke/complications , Fibrinolytic Agents , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke/diagnostic imaging , Stroke/genetics , Stroke/complications , Stroke, Lacunar/diagnostic imaging , Stroke, Lacunar/genetics , Stroke, Lacunar/complications , Thrombosis/complications , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics
...