Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.350
Filter
1.
Environ Sci Technol ; 58(33): 14823-14830, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39129255

ABSTRACT

The Fukushima Daiichi Nuclear Power Plant accident released considerable radionuclides into the environment. Radioactive particles, composed mainly of SiO2, emerged as distinctive features, revealing insights into the accident's dynamics. While studies extensively focused on high-volatile radionuclides like Cs, investigations into low-volatile nuclides such as 90Sr and Pu remain limited. Understanding their abundance in radioactive particles is crucial for deciphering the accident's details, including reactor temperatures and injection processes. Here, we aimed to determine 90Sr and Pu amounts in radioactive particles and provide essential data for understanding the formation processes and conditions within the reactor during the accident. We employed radiochemical analysis on nine radioactive particles and determined the amounts of 90Sr and Pu in these particles. 90Sr and Pu quantification in radioactive particles showed that the 90Sr/137Cs radioactivity ratio (corrected to March 11, 2011) aligned with core temperature expectations. However, the 239+240Pu/137Cs activity ratio indicated nonvolatile Pu introduction, possibly through fuel fragments. Analyzing 90Sr and Pu enhances our understanding of the Fukushima Daiichi accident. Deviations in 239+240Pu/137Cs activity ratios underscore nonvolatile processes, emphasizing the accident's complexity. Future research should expand this data set for a more comprehensive understanding of the accident's nuances.


Subject(s)
Fukushima Nuclear Accident , Plutonium , Strontium Radioisotopes , Nuclear Power Plants , Radiation Monitoring , Japan , Cesium Radioisotopes
2.
Sci Total Environ ; 947: 174546, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992347

ABSTRACT

Following the Fukushima Daiichi Nuclear Power Plant disaster in March 2011, the Japanese government initiated an unprecedented decontamination programme to remediate 137Cs-contaminated soils and allow population return. This programme involved the removal of topsoil under farmland and residential land, and its replacement with "fresh soil" composed of granitic saprolite. However, decontamination was limited to these two land uses, without remediating forests, which cover 70 % of the surface area in the affected region. In this unprecedented context, the specific impact of this unique decontamination programme on 137Cs transfers in river systems remains to be quantified at the catchment scale. In this study, based on the analysis of a sediment core collected in June 2021 in the Mano Dam reservoir draining a decontaminated catchment, the effects of soil decontamination on particle-bound 137Cs dynamics and sediment source contributions in response to a succession of extreme precipitation events were retrospectively assessed. The sequence of sediment layer deposition and its chronology were reconstructed through the analysis of several diagnostic properties (organic matter, elemental geochemistry, visible colourimetry, granulometry) and contextual information. During abandonment (2011-2016), cropland contribution decreased (31 %). Concurrently, 137Cs activity and deposition flux decreased (19 and 29%year-1, respectively). Following decontamination (2017), sediment transfer increased (270 %) in response to increased contributions from decontaminated cropland and "fresh soil" (625 % and 180 % respectively). Meanwhile, forest contributions remained stable. In contrast, 137Cs activity dropped (65 %), although 137Cs deposition flux remained constant. Forests acted as a stable source of 137Cs. Accordingly, 137Cs deposition flux after decontamination (2016-2021) was similar to that observed during the 5-years period of land abandonment (2011-2016), as a result of the regrowth of spontaneous vegetation over farmland, protecting soil against erosion. Future research should further investigate the impact of longer land abandonment that prevailed in some regions decontaminated lately on the 137Cs fluxes in the rivers.


Subject(s)
Cesium Radioisotopes , Decontamination , Fukushima Nuclear Accident , Geologic Sediments , Radiation Monitoring , Rivers , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Rivers/chemistry , Decontamination/methods , Japan , Geologic Sediments/chemistry , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Farms , Retrospective Studies
3.
Radiat Prot Dosimetry ; 200(11-12): 1233-1236, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016503

ABSTRACT

The shielding of gamma radiation is of the utmost importance in industries, such as nuclear power plants, medical imaging, and space exploration. For the purpose of shielding objects in such an environment, it is essential to design materials with flexibility as well as high shielding capability. In order to enhance the radiation attenuation effectiveness of polymers, such as polyvinyl alcohol (PVA), glass has been blended with varying percentages. The fabricated composite has been subjected to gamma-ray interaction studies. The radiation shielding parameter, such as mass attenuation coefficient (µ/ρ), has been determined for various energies, such as 137Cs (661.6 keV) and 60Co (1173 and 1332 keV). It is observed that the PVA composite with glass exhibits improved gamma radiation shielding properties compared to PVA. Therefore, the present work paves the way for the utility of PVA polymer with glass, offering a cost-effective and sustainable approach to gamma radiation shielding in radiation environments.


Subject(s)
Gamma Rays , Glass , Polyvinyl Alcohol , Radiation Protection , Glass/chemistry , Radiation Protection/instrumentation , Radiation Protection/methods , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/radiation effects , Polymers/chemistry , Cesium Radioisotopes , Cobalt Radioisotopes , Radiation Dosage , Materials Testing
4.
Arh Hig Rada Toksikol ; 75(2): 155-158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38963139

ABSTRACT

The invasion of Ukraine and military operations around Ukrainian nuclear power plants and other nuclear facilities have prompted us to search for radiocaesium in mosses from the Kopacki Rit Nature Park in Croatia, since mosses are known bioindicators of airborne radioactive pollution, and Kopacki Rit is a known low radiocaesium background area. Sampling was finished in August 2023, and our analysis found no elevated radiocaesium levels. Kopacki Rit therefore remains a suitable place for future detection of anthropogenic radioactive pollutants.


Subject(s)
Cesium Radioisotopes , Radiation Monitoring , Croatia , Ukraine , Cesium Radioisotopes/analysis , Radiation Monitoring/methods , Nuclear Power Plants , Air Pollutants, Radioactive/analysis , Humans
5.
PLoS One ; 19(7): e0306531, 2024.
Article in English | MEDLINE | ID: mdl-38954696

ABSTRACT

This paper presents research on the assessment of the radioecological state of plant cover surrounding two research reactor facilities located within the Semipalatinsk Test Site (STS) as examples of nuclear fuel cycle facilities (NFC). Source data on the concentrations of artificial radionuclides in the plant cover were obtained. Quantitative values for 137Cs, 241Am, and 239+240Pu activity concentrations were determined in plants across the perimeters of the facilities, indicating that these compounds may be present in the associated media from the perspective of accumulative bioindication. The values determined for artificial radionuclides in the 'soil‒plant' system around the researched NFC facilities were attributed to radioactive contamination of the STS territory.


Subject(s)
Radiation Monitoring , Radioisotopes , Radiation Monitoring/methods , Radioisotopes/analysis , Plants/chemistry , Plants/metabolism , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Nuclear Reactors , Nuclear Power Plants
6.
Chemosphere ; 363: 142870, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019175

ABSTRACT

Retention or trapping of cesium, one of the radiologically important fission products, in the nuclear reactor becomes a great concern as the occurrence may affect radioactivity in the long term or its environmental fate. Herein the chemical compound of cesium that had been largely trapped on the nuclear reactor structural material of (calcium silicate) thermal insulator in a simulated nuclear accident condition was investigated. A combined pre- and post-water dissolution analysis through infrared (IR) spectroscopy and optical emission spectroscopy (OES) was explored to resolve the characterization difficulty encountered in conventional X-ray diffraction analysis reported in the previous works. This method allowed us to identify for the first time the related large amount of water-soluble cesium in the calcium silicate material after a high-temperature chemical reaction as cesium metasilicate (Cs2SiO3). It was evidenced by similar vibrational characteristics of the material to that in the synthesized Cs2SiO3 as well as based on the dissolved Cs and Si in the leaching water having a molar ratio of 2.16 ± 0.33. The corresponding 79-98% of the retained cesium in calcium silicate materials in the case study of 700 and 800 °C reactions was of this compound, emphasizing its significance once formed. Thermodynamic considerations further corroborated the higher stability of Cs2SiO3 in the cesium-calcium silicate reaction than other cesium silicates such as Cs2Si4O9, Cs2Si2O5, or Cs6Si2O7. This clearly poses a high environmental risk due to the volatility of cesium metasilicate as it may spread out further through the water leak path from a damaged nuclear reactor.


Subject(s)
Calcium Compounds , Cesium , Silicates , Silicates/chemistry , Calcium Compounds/chemistry , Cesium/chemistry , Cesium/analysis , X-Ray Diffraction , Cesium Radioisotopes/analysis , Cesium Radioisotopes/chemistry , Radioactive Hazard Release
7.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954122

ABSTRACT

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Subject(s)
Cesium Radioisotopes , Mining , Soil Pollutants, Radioactive , Risk Assessment , China , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Humans , Strontium Radioisotopes/analysis , Cesium/analysis , Cities , Soil/chemistry , Monte Carlo Method , Radiation Monitoring
8.
Sci Total Environ ; 949: 175109, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39074753

ABSTRACT

Glacier mice are peculiar rolling or stationary moss balls found on the surface of some glaciers. They may harbour an ecological habitat for cold-adapted invertebrates and microorganisms, but little is known about their potential to accumulate and disseminate harmful elements and substances. In this study, we investigate the presence of fallout radionuclides (137Cs, 238Pu, 239Pu, 240Pu, 210Pb) and heavy metals (Pb, As, Hg, Cd) in glacier mice and compare the results to bryophytes from adjacent glacier ecosystems. Samples were collected at Austerdalsbreen, a Norwegian outlet glacier from Jostedalsbreen ice cap. Maximum activity concentrations for bryophytes are 552 ± 12 Bq kg-1 for 137Cs, 3485 ± 138 Bq kg-1 for 210Pb, 0.0223 ± 0.065 Bq kg-1 for 238Pu and 4.34 ± 0.43 Bq kg-1 for 239+240Pu while maximum heavy metals concentrations are 70.5 mg kg-1 for Pb, 1.0 mg kg-1 for As, 1.6 mg kg-1 for Hg and 0.13 mg kg-1 for Cd. Maximum activity concentrations in cryconite are 1973.4 ± 5.0 Bq kg-1 for 137Cs, 3632 ± 593 Bq kg-1 for 210Pb, 0.51 ± 0.11 Bq kg-1 for 238Pu and 13.1 ± 1.4 Bq kg-1 for 239+240Pu and maximum heavy metal concentrations are 50.4 mg kg-1 for Pb, 3.4 mg kg-1 for As, 1.5 mg kg-1 for Hg and 0.082 mg kg-1 for Cd. We find that glacier mice show lower activity concentrations of radionuclides compared to cryoconite. The major source of plutonium isotopes is related to global fallout, whereas detected radio-cesium may be additionally affected by post-Chernobyl fallout to an unknown extent. Comparison between glacier surface and adjacent glacial habitats shows higher concentrations of heavy metals in glacier mice on the glacier ice surface and medial moraines compared to bryophytes in the glacier forefield. Glacier mice exported from a receding glacier may affect the cycling of radioactive and metal pollutants in developing proglacial ecosystems.


Subject(s)
Ice Cover , Metals, Heavy , Metals, Heavy/analysis , Norway , Ice Cover/chemistry , Animals , Environmental Monitoring , Radioactive Fallout/analysis , Bryophyta/chemistry , Radioisotopes , Cesium Radioisotopes/analysis
9.
Environ Monit Assess ; 196(8): 709, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970718

ABSTRACT

This article focuses on the study of the distribution of 137Cs in the bottom sediments of Arctic rivers of the Barents Sea basin (using the example of the Nenets Autonomous Okrug, Russian Arctic). This research is relevant due to the poorly studied region and the significant number of radiation-hazardous facilities in the Arctic zone of Russia, both those currently in operation and those that are "nuclear heritage sites". The study of 137Cs specific activity in bottom sediments was carried out in the period from 2020 to 2023 in the rivers Chizha, Nes, Vizhas, Oma, Pechora (river delta), as well as the rivers Kolva and Usa (first and second order tributaries, respectively, of the Pechora River). A total of 199 samples were collected. In addition to 137Cs specific activity, the samples were analysed for sediment particle size distribution, organic matter content, carbonate content and ash content. The 137Cs specific activity mainly ranged from the minimum detectable specific activity to 5.4 ± 0.8 Bq·kg-1. In the Nes River basin (Kaninskaya tundra), the 137Cs content in bottom sediments reached 36.0 ± 3.2 Bq·kg-1 (in the case of lake sediments) and 22.9 ± 3.7 Bq·kg-1 (in the case of river sediments), values that are higher than those of the North-West of Russia. Considering the large area of the study area (Kaninskaya tundra, Pechora river delta, southern part of Bolshezemelskaya tundra) and the similarity of physical and chemical parameters of the studied rivers, it is possible to assume the existence of a zone of increased radionuclide content in the Nes river basin. This may be due to the runoff from the Nes River catchment area, its hydrological features, and the accumulation of 137Cs in the small fractions of bottom sediments. The results confirm the conclusions of previous soil studies in the Nes river basin. The main sources of elevated 137Cs content are global atmospheric deposition and the Chernobyl Nuclear Power Plant accident.


Subject(s)
Cesium Radioisotopes , Geologic Sediments , Radiation Monitoring , Rivers , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Rivers/chemistry , Geologic Sediments/chemistry , Water Pollutants, Radioactive/analysis , Russia , Arctic Regions
10.
Mar Pollut Bull ; 205: 116610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905734

ABSTRACT

It has been found that algae have a variety of health benefits, although investigations showed that they contain radiotoxic elements, including 226Ra, 232Th, 40K, and 137Cs, which may affect human health. This study is connected to activity concentration measurements of the above radionuclides in the algae supplements available in the Middle East markets. The annual effective radiation doses of measured radionuclides in analyzed algal supplements have been calculated. The highest values of annual effective doses have been estimated for 226Ra in Ecklonia (13.39 µSv/y) and for 232Th in Red Marine Algae (11.80 µSv/y), both from South Korea. In algal "superfoods", the effective dose of 137Cs is not significantly affected by the Fukushima Nuclear Power Plant. Based on these results, it can be concluded that the activity levels of radionuclides are low, the naturally occurring radionuclides provide the most effective doses, and algae supplements can be considered safe.


Subject(s)
Radiation Monitoring , Water Pollutants, Radioactive , Risk Assessment , Water Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Cesium Radioisotopes/analysis , Radium/analysis , Thorium/analysis , Fukushima Nuclear Accident , Republic of Korea , Dietary Supplements , Potassium Radioisotopes/analysis , Food Contamination, Radioactive/analysis
11.
Environ Sci Technol ; 58(28): 12598-12608, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38904976

ABSTRACT

Understanding the transport of 137Cs emitted during the Fukushima accident is challenging because the critical emissions that produced the high-deposition area are not adequately resolved in existing source terms. This paper presents an objective inverse reconstruction of these emissions by fusing atmospheric concentrations with a-priori emissions extracted from total depositions. This extraction, previously considered impossible for complex real-world accidents, is achieved by identifying the critical temporal formation process of depositions in the high-deposition area and estimating the corresponding emissions by using an atmospheric transport model. The reconstructed source term reveals two emission peaks from 10:00-11:00 and 14:00-15:00 on March 15, which agree with the in situ pressure measurements and accident analysis, suggesting that they came from pressure drops in the primary containment vessels of Units 3 and 2, respectively. This finding explains the environmental observations of spherical 137Cs particles. The source term also objectively and independently confirms the widely used reverse estimate. The corresponding 137Cs transport simulations better match the various observations than those produced by other source terms, proving that the two-peak emission creates a high-deposition area. The proposed method outperforms the direct fusion of deposition and atmospheric concentration observations, providing a robust tool for multiobservation fusion.


Subject(s)
Air Pollutants, Radioactive , Atmosphere , Cesium Radioisotopes , Fukushima Nuclear Accident , Radiation Monitoring , Cesium Radioisotopes/analysis , Air Pollutants, Radioactive/analysis , Atmosphere/chemistry , Japan , Models, Theoretical
12.
Environ Monit Assess ; 196(7): 615, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871834

ABSTRACT

The Citarum watershed and the Saguling reservoir are vital natural resources in Indonesia, affecting the livelihood of West Java and the DKI Jakarta population. This study aimed to assess the soil erosion in the Upper Citarum watershed and identify its source. The study used the fallout radionuclide technique, geochemical tracers, and an unmixing model to measure soil erosion and the contribution of suspended sediment sources due to erosion. Soil bulk transects and surface soil were sampled using a coring tool on the Ciwidey and Cisangkuy sub-watersheds. Riverbank and suspended sediment samples were collected from tributaries and rivers. With 137Cs, 40% of the samples had values below the minimum detectable activity, and vice versa for 210Pbex, all samples are detectable. For mitigation, bare land needs to be recovered due to its erosion (25.6 t ha-1 year-1) exceeding the tolerance erosion value (17 t ha-1 year-1). Statistically, Mg and Na were the most appropriate composite tracers for suspended sediment contribution. The unmixing model predicted the sediment contributors from bare land (58%), the riverbank (32.7%), and plantation land (9.3%). Proper land conservation could reduce sediment supply by almost 14.7% and extend the reservoir's life. This is the first study to report the feasibility of the unmixing model in Indonesia.


Subject(s)
Environmental Monitoring , Rivers , Soil Erosion , Indonesia , Environmental Monitoring/methods , Rivers/chemistry , Geologic Sediments/chemistry , Soil/chemistry , Cesium Radioisotopes/analysis , Conservation of Natural Resources/methods
13.
Environ Geochem Health ; 46(7): 235, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849625

ABSTRACT

In our previous study, the decontamination efficiency of cesium-137 (137Cs) by Napier grass (Pennisetum purpureum Schum.) in the field was shown to be variable and often influenced by natural environmental factors. To elucidate the factors influencing this variable 137Cs-decontamination efficiency, we investigated the influences of soil type and drought stress on Cs accumulation using cesium-133 (133Cs) in Napier grass grown in plastic containers. The experiment was performed using two soil types (Soil A and B) and three different soil moisture conditions: well-watered control (CL), slight drought stress (SD), and moderate drought stress (MD). Overall, our results indicate that soil type and drought have a significant impact on plant growth and 133Cs accumulation in Napier grass. Plant height (PH), tiller number (TN), leaf width (Wleaf), and dry matter weight of aboveground parts (DWabove) and root parts (DWroot) in Soil B were greater than those in Soil A. Drought stress negatively affected chlorophyll fluorescence parameters (maximal quantum efficiency of photosystem (PS) II photochemistry and potential activity of PS II), PH, TN, Wleaf, DWabove, DWroot, and total 133Cs content (TCs), but it had a positive effect on 133Cs concentration. The 133Cs concentration in the aboveground parts (Csabove) was increased by MD approximately 1.62-fold in Soil A and 1.11-fold in Soil B compared to each CL counterpart. The TCs in the aboveground parts (TCsabove) decreased due to drought by approximately 19.9%-39.0% in Soil A and 49.9%-62.7% in Soil B; however, there was no significant effect on TCsabove due to soil type. The results of this study indicate that soil moisture is a key factor in maintaining Napier grass 137Cs-decontamination efficiency.


Subject(s)
Cesium Radioisotopes , Droughts , Pennisetum , Soil Pollutants, Radioactive , Cesium Radioisotopes/metabolism , Soil Pollutants, Radioactive/metabolism , Pennisetum/metabolism , Soil/chemistry
14.
Sci Total Environ ; 945: 173583, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38851332

ABSTRACT

Accidental release of radiocaesium (137Cs) from nuclear power plants may result in long-term contamination of environmental and food production systems. Assessment of food chain contamination with 137Cs relies on 137Cs soil-to-plant transfer data and models mainly available for regions affected by the Chornobyl and Fukushima accidents. Similar data and models are lacking for other regions. Such information is needed given the global expansion of nuclear energy. We collected 38 soils worldwide of contrasting parent materials and weathering stages. The soils were spiked with 137Cs and sown with ryegrass in greenhouse conditions. The 137Cs grass-soil concentration ratio varied four orders of magnitude among soils. It was highest in Ferralsols due to the low 137Cs interception potential of kaolinite clay and the low exchangeable potassium in these soils. Our results demonstrate, for the first time, the high plant uptake of 137Cs in tropical soils. The most recent 137Cs transfer model, mainly calibrated to temperate soils dominated by weathered micas, poorly predicts the underlying processes in tropical soils but, due to compensatory effect, still reasonably well predicts 137Cs bioavailability across all soils (R2 = 0.8 on a log-log scale).


Subject(s)
Cesium Radioisotopes , Radiation Monitoring , Soil Pollutants, Radioactive , Soil , Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Radioactive Hazard Release , Lolium
15.
Sci Total Environ ; 945: 174010, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880141

ABSTRACT

Approximately 70 % of the area highly 137Cs-contaminated by the Fukushima Daiichi Nuclear Power Plant accident is forested. Decontamination works in most of these forests have not progressed, and the forestry industry remains stagnant. Although the long-term dynamics of 137Cs in the forest ecosystem will be controlled by the amount of 137Cs absorbed by roots in the future, temporal changes in 137Cs of tree roots have rarely been reported. In the present study, we monitored the depth distribution of 137Cs in the soil and absorptive very fine (VF) roots of 0.5 mm or less in a Japanese cedar forest from 2011 to 2023. As a result, the 137Cs inventory in the mineral soil increased over time due to the migration from the forest canopy and litter layers, whereas that in the VF roots tended to decrease since 2020, although there was a large variation. Temporal decrease in the exchangeable 137Cs fraction with fixation and temporal increase in VF root biomass with their growth were not clearly observed, the 137Cs concentration in the VF roots at 0-2 cm decreased with the decrease in 137Cs concentration in the litter layers. Although the 137Cs concentration in the VF roots below 2 cm tended to increase with increasing 137Cs concentration in the soil at the same depth, the downward migration of 137Cs within the soil can reduce the amount of 137Cs absorbed by roots because the VF root biomass decreases exponentially with depth. In other words, 137Cs can be removed from the long-term active cycles of forest ecosystems as they migrate deeper into the soil. This natural migration process can be regarded as a "self-cleaning" of the forest ecosystem, the green and sustainable remediation using such self-cleaning should be actively adopted for the future forest management.


Subject(s)
Cesium Radioisotopes , Cryptomeria , Forests , Fukushima Nuclear Accident , Plant Roots , Radiation Monitoring , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Japan , Plant Roots/metabolism
16.
J Environ Radioact ; 277: 107466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838510

ABSTRACT

Plutonium, as well as fission products such as 137Cs, had been released into the earth environment in 1945 after the first atmospheric nuclear explosion of plutonium bomb in the desert of New Mexico (USA, July 16) and later over Nagasaki (August 9), followed then by many other explosions. Thus, plutonium cycling in the atmosphere and ocean has become a major public concern as a result of the radiological and chemical toxicity of plutonium. However, plutonium isotopes and 137Cs are important transient tracers of biogeochemical and physical processes in the environment, respectively. In this review, we show that both physical and chemical approaches are needed to comprehensively understand the behaviors of plutonium in the atmosphere and ocean. In the atmosphere, plutonium and 137Cs attach with aerosols; thus, plutonium moves according to physical and chemical processes in connection with aerosols; however, since plutonium is a chemically reactive element, its behavior in an aqueous environment is more complicated, because biogeochemical regulatory factors, in addition to geophysical regulatory factors, must be considered. Meanwhile, 137Cs is chemically inert in aqueous environments. Therefore, the biogeochemical characteristics of plutonium can be elucidated through a comparison with those of 137Cs, which show conservative properties and moves according to physical processes. Finally, we suggest that monitoring of both plutonium and 137Cs can help elucidate geophysical and biogeochemical changes from climate changes.


Subject(s)
Air Pollutants, Radioactive , Atmosphere , Plutonium , Radiation Monitoring , Plutonium/analysis , Atmosphere/chemistry , Air Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Oceans and Seas
17.
Radiat Prot Dosimetry ; 200(10): 901-918, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38855829

ABSTRACT

The aim of the study is a thorough investigation of the radioactivity level in soils of the town of Bitola (Macedonia) and its environs. Topsoil samples collected from 58 locations within a 5 × 5 km grid were analysed. Serving as a screening, gross alpha and beta activity measurements were performed using gas-flow proportional counter. Gamma-spectrometric measurements revealed the presence of three natural (40K, 226Ra, 232Th) and one artificial radionuclide (137Cs) in the samples. The activity concentrations of these radionuclides were consistent with the results of similar studies in neighbouring areas. Spatial distribution maps and factor analyses have revealed that the activity concentrations of the natural radionuclides are strongly influenced by geology and have no significant influence from human activities. A correlation of 137Cs activity concentrations with terrain elevation was also observed. The aim of the study is a thorough investigation of the radioactivity level in soils of the town of Bitola (Macedonia) and its environs. Topsoil samples collected from 58 locations within a 5 × 5 km grid were analysed. Serving as a screening, gross alpha and beta activity measurements were performed using gas-flow proportional counter. Gamma-spectrometric measurements revealed the presence of three natural (40K, 226Ra, 232Th) and one artificial radionuclide (137Cs) in the samples. The activity concentrations of these radionuclides were consistent with the results of similar studies in neighbouring areas. Spatial distribution maps and factor analyses have revealed that the activity concentrations of the natural radionuclides are strongly influenced by geology and have no significant influence from human activities. A correlation of 137Cs activity concentrations with terrain elevation was also observed.


Subject(s)
Cesium Radioisotopes , Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Spectrometry, Gamma , Soil Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Radium/analysis , Cesium Radioisotopes/analysis , Potassium Radioisotopes/analysis , Thorium/analysis , Humans , Soil/chemistry , Cities
18.
Radiat Prot Dosimetry ; 200(9): 836-841, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836581

ABSTRACT

In previous studies, some of the important factors that affect the spread of radioactive aerosols into indoors were considered. The studies were based on a new CFD approach and provided good descriptions for the deposition of aerosol particles inside small spaces and the penetration of aerosols into buildings through wall cracks. In this article, an application of those studies is implemented, where all the graphical relations that are required to estimate the indoor concentrations of radioactive aerosols from nuclear accidents are provided. This includes the deposition velocities, deposition rate, and the penetration factor. Particular interest is in the Fukushima-Daiichi nuclear power plant accident that took place in Japan in 2011. The aerosols carrying the radioiodine iodine-131 and the radiocesium cesium-134 and cesium-137 are studied. Based on the model's assumptions, and assuming steady-state air concentrations, the radioactive aerosols' concentrations in indoor air are about 97% of the concentrations in outdoor air. The applications demonstrate the model to be convenient and practical.


Subject(s)
Aerosols , Air Pollutants, Radioactive , Air Pollution, Indoor , Cesium Radioisotopes , Fukushima Nuclear Accident , Iodine Radioisotopes , Radiation Monitoring , Aerosols/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Cesium Radioisotopes/analysis , Iodine Radioisotopes/analysis , Air Pollution, Indoor/analysis , Japan , Humans , Radioactive Hazard Release
19.
Appl Radiat Isot ; 211: 111411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905969

ABSTRACT

This study evaluates the radiological risk associated with the consumption of infant powdered milk in Albania. Infant powdered milk is the basic foodstuff for their growth and development in many countries around the world. The activity concentration of radionuclides (40K, 226Ra, 232Th and 137Cs) was measured in fourteen types by using the gamma-ray technique. The results indicated that the activity concentration of 40K, 226Ra and 232Th were detected in all selected samples, whereas 137Cs were not detected in most of them. The activity concentration of 40K, 226Ra and 232Th varies from 92.83 ± 4.32 to 400.53 ± 17.00 Bq kg-1, 0.80 ± 0.15 to 4.91 ± 0.28 Bq kg-1 and 0.19 ± 0.02 to 1.89 ± 0.14 Bq kg-1, respectively. The highest value for 137Cs was found to be 0.36 ± 0.03 Bq kg-1. The average values of Annual Effective Dose (AED) due to consumption of powdered milk were found to be 664.54 ± 31.11 µSv y-1 for infants ≤1 year and 138.53 ± 5.40 µSv y-1 for infants 1-2 years. The values of dose in this study were lower than the recommended limit of 1 mSv y-1 set by WHO/FAO and ICRP for all ages. Therefore, brands of powdered milk are safe, so, these can be normally consumed by infants in Albania.


Subject(s)
Cesium Radioisotopes , Food Contamination, Radioactive , Infant Formula , Potassium Radioisotopes , Radiation Dosage , Albania , Humans , Cesium Radioisotopes/analysis , Infant , Food Contamination, Radioactive/analysis , Infant Formula/chemistry , Infant Formula/analysis , Potassium Radioisotopes/analysis , Thorium/analysis , Radium/analysis , Milk/chemistry , Animals , Radiation Monitoring/methods
20.
J Environ Radioact ; 277: 107458, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781769

ABSTRACT

The expansion of the nuclear industry has led to various radioactive effluents, originating from routine operations or catastrophic incidents such as those at Three Mile Island (USA), Chernobyl (Ukraine), and Fukushima (Japan). Research conducted after these events emphasizes Cesium-137 (137Cs) and iodine 131 (131I) as major contributors to harmful airborne dispersion and fallout. These isotopes infiltrate the human body via inhalation, ingestion, or wounds, posing significant health risks. Understanding contamination mechanisms and devising effective countermeasures are crucial in mitigating nuclear incident consequences. We propose that concurrent administration of Pru-Decorp™/Pru-Decorp-MG and potassium iodide (KI) could synergistically reduce the levels of 137Cs and block uptake of 131I, respectively, in nuclear incident scenarios. Pru-Decorp™ capsules contain insoluble ferric hexacyanoferrate(II) and are equivalent to USFDA-approved Radiogardase®-Cs, offering radiation exposure mitigation for Cs and Tl contamination. Pru-Decorp-MG capsules consist of insoluble PB and magnesium hydroxide, serving as a prophylactic measure to reduce the risk of internal Cs and Tl contamination for rescue responders. Pru-Decorp™/Pru-Decorp-MG binds Cs/Tl ions in the gastrointestinal tract, hindering absorption and promoting excretion, while KI saturates the thyroid gland with stable iodine, decreasing the uptake of radioactive iodine isotopes. Our hypothesis is supported by studies demonstrating the effectiveness of combination therapies, such as calcium alginate, iron(III) ferrocyanide, and KI, in decreasing the retention of radioisotopes in vital organs. To test this hypothesis, we propose a comprehensive research plan, including in vitro studies simulating gastrointestinal conditions, animal studies to evaluate the efficacy of both drugs simultaneously, and safety clinical trials comparing Pru-Decorp™/Pru-Decorp-MG alone, KI alone, and their combination. Expected outcomes include insights into the synergistic effects of Pru-Decorp™/Pru-Decorp-MG and KI, guiding the development of optimized treatment protocols for simultaneous administration during radioactive contamination incidents. This research aims to address significant critical gaps in nuclear incident preparedness by providing evidence-based recommendations for concurrent antidote use in scenarios involving multiple isotope contamination. Ultimately, this will enhance public health and safety during nuclear emergencies.


Subject(s)
Cesium Radioisotopes , Ferrocyanides , Iodine Radioisotopes , Potassium Iodide , Potassium Iodide/chemistry , Ferrocyanides/chemistry , Cesium Radioisotopes/analysis , Iodine Radioisotopes/analysis , Humans , Radiation Monitoring/methods , Fukushima Nuclear Accident , Radioactive Hazard Release
SELECTION OF CITATIONS
SEARCH DETAIL