Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.318
1.
Folia Med (Plovdiv) ; 66(2): 269-276, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690824

Vein of Galen malformations (VGAMs) are rare and complex congenital brain vascular anomalies that pose significant diagnostic and treatment challenges. The natural history of this type of vascular anomaly is very poor, with many patients succumbing to complications such as congestive heart failure, hydrocephalus, and brain parenchymal injury. Although the clinical course of most VGAMs was considered unfortunate, with meticulous imaging, a group of lesions with a more placid presentation and course can be identified.


Vein of Galen Malformations , Humans , Vein of Galen Malformations/diagnostic imaging , Vein of Galen Malformations/complications , Male , Female , Cerebral Veins/abnormalities , Cerebral Veins/diagnostic imaging
3.
Am J Case Rep ; 25: e943363, 2024 May 19.
Article En | MEDLINE | ID: mdl-38762752

BACKGROUND Symptoms caused by developmental venous anomalies (DVAs) are usually mild and unspecific. Despite the benign nature of DVAs, they can occasionally be symptomatic. CASE REPORT A 67-year-old woman presented with sudden diplopia and left eyelid ptosis for 10 days. A neurologic examination revealed left complete oculomotor nerve palsy. Other neurologic deficits, including eye pain or pulsatile tinnitus, were not detected. Furthermore, the visual acuity was normal. Additionally, no retinal hemorrhage, venous dilatation, or fundus tortuosity were observed. No ischemia lesions or neoplasms were observed in MRI, and no widening or enhancement of the cavernous sinus was detected in post-contrast T1-weighted images, but magnetic resonance tomography cerebral angiography (MRTA) detected an offending vessel compressing the left oculomotor nerve in the fossa interpeduncular. We hypothesized that oculomotor nerve palsy (ONP) was caused by an abnormal arterial structure. However, digital subtraction angiography (DSA) revealed no aneurysm or abnormal arterial structure in the arterial phase, while a tortuous and dilated collecting vein was detected in the venous phase, connecting the left temporal lobe to the left cavernous sinus. This indicated a typical caput medusae appearance, suggesting the mechanism of oculomotor palsy caused by compressive impairment of the DVA. The patient refused microvascular decompression surgery, and ONP persisted after 30 days. Management was conservative, with spontaneous resolution at 60 days and no recurrence during the 2-year follow-up. CONCLUSIONS ONP is rarely caused by DVAs, which are easily ignored due to their benign nature. Cerebral vein examinations are advised for patients exhibiting clinical symptoms of unknown etiology.


Oculomotor Nerve Diseases , Humans , Female , Aged , Oculomotor Nerve Diseases/etiology , Cerebral Veins/abnormalities , Cerebral Veins/diagnostic imaging , Cerebral Angiography , Angiography, Digital Subtraction , Magnetic Resonance Angiography
4.
No Shinkei Geka ; 52(3): 560-569, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783499

The cavernous sinus is the crossroad of veins from various embryological origins, including the brain, eye, pituitary gland, dura, and cranium. Embryologically, the cavernous sinus is mainly formed from the pro-otic sinus; secondary anastomosis between the cavernous sinus and primitive tentorial sinus results in various anatomical variations in the drainage patterns of the superficial middle cerebral vein. Moreover, connections between the cavernous sinus and basal vein via the uncal vein, bridging vein, and petrosal vein from the superior petrosal sinus may exist. Retrograde drainage from the cavernous sinus into the cerebral veins is often observed in arteriovenous shunts involving the cavernous sinus, such as dural and carotid-cavernous fistulas, which are primarily treated using transvenous embolization. Understanding the anatomy of the cavernous sinus and its associated veins is essential for safe and reliable endovascular treatment.


Cavernous Sinus , Humans , Cavernous Sinus/anatomy & histology , Embolization, Therapeutic , Cerebral Veins/anatomy & histology
5.
No Shinkei Geka ; 52(3): 579-586, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783501

The superior sagittal sinus(SSS)is contained within the dura, which consists of the dura propria and osteal dura at the junction of the falx cerebri, in addition to the attachment of the falx to the cranial vault. The SSS extends anteriorly from the foramen cecum and posteriorly to the torcular Herophili. The superior cerebral veins flow into the SSS, coursing under the lateral venous lacunae via bridging veins. Most of the bridging veins reach the dura and empty directly into the SSS. However, some are attached to the dural or existed in it for some distance before their sinus entrance. The venous structures of the junctional zone between the bridging vein and the SSS existed in the dura are referred to as dural venous channels. The SSS communicates with the lateral venous lacunae connecting the meningeal and diploic veins, as well as the emissary veins. These anatomical variations of the SSS are defined by the embryological processes of fusion and withdrawal of the sagittal plexus and marginal sinus.


Cerebral Veins , Cranial Sinuses , Humans , Cranial Sinuses/anatomy & histology , Cerebral Veins/anatomy & histology , Superior Sagittal Sinus/anatomy & histology , Dura Mater/anatomy & histology , Dura Mater/blood supply
7.
J Craniofac Surg ; 35(4): e391-e394, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38722329

The occipital emissary foramen (OEF) located on the occipital bone transmits the occipital emissary vein, which connects the occipital vein to the confluence of cranial venous sinuses. The OEF varies in incidence, number, size, and location. Knowledge of this foramen is essential for carrying out suboccipital and transcondylar surgeries without clinical implications. Hence, the study was planned. The aim of the present study is to elaborate on incidence, location, and morphometry consisting of the number and size of this foramen in light of clinical bearing in the context of the Indian population. The study was carried out in the Department of Anatomy using 80 skulls of unknown age and sex. The occipital bone of the skull was observed for the incidence, number, size, and location of the occipital emissary vein and associated clinical implications were elaborated. The incidence of occipital foramen was 36.25% and detected in 29 skulls. All these occipital foramina were patent. The mean diameter of this foramen was 0.6 mm. The most common location of these foramina was the left side of the foramen magnum, followed by the left side of the external occipital crest. The information about the incidence, number, size, and location of OEF is important to prevent catastrophic bleeding during surgery in the region of the occipital bone. The awareness of differential morphometry and morphology of occipital foramina is of great importance for neurosurgeons during suboccipital craniotomy and skull base surgeries, including far lateral and transcondylar approaches to access posterior cranial fossa for management of pathologies in the cranial cavity.


Cadaver , Occipital Bone , Humans , Occipital Bone/anatomy & histology , Cerebral Veins/anatomy & histology , India , Prevalence , Male , Cranial Sinuses/anatomy & histology , Foramen Magnum/anatomy & histology , Female , Anatomic Variation
8.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Article En | MEDLINE | ID: mdl-38788180

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/diagnosis , Middle Aged , Cross-Sectional Studies , Prognosis , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Disease Progression , Longitudinal Studies
9.
Comput Med Imaging Graph ; 115: 102392, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714020

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.


Angiography, Digital Subtraction , Cerebral Arteries , Cerebral Veins , Humans , Angiography, Digital Subtraction/methods , Cerebral Veins/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Angiography/methods
10.
Neurosurg Clin N Am ; 35(3): 311-318, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782524

Cerebrospinal fluid-venous fistulas (CSFVFs) were first described in 2014 and have since become an increasingly diagnosed cause of spontaneous intracranial hypotension due to increased clinical recognition and advancements in diagnostic modalities. In this review, the authors discuss CSFVF epidemiology, the variety of clinical presentations, the authors' preferred diagnostic approach, recent advancements in diagnostic methods, treatment options, current challenges, and directions of future research.


Intracranial Hypotension , Humans , Intracranial Hypotension/therapy , Intracranial Hypotension/diagnosis , Intracranial Hypotension/diagnostic imaging , Cerebral Veins/diagnostic imaging , Vascular Fistula/diagnosis , Cerebrospinal Fluid
11.
Neurosurg Clin N Am ; 35(3): 355-361, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782528

Developmental venous anomalies (DVAs) are the most common vascular malformation detected on intracranial cross-sectional imaging. They are generally benign lesions thought to drain normal parenchyma. Spontaneous hemorrhages attributed to DVAs are rare and should be ascribed to associated cerebral cavernous malformations, flow-related shunts, or venous outflow obstruction. Contrast-enhanced MRI, susceptibility-weighted imaging, and high-field MRI are ideal tools for visualizing vessel connectivity and associated lesions. DVAs are not generally considered targets for treatment. Preservation of DVAs is an established practice in the microsurgical or radiosurgical treatment of associated lesions.


Cerebral Veins , Intracranial Arteriovenous Malformations , Humans , Cerebral Veins/abnormalities , Cerebral Veins/diagnostic imaging , Cerebral Veins/surgery , Intracranial Arteriovenous Malformations/surgery , Intracranial Arteriovenous Malformations/diagnostic imaging , Magnetic Resonance Imaging/methods
12.
Neurosurg Clin N Am ; 35(3): 273-286, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782520

Comprehensive understanding of venous anatomy is a key factor in the approach to a multitude of conditions. Moreover, the venous system has become the center of attention as a new frontier for treatment of diseases such as idiopathic intracranial hypertension (IIH), arteriovenous malformation (AVM), pulsatile tinnitus, hydrocephalus, and cerebrospinal fluid (CSF) venous fistulas. Its knowledge is ever more an essential requirement of the modern brain physician. In this article, the authors explore the descriptive and functional anatomy of the venous system of the CNS in 5 subsections: embryology, dural sinuses, cortical veins, deep veins, and spinal veins.


Cerebral Veins , Humans , Cerebral Veins/anatomy & histology , Cranial Sinuses/anatomy & histology , Central Nervous System/anatomy & histology , Central Nervous System/blood supply
13.
Acta Neurochir (Wien) ; 166(1): 220, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761276

PURPOSE: To improve postoperative outcome in middle third falcine meningiomas by cortical venous preservation. BACKGROUND: Falcine meningiomas arise from the falx and do not involve the superior sagittal sinus (SSS). Their complete resection is often associated with the risk of venous infarction in the eloquent cortex due to overlying superficial cortical veins on the tumors. METHOD: We report one case of middle third falcine meningioma, where we used the posterior interhemispheric corridor for tumor approach. CONCLUSION: Use of the posterior interhemispheric approach, carefully raised bone flap, along with sharp dissection and vein reinforcement using fibrin glue can help to preserve the cortical veins while resecting the falcine meningiomas.


Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningioma/diagnostic imaging , Meningeal Neoplasms/surgery , Meningeal Neoplasms/diagnostic imaging , Cerebral Veins/surgery , Cerebral Veins/diagnostic imaging , Female , Middle Aged , Neurosurgical Procedures/methods , Cerebral Cortex/surgery , Cerebral Cortex/blood supply , Male , Treatment Outcome
14.
No Shinkei Geka ; 52(3): 570-578, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783500

The basal vein of Rosenthal, the vein of Galen, and the straight sinus are important venous communication routes connecting the deep, superficial, and dural sinuses. The basal vein is divided into three parts since it originates secondarily from three different areas and its venous areas are diverse. However, care should be taken because disconnection between these segments causes variations that change the venous flow path. Endovascular treatment warrants a proper understanding of this anatomical area and requires consideration of vascular occlusion and venous drainage changes.


Cerebral Veins , Cranial Sinuses , Humans , Cranial Sinuses/diagnostic imaging
15.
No Shinkei Geka ; 52(3): 596-604, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783503

The superior petrosal sinus and petrosal vein are important drainage routes for the posterior cranial fossa, with some variations and collateral vessels. An anterolateral-type tentorial dural arteriovenous fistula, which occurs around the petrosal vein, often develops aggressive symptoms due to venous reflux to the brainstem and cerebellum. Neuroendovascular treatment of this fistula is usually challenging because transarterial embolization has a high risk and indications for transvenous embolization are limited. In the cavernous sinus and transverse sinus/sigmoid sinus dural arteriovenous fistulas, venous reflux to the petrosal vein is dangerous, and a treatment strategy with the occlusion of the petrosal vein is indispensable. Furthermore, attention should be paid to venous approaches through the superior petrosal sinus.


Central Nervous System Vascular Malformations , Humans , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/therapy , Central Nervous System Vascular Malformations/surgery , Cranial Sinuses/diagnostic imaging , Cranial Sinuses/surgery , Cerebral Veins/diagnostic imaging , Embolization, Therapeutic/methods
16.
No Shinkei Geka ; 52(3): 605-616, 2024 May.
Article Ja | MEDLINE | ID: mdl-38783504

Veins at the craniocervical junction are complex network structures. They empty into two main brain venous drainages, the internal jugular vein and internal vertebral venous plexus, and reroute venous blood according to postural changes. They are also involved in the etiology of dural arteriovenous shunts in this region. Hence, regional venous anatomy is crucial for interventional neuroradiologists to understand the pathophysiology and formulate therapeutic strategies. This article aims to provide a summary on venous anatomy, radiological findings, and related pathological conditions, especially for young and inexperienced interventional neuroradiologists.


Cranial Sinuses , Humans , Cranial Sinuses/diagnostic imaging , Cranial Sinuses/anatomy & histology , Cerebral Veins/diagnostic imaging , Cerebral Veins/anatomy & histology
17.
J Am Heart Assoc ; 13(10): e034145, 2024 May 21.
Article En | MEDLINE | ID: mdl-38761086

BACKGROUND: This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS: This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (ß=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS: Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.


Cerebral Veins , Humans , Male , Female , Middle Aged , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Longitudinal Studies , China/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged
19.
Neuroradiology ; 66(6): 1031-1042, 2024 Jun.
Article En | MEDLINE | ID: mdl-38607438

PURPOSE: To validate a semiautomated method for segmenting vein of Galen aneurysmal malformations (VGAM) and to assess the relationship between VGAM volume and other angioarchitectural features, cardiological findings, and outcomes. METHODS: In this retrospective study, we selected all subjects with VGAM admitted to the Gaslini Children's Hospital between 2009 and 2022. Clinical data were retrieved from electronic charts. We compared 3D-Slicer segmented VGAM volumes obtained by two independent observers using phase-contrast MR venography to those obtained with manual measurements performed on T2-weighted images. The relationship between VGAM volumes and clinical and neuroimaging features was then explored. RESULTS: Forty-three subjects with VGAM (22 males, mean age 6.56 days) were included in the study. Manual and semiautomated VGAM volumes were well correlated for both readers (r = 0.86 and 0.82, respectively). Regarding reproducibility, the inter-rater interclass correlation coefficients were 0.885 for the manual method and 0.992 for the semiautomated method (p < 0.001). The standard error for repeated measures was lower for the semiautomated method (0.04 versus 0.40 of manual method). Higher VGAM volume was associated with superior sagittal sinus narrowing, jugular bulb stenosis, and aqueductal stenosis (p < 0.05). A weak correlation was found between VGAM volume and straight sinus dilatation (r = 0.331) and superior sagittal sinus index (r = - 0.325). No significant associations were found with cardiac findings, post-embolization complications, and outcome (p > 0.05). CONCLUSIONS: Semiautomated VGAM volumetry is feasible and reliable with improved reproducibility compared to the manual method. VGAM volume is not a prognostic factor for clinical outcome, but it is related to other venous findings with potential hemodynamic effects.


Magnetic Resonance Angiography , Vein of Galen Malformations , Humans , Male , Female , Retrospective Studies , Vein of Galen Malformations/diagnostic imaging , Magnetic Resonance Angiography/methods , Reproducibility of Results , Infant, Newborn , Infant , Imaging, Three-Dimensional/methods , Cerebral Veins/diagnostic imaging , Cerebral Veins/abnormalities
20.
Clin Radiol ; 79(7): e933-e940, 2024 Jul.
Article En | MEDLINE | ID: mdl-38670919

BACKGROUND: This study aimed to establish an intelligent segmentation algorithm to count the number of deep medullary veins (DMVs) and analyze the relationship between DMVs and imaging markers of cerebral small vessel disease (CSVD). METHODS: DMVs on magnetic resonance imaging (MRI) of patients with CSVD were counted by intelligent segmentation and manual counting. The dice coefficient and intraclass correlation coefficient (ICC) were used to evaluate their consistency and correlation. Structural MR images were used to assess imaging markers and total burden of CSVD. A multivariate linear regression model was used to evaluate the correlation between the number of DMVs counted by intelligent segmentation and imaging markers of CSVD, including white matter hyperintensities of the presumed vascular origin, lacune, perivascular spaces, cerebral microbleeds, and total CSVD burden. RESULTS: A total of 305 patients with CSVD were enrolled. An intelligent segmentation algorithm was established to calculate the number of DMVs, and it was validated and tested. The number of DMVs counted intelligently significantly correlated with the manual counting method (r = 0.761, P< 0.001). The number of smart-counted DMVs negatively correlated with the imaging markers and total burden of CSVD (P< 0.001), and the correlation remained after adjusting for age and hypertension (P< 0.05). CONCLUSIONS: The proposed intelligent segmentation algorithm, which was established to count DMVs, can provide objective and quantitative imaging information for the follow-up of patients with CSVD. DMVs are involved in CSVD pathogenesis and a likely new imaging marker for CSVD.


Algorithms , Cerebral Small Vessel Diseases , Cerebral Veins , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Female , Male , Middle Aged , Magnetic Resonance Imaging/methods , Cerebral Veins/diagnostic imaging , Aged , Medulla Oblongata/diagnostic imaging , Medulla Oblongata/blood supply
...