Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.007
1.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Article En | MEDLINE | ID: mdl-38722298

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Charcot-Marie-Tooth Disease , Disease Models, Animal , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/therapy , Charcot-Marie-Tooth Disease/metabolism , Animals , Humans , Mutation , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Dynamics/genetics
2.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583640

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
3.
J Neuromuscul Dis ; 11(3): 625-645, 2024.
Article En | MEDLINE | ID: mdl-38578900

Background: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported. Muscular involvement was also described in CMT2E patients mostly as a secondary effect. Also, there are a few descriptions of a primary muscle vulnerability upon pathogenic NEFL variants. Objectives: To expand the current knowledge on the genetic landscape, clinical presentation and muscle involvement in NEFL-related neurological diseases by retrospective case study and literature review. Methods: We applied in-depth phenotyping of new and already reported cases, molecular genetic testing, light-, electron- and Coherent Anti-Stokes Raman Scattering-microscopic studies and proteomic profiling in addition to in silico modelling of NEFL-variants. Results: We report on a boy with a muscular phenotype (weakness, myalgia and cramps, Z-band alterations and mini-cores in some myofibers) associated with the heterozygous p.(Phe104Val) NEFL-variant, which was previously described in a neuropathy case. Skeletal muscle proteomics findings indicated affection of cytoskeletal proteins. Moreover, we report on two further neuropathic patients (16 years old girl and her father) both carrying the heterozygous p.(Pro8Ser) variant, which has been identified as 15% somatic mosaic in the father. While the daughter presented with altered neurophysiology,neurogenic clump feet and gait disturbances, the father showed clinically only feet deformities. As missense variants affecting proline at amino acid position 8 are leading to neuropathic manifestations of different severities, in silico modelling of these different amino acid substitutions indicated variable pathogenic impact correlating with disease onset. Conclusions: Our findings provide new morphological and biochemical insights into the vulnerability of denervated muscle (upon NEFL-associated neuropathy) as well as novel genetic findings expanding the current knowledge on NEFL-related neuromuscular phenotypes and their clinical manifestations. Along this line, our data show that even subtle expression of somatic NEFL variants can lead to neuromuscular symptoms.


Charcot-Marie-Tooth Disease , Neurofilament Proteins , Phenotype , Humans , Male , Neurofilament Proteins/genetics , Charcot-Marie-Tooth Disease/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Retrospective Studies , Child , Adolescent , Female , Mutation
4.
EMBO Mol Med ; 16(5): 1091-1114, 2024 May.
Article En | MEDLINE | ID: mdl-38589651

PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.


Charcot-Marie-Tooth Disease , Mutation, Missense , Animals , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Drosophila/genetics , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Disease Models, Animal , Tubulin/genetics , Tubulin/metabolism , Nuclear Proteins , Adaptor Proteins, Signal Transducing
5.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673950

Demyelinating Charcot-Marie-Tooth 4G (CMT4G) results from a recessive mutation in the 5'UTR region of the Hexokinase 1 (HK1) gene. HK participates in mitochondrial calcium homeostasis by binding to the Voltage-Dependent Anion Channel (VDAC), through its N-terminal porin-binding domain. Our hypothesis is that CMT4G mutation results in a broken interaction between mutant HK1 and VDAC, disturbing mitochondrial calcium homeostasis. We studied a cohort of 25 CMT4G patients recruited in the French gypsy population. The disease was characterized by a childhood onset, an intermediate demyelinating pattern, and a significant phenotype leading to becoming wheelchair-bound by the fifth decade of life. Co-IP and PLA studies indicated a strong decreased interaction between VDAC and HK1 in the patients' PBMCs and sural nerve. We observed that either wild-type HK1 expression or a peptide comprising the 15 aa of the N-terminal wild-type HK1 administration decreased mitochondrial calcium release in HEK293 cells. However, mutated CMT4G HK1 or the 15 aa of the mutated HK1 was unable to block mitochondrial calcium release. Taken together, these data show that the CMT4G-induced modification of the HK1 N-terminus disrupts HK1-VDAC interaction. This alters mitochondrial calcium buffering that has been shown to be critical for myelin sheath maintenance.


Calcium , Charcot-Marie-Tooth Disease , Hexokinase , Mitochondria , Voltage-Dependent Anion Channel 1 , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , 5' Untranslated Regions/genetics , Calcium/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , HEK293 Cells , Hexokinase/genetics , Hexokinase/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mutation , Protein Binding , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics
6.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608019

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Charcot-Marie-Tooth Disease , Schwann Cells , Animals , Mice , Myelin Sheath/genetics , Charcot-Marie-Tooth Disease/genetics , Mutation , Protein Processing, Post-Translational
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 443-449, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38565510

OBJECTIVE: To explore the clinical manifestations and genetic basis for a Chinese pedigree affected with atypical Charcot-Marie-Tooth disease type 1 A (CMT1A). METHODS: A patient admitted to the Department of Neurology, Xijing Hospital Affiliated to Air Force Medical University in June 2022 was selected as the study subject. Clinical data of the patient was collected, and 17 family members from four generations of this pedigree were traced based on pes arcuatus and atypical clinical symptoms. Neuroultrasound and genetic testing were carried out on available family members. Whole exome sequencing and multiple ligation-dependent probe amplification assay were carried out for the proband and some of the affected members of the pedigree. RESULTS: The proband, a 15-year-old male, had presented with paroxystic limb pain with weakness, accompanied by pes cavus and hypertrophy of gastrocnemius muscles, without stork leg sign caused by muscles atrophy in the distal lower extremities. MRI has revealed no sign of fat infiltration in the muscles of both legs. Nerve conduction examination had indicated damages of the sensory and motor nerves of the limbs, mainly with demyelinating changes. Seven members of the pedigree had pes arcuatus, including 5 presenting with paroxysmal neuropathic pain and myasthenia in the limbs, whilst 2 were without any clinical symptoms. Neurosonography of the proband, his brother, father and aunt showed thickened peripheral nerves of the extremities with unclear bundle structure. Genetic analysis revealed a large repeat encompassing exons 1 to 5 of the PMP22 gene and flanking regions (chr17: 15133768_15502298) in some of the affected members, which was predicted to be pathogenic. CONCLUSION: The duplication of PMP22 gene was considered to be pathogenic for this CMT1A pedigree.


Charcot-Marie-Tooth Disease , Male , Humans , Adolescent , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Pedigree , Myelin Proteins/genetics , Muscle, Skeletal , China , Gene Duplication
8.
Neurology ; 102(7): e209174, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38513194

BACKGROUND AND OBJECTIVES: Germline truncating variants in the DRP2 gene (encoding dystrophin-related protein 2) cause the disruption of the periaxin-DRP2-dystroglycan complex and have been linked to Charcot-Marie-Tooth disease. However, the causality and the underlying phenotype of the genetic alterations are not clearly defined. METHODS: This cross-sectional retrospective observational study includes 9 patients with Charcot-Marie-Tooth disease (CMT) with DRP2 germline variants evaluated at 6 centers throughout Spain. RESULTS: We identified 7 Spanish families with 4 different DRP2 likely pathogenic germline variants. In agreement with an X-linked inheritance, men harboring hemizygous DRP2 variants presented with an intermediate form of CMT, whereas heterozygous women were asymptomatic. Symptom onset was variable (36.6 ± 16 years), with lower limb weakness and multimodal sensory loss producing a mild-to-moderate functional impairment. Nerve echography revealed an increase in the cross-sectional area of nerve roots and proximal nerves. Lower limb muscle magnetic resonance imaging confirmed the presence of a length-dependent fatty infiltration. Immunostaining in intradermal nerve fibers demonstrated the absence of DRP2 and electron microscopy revealed abnormal myelin thickness that was also detectable in the sural nerve sections. DISCUSSION: Our findings support the causality of DRP2 pathogenic germline variants in CMT and further define the phenotype as a late-onset sensory and motor length-dependent neuropathy, with intermediate velocities and thickening of proximal nerve segments.


Charcot-Marie-Tooth Disease , Germ-Line Mutation , Female , Humans , Male , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Sheath/pathology , Peripheral Nerves/diagnostic imaging , Phenotype , Cross-Sectional Studies , Retrospective Studies , Pedigree , Young Adult , Middle Aged , Aged
9.
J Neuropathol Exp Neurol ; 83(5): 318-330, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38472136

Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.


Charcot-Marie-Tooth Disease , Genome-Wide Association Study , Animals , Mice , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Muscle Weakness , Myelin Sheath/metabolism
10.
J Neurol ; 271(6): 3546-3553, 2024 Jun.
Article En | MEDLINE | ID: mdl-38549004

BACKGROUND: Peripheral neuropathies in mitochondrial disease are caused by mutations in nuclear genes encoding mitochondrial proteins, or in the mitochondrial genome. Whole exome or genome sequencing enable parallel testing of nuclear and mtDNA genes, and it has significantly advanced the genetic diagnosis of inherited diseases. Despite this, approximately 40% of all Charcot-Marie-Tooth (CMT) cases remain undiagnosed. METHODS: The genome-phenome analysis platform (GPAP) in RD-Connect was utilised to create a cohort of 2087 patients with at least one Human Phenotype Ontology (HPO) term suggestive of a peripheral neuropathy, from a total of 10,935 patients. These patients' genetic data were then analysed and searched for variants in known mitochondrial disease genes. RESULTS: A total of 1,379 rare variants were identified, 44 of which were included in this study as either reported pathogenic or likely causative in 42 patients from 36 families. The most common genes found to be likely causative for an autosomal dominant neuropathy were GDAP1 and GARS1. We also detected heterozygous likely pathogenic variants in DNA2, MFN2, DNM2, PDHA1, SDHA, and UCHL1. Biallelic variants in SACS, SPG7, GDAP1, C12orf65, UCHL1, NDUFS6, ETFDH and DARS2 and variants in the mitochondrial DNA (mtDNA)-encoded MT-ATP6 and MT-TK were also causative for mitochondrial CMT. Only 50% of these variants were already reported as solved in GPAP. CONCLUSION: Variants in mitochondrial disease genes are frequent in patients with inherited peripheral neuropathies. Due to the clinical overlap between mitochondrial disease and CMT, agnostic exome or genome sequencing have better diagnostic yields than targeted gene panels.


Mitochondrial Diseases , Peripheral Nervous System Diseases , Humans , Male , Female , Peripheral Nervous System Diseases/genetics , Adult , Mitochondrial Diseases/genetics , Middle Aged , Aged , Young Adult , Mutation , Mitochondrial Proteins/genetics , Cohort Studies , Adolescent , Charcot-Marie-Tooth Disease/genetics
11.
Pediatr Neurol ; 154: 4-8, 2024 May.
Article En | MEDLINE | ID: mdl-38428336

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited peripheral neuropathies. Although the typical disease onset is reported in the second decade, earlier onsets are not uncommon. To date, few studies on pediatric populations have been conducted and the achievement of molecular diagnosis remains challenging. METHODS: During the last 24 years we recruited 223 patients with early-onset hereditary peripheral neuropathies (EOHPN), negative for PMP22 duplication, 72 of them referred by a specialized pediatric hospital. Genetic testing for CMT-associated genes has been carried out with a range of different techniques. RESULTS: Of the 223 EOHPN cases, 43% were classified as CMT1 (demyelinating), 49% as CMT2 (axonal), and 8% as CMTi (intermediate). Genetic diagnosis was reached in 51% of patients, but the diagnostic yield increased to 67% when focusing only on cases from the specialized pediatric neuromuscular centers. Excluding PMP22 rearrangements, no significant difference in diagnostic rate between demyelinating and axonal forms was identified. De novo mutations account for 38% of cases. CONCLUSIONS: This study describes an exhaustive picture of EOHPN in an Italian referral genetic center and analyzes the molecular diagnostic rate of a heterogeneous cohort compared with one referred by a specialized pediatric center. Our data identify MPZ, MFN2, GDAP1, and SH3TC2 genes as the most frequent players in EOHPN. Our study underlines the relevance of a specific neurological pediatric expertise to address the genetic testing and highlights its importance to clarify possible unexpected results when neuropathy is only a secondary clinical sign of a more complex phenotype.


Charcot-Marie-Tooth Disease , Humans , Child , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Genetic Testing , Phenotype , Mutation
12.
J Clin Neuromuscul Dis ; 25(3): 152-156, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38441936

ABSTRACT: Hereditary neuropathies are typically associated with an early onset of symptoms, but same types of neuropathies may also manifest late, after the age 50 years. A 62-year-old African American woman presented with a 6-year history of gait unsteadiness and has been using a walker since the age 57 years after an unwitnessed fall. Gradual worsening of walking difficulties was later followed by decreased dexterity. The family history was negative for neuromuscular disorders, including neuropathy. On examination, the patient had both distal and proximal weakness with distal sensory loss to all modalities and hyporeflexia. Charcot Marie Tooth Examination Score was 12. Previous electrodiagnostic testing at the age 60 years showed severe sensorimotor demyelinating polyneuropathy with bilateral severe carpal tunnel syndrome. Genetic testing showed a homozygous pathogenic mutation in SH3TC2 gene (c.2860C>T; p.Arg954*), associated with CMT4C. CMT4C is the most common recessive demyelinating sensorimotor polyneuropathy and overall comprises 0.4%-1.7% of all patients with Charcot-Marie-Tooth disease. It is more common in French Canadians and Spanish Roma and in recent natural history study; only 1 of 56 patients was African American. This report demonstrates sporadic occurrence of CMT4C in other ethnic groups as well.


Carpal Tunnel Syndrome , Charcot-Marie-Tooth Disease , North American People , Female , Humans , Middle Aged , Black or African American , Charcot-Marie-Tooth Disease/complications , Charcot-Marie-Tooth Disease/genetics
13.
Neurobiol Dis ; 193: 106467, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452947

Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.


Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/therapy , Charcot-Marie-Tooth Disease/metabolism , Mitochondria/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Phenotype , Mitochondrial Proteins/metabolism , Mutation
14.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Article En | MEDLINE | ID: mdl-38383802

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Arthrogryposis , Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Phosphatidylinositol 3-Kinases , Mice , Animals , Proto-Oncogene Proteins c-akt , Rodentia/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Proteins/genetics , Myelin Proteins/metabolism , TOR Serine-Threonine Kinases
15.
Article En | MEDLINE | ID: mdl-38344215

Background: Roussy-Lévy syndrome (RLS) is characterized by postural hand tremor seen in patients with familial autosomal dominant Charcot-Marie-Tooth (CMT) neuropathy. Phenomenology Shown: This video demonstrates irregular, jerky bilateral kinetic, postural, rest tremor affecting the right > left hand, along with pes cavus and gait ataxia in a patient with CMT disease. Educational Value: Pes cavus, tendon areflexia, sensory ataxia, and upper limb tremor should prompt consideration of CMT neuropathy. Highlights: This video abstract depicts a bilateral hand tremor characteristic of Roussy-Lévy syndrome seen in patients with Charcot-Marie-Tooth disease neuropathy. The significance of the abstract lies in the phenomenology and the physiology of the tremor seen in patients with genetically confirmed duplication of PMP22 gene.


Charcot-Marie-Tooth Disease , Talipes Cavus , Humans , Charcot-Marie-Tooth Disease/genetics , Tremor/etiology , Gait Ataxia/etiology , Reflex, Abnormal , Tendons
16.
J Peripher Nerv Syst ; 29(1): 97-106, 2024 Mar.
Article En | MEDLINE | ID: mdl-38375759

BACKGROUND AND AIMS: The genetic epidemiology of inherited neuropathies in children remains largely unknown. In this study, we specifically investigated the genetic profile of a Brazilian cohort of pediatric patients with pure or complex axonal neuropathies, a crucial knowledge in the near future for establishing treatment priorities and perspectives for this group of patients. METHODS: Fifty-three pediatric patients who were assessed prior to reaching the age of 20, and who had clinical diagnoses of axonal hereditary neuropathy or presented with axonal neuropathy as the primary clinical feature, were included in the study. The recruitment of these cases took place from January 1, 2018, to December 31, 2020. The diagnosis was based on clinical and electrophysiological data. A molecular assessment was made using target-gene panel or whole-exome sequencing. Subsequently, segregation analysis was performed on available family members, and all candidate variants found were confirmed through Sanger. RESULTS: A molecular diagnosis was reached in 68% of the patients (n = 36/53), considering only pathogenic and probably pathogenic variants. Variants in MFN2 (n = 15) and GJB1 (n = 3) accounted for half of the genetically confirmed patients (50%; n = 18/36). The other 18 genetically diagnosed patients had variants in several less common genes. INTERPRETATION: Apart from MFN2 and GJB1 genes, universally recognized as a frequent cause of axonal neuropathies in most studied population, our Brazilian cohort of children with axonal neuropathies showed an important genetic heterogeneity, probably reflecting the multi ethnicity of the Brazilian population. Diagnostic, counseling, and future interventions should consider this characteristic.


Charcot-Marie-Tooth Disease , Humans , Child , Charcot-Marie-Tooth Disease/genetics , Brazil/epidemiology , Mutation , Gap Junction beta-1 Protein
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167091, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403020

Mutations within immunoglobulin mu DNA binding protein (IGHMBP2), an RNA-DNA helicase, result in SMA with respiratory distress type I (SMARD1) and Charcot Marie Tooth type 2S (CMT2S). The underlying biochemical mechanism of IGHMBP2 is unknown as well as the functional significance of IGHMBP2 mutations in disease severity. Here we report the biochemical mechanisms of IGHMBP2 disease-causing mutations D565N and H924Y, and their potential impact on therapeutic strategies. The IGHMBP2-D565N mutation has been identified in SMARD1 patients, while the IGHMBP2-H924Y mutation has been identified in CMT2S patients. For the first time, we demonstrate a correlation between the altered IGHMBP2 biochemical activity associated with the D565N and H924Y mutations and disease severity and pathology in patients and our Ighmbp2 mouse models. We show that IGHMBP2 mutations that alter the association with activator of basal transcription (ABT1) impact the ATPase and helicase activities of IGHMBP2 and the association with the 47S pre-rRNA 5' external transcribed spacer. We demonstrate that the D565N mutation impairs IGHMBP2 ATPase and helicase activities consistent with disease pathology. The H924Y mutation alters IGHMBP2 activity to a lesser extent while maintaining association with ABT1. In the context of the compound heterozygous patient, we demonstrate that the total biochemical activity associated with IGHMBP2-D565N and IGHMBP2-H924Y proteins is improved over IGHMBP2-D565N alone. Importantly, we demonstrate that the efficacy of therapeutic applications may vary based on the underlying IGHMBP2 mutations and the relative biochemical activity of the mutant IGHMBP2 protein.


Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Respiratory Distress Syndrome, Newborn , Transcription Factors , Mice , Animals , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mutation , Charcot-Marie-Tooth Disease/genetics , Adenosine Triphosphatases/genetics
18.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38338934

Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.


Charcot-Marie-Tooth Disease , Neuralgia , Small Fiber Neuropathy , Female , Humans , Middle Aged , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Myelin P0 Protein/genetics , Mutation , Genetic Testing , Neuralgia/etiology , Neuralgia/genetics , Small Fiber Neuropathy/genetics
19.
Life Sci Alliance ; 7(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38320810

The cellular response to a decrease in protein degradation by 26S proteasomes in chronic diseases is poorly understood. Pharmacological inhibition of proteasomes increases the expression of proteasome subunits and Proteasome Activator 200 (PA200), an alternative proteasome activator. In the S63del mouse model of the peripheral neuropathy Charcot Marie Tooth 1B (CMT1B), proteasomal protein degradation is decreased and proteasome gene expression is increased. Here, we show an increase in PA200 and PA200-bound proteasomes in the peripheral nerves of S63del mice. To test genetically whether the upregulation of PA200 was compensatory, we generated S63del//PA200-/- mice. Unexpectedly, in the sciatic nerves of these mice, there was greater proteasomal protein degradation than in S63del, less polyubiquitinated proteins and markers of the unfolded protein response, and a greater amount of assembled, active 26S proteasomes. These changes were not seen in PA200-/- controls and were therefore specific to the neuropathy. Furthermore, in S63del//PA200-/- mice, myelin thickness and nerve conduction were restored to WT levels. Thus, the upregulation of PA200 is maladaptive in S63del mice and its genetic ablation prevented neuropathy.


Charcot-Marie-Tooth Disease , Proteasome Endopeptidase Complex , Mice , Animals , Proteasome Endopeptidase Complex/metabolism , Mice, Knockout , Charcot-Marie-Tooth Disease/genetics , Proteolysis , Cytoplasm/metabolism
20.
Clin Neurol Neurosurg ; 237: 108158, 2024 Feb.
Article En | MEDLINE | ID: mdl-38330802

Charcot-Marie-Tooth disease type 2P (CMT2P; MIM #614436) is a specific type of axonal neuropathy caused by mutations in the LRSAM1 gene, which is a RING-type E3 ubiquitin ligase. CMT2P can be inherited in two ways: as an autosomal dominant or autosomal recessive trait. In this report, we describe the clinical characteristics of a family with axonal sensory-motor neuropathy caused by a new variant of the LSRAM1 gene, which is associated with early-onset autosomal dominant CMT2P.


Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/genetics , Mutation/genetics , Phenotype , Ubiquitin-Protein Ligases/genetics
...