Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 196
1.
Oncol Res ; 32(6): 1021-1030, 2024.
Article En | MEDLINE | ID: mdl-38827321

Background: Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods: Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion: There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.


Ataxia Telangiectasia Mutated Proteins , Cisplatin , Cytidine Deaminase , Minor Histocompatibility Antigens , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Cell Line, Tumor , Male , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Middle Aged , Female , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/genetics , Apoptosis , Aged , Neoplasm Invasiveness , Cell Proliferation , Cell Survival/drug effects
2.
Bioorg Chem ; 149: 107471, 2024 Aug.
Article En | MEDLINE | ID: mdl-38823311

Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 µM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Checkpoint Kinase 1 , Checkpoint Kinase 2 , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Imidazoles , Protein Kinase Inhibitors , Humans , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Checkpoint Kinase 2/antagonists & inhibitors , Checkpoint Kinase 2/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Molecular Docking Simulation
3.
Sci Rep ; 14(1): 11788, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783016

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Antineoplastic Agents , Checkpoint Kinase 1 , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Indoles/pharmacology , Indoles/chemistry , Apoptosis/drug effects , Structure-Activity Relationship , Male , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA/metabolism , Animals , DNA Breaks, Double-Stranded/drug effects , Quaternary Ammonium Compounds , Carbolines , Indolizines
4.
Nat Commun ; 15(1): 4667, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821952

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Auranofin , Carcinoma, Non-Small-Cell Lung , Checkpoint Kinase 1 , Lung Neoplasms , Oxidation-Reduction , Thioredoxins , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Oxidation-Reduction/drug effects , Thioredoxins/metabolism , Cell Line, Tumor , Auranofin/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Drug Synergism , Animals
5.
Chem Biol Interact ; 397: 111063, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38795876

Coptisine (COP) has been shown to exhibit a wide range of anticancer properties, including in hepatocellular carcinoma (HCC). Nevertheless, the precise mechanism of COP in the treatment of HCC remains elusive. This study aims to investigate the potential mechanism of action of COP against HCC. By evaluating the anti-HCC activity of COP in different HCC cells lines and in xenografted nude mice, it was found that COP inhibited HCC in vitro and in vivo. Through RNA-Seq analysis, E2F7 was identified as a potential target of COP against HCC, as well as the cell cycle as a possible pathway. The overexpression of E2F7 and the inhibition of CHK1 demonstrated that COP inhibits the activity of HCC and induces G2/M phase arrest of HCC cells by down-regulating E2F7 and influencing the CHK1/CDC25A pathway. Finally, the promoter fragmentation experiments and chromatin immunoprecipitation revealed that COP down-regulated E2F7 by inhibiting the E2F4/NFYA/NFYB transcription factors. In conclusion, our study demonstrated that COP downregulates E2F7 by affecting key transcription factors, thereby inducing cell cycle arrest and inhibits HCC cell growth. This provides further evidence of the efficacy of COP in the treatment of tumors.


Berberine , Carcinoma, Hepatocellular , Down-Regulation , E2F4 Transcription Factor , E2F7 Transcription Factor , G2 Phase Cell Cycle Checkpoints , Liver Neoplasms , Mice, Nude , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Berberine/pharmacology , Berberine/analogs & derivatives , Animals , Down-Regulation/drug effects , Mice , E2F4 Transcription Factor/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , E2F7 Transcription Factor/metabolism , E2F7 Transcription Factor/genetics , Cell Line, Tumor , Mice, Inbred BALB C , Cell Proliferation/drug effects , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors
6.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673980

Checkpoint kinase 1 (Chk1) is a key mediator of the DNA damage response that regulates cell cycle progression, DNA damage repair, and DNA replication. Small-molecule Chk1 inhibitors sensitize cancer cells to genotoxic agents and have shown preclinical activity as single agents in cancers characterized by high levels of replication stress. However, the underlying genetic determinants of Chk1-inhibitor sensitivity remain unclear. Although treatment options for advanced colorectal cancer are limited, radiotherapy is effective. Here, we report that exposure to a novel amidine derivative, K1586, leads to an initial reduction in the proliferative potential of colorectal cancer cells. Cell cycle analysis revealed that the length of the G2/M phase increased with K1586 exposure as a result of Chk1 instability. Exposure to K1586 enhanced the degradation of Chk1 in a time- and dose-dependent manner, increasing replication stress and sensitizing colorectal cancer cells to radiation. Taken together, the results suggest that a novel amidine derivative may have potential as a radiotherapy-sensitization agent that targets Chk1.


Amidines , Checkpoint Kinase 1 , Colorectal Neoplasms , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/radiotherapy , Amidines/pharmacology , Cell Line, Tumor , Radiation, Ionizing , Radiation-Sensitizing Agents/pharmacology , DNA Replication/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Cell Cycle/drug effects
7.
Biol Chem ; 405(6): 395-406, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38452398

Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.


Antineoplastic Agents , Checkpoint Kinase 1 , Cisplatin , Prostatic Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Protein Kinase Inhibitors/pharmacology , Organoplatinum Compounds/pharmacology , Drug Screening Assays, Antitumor , Cell Line, Tumor , Dose-Response Relationship, Drug , Apoptosis/drug effects , Cell Proliferation/drug effects
8.
Clin Cancer Res ; 29(24): 5047-5056, 2023 12 15.
Article En | MEDLINE | ID: mdl-37819936

PURPOSE: Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS: Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS: Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS: No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.


Adenocarcinoma , Carcinoma, Pancreatic Ductal , Checkpoint Kinase 1 , Pancreatic Neoplasms , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Checkpoint Kinase 1/antagonists & inhibitors , Cohort Studies , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
Stem Cell Rev Rep ; 19(8): 2980-2990, 2023 11.
Article En | MEDLINE | ID: mdl-37702917

Embryonic development is a continuum in vivo. Transcriptional analysis can separate established human embryonic stem cells (hESC) into at least four distinct developmental pluripotent stages, two naïve and two primed, early and late relative to the intact epiblast. In this study we primarily show that exposure of frozen human blastocysts to an inhibitor of checkpoint kinase 1 (CHK1) upon thaw greatly enhances establishment of karyotypically normal late naïve hESC cultures. These late naïve cells are plastic and can be toggled back to early naïve and forward to early primed pluripotent stages. The early primed cells are transcriptionally equivalent to the post inner cell mass intermediate (PICMI) stage seen one day following transfer of human blastocysts into in vitro culture and are stable at an earlier stage than conventional primed hESC.


Cell Culture Techniques , Checkpoint Kinase 1 , Human Embryonic Stem Cells , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Humans , Checkpoint Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Blastocyst/cytology , Pluripotent Stem Cells/cytology
10.
Clin Cancer Res ; 28(10): 2147-2159, 2022 05 13.
Article En | MEDLINE | ID: mdl-35302600

PURPOSE: Uterine leiomyosarcoma is among the most aggressive gynecological malignancies. No effective treatment strategies have been established. This study aimed to identify novel therapeutic targets for uterine leiomyosarcoma based on transcriptome analysis and assess the preclinical efficacy of novel drug candidates. EXPERIMENTAL DESIGN: Transcriptome analysis was performed using fresh-frozen samples of six uterine leiomyosarcomas and three myomas. The Ingenuity Pathway Analysis (IPA) was used to identify potential therapeutic target genes for uterine leiomyosarcoma. Afterward, our results were validated using three independent datasets, including 40 uterine leiomyosarcomas. Then, the inhibitory effects of several selective inhibitors for the candidate genes were examined using SK-UT-1, SK-LMS-1, and SKN cell lines. RESULTS: We identified 512 considerably dysregulated genes in uterine leiomyosarcoma compared with myoma. The IPA revealed that the function of several genes, including CHEK1 and PLK1, were predicted to be activated in uterine leiomyosarcoma. Through an in vitro drug screening, PLK1 or CHEK1 inhibitors (BI-2536 or prexasertib) were found to exert a superior anticancer effect against cell lines at low nanomolar concentrations and induce cell-cycle arrest. In SK-UT-1 tumor-bearing mice, BI-2536 monotherapy remarkably suppressed tumorigenicity. Moreover, the prexasertib and cisplatin combination therapy inhibited tumor proliferation and prolonged the time to tumor progression. CONCLUSIONS: We identified upregulated expressions of PLK1 and CHEK1; their kinase activity was activated in uterine leiomyosarcoma. BI-2536 and prexasertib demonstrated a significant anticancer effect. Therefore, cell-cycle-related kinases may present a promising therapeutic strategy for the treatment of uterine leiomyosarcoma.


Cell Cycle Proteins , Checkpoint Kinase 1 , Leiomyosarcoma , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Uterine Neoplasms , Animals , Cell Cycle Checkpoints , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/genetics , Cisplatin/therapeutic use , Female , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Polo-Like Kinase 1
11.
Oncogene ; 41(14): 2106-2121, 2022 04.
Article En | MEDLINE | ID: mdl-35190641

Recurrent cytogenetic abnormalities are the main hallmark of multiple myeloma (MM) and patients having 2 or more high-risk prognostic events are associated with extremely poor outcome. 17p13(del) and 1q21(gain) are critical and independent high-risk cytogenetic markers, however, the biological significance underlying the poor outcome in MM patients having co-occurrence of both these chromosomal aberrations has never been interrogated. Herein, we identified that patients harbouring concomitant 17p13(del) with 1q21(gain) demonstrated the worst prognosis as compared to patients with single- (either 17p13(del) or 1q21(gain)) and with no chromosomal events (WT for both chromosomal loci); and they are highly enriched for genomic instability (GI) signature. We discovered that the GI feature in the patients with concomitant 17p13(del)-1q21(gain) was recapitulating the biological properties of myeloma cells with co-existing p53-deficiency and NEIL1 mRNA-hyper-editing (associated with chromosome 17p and 1q, respectively) that have inherent DNA damage response (DDR) and persistent activation of Chk1 pathway. Importantly, this became a vulnerable point for therapeutic targeting whereby the cells with this co-abnormalities demonstrated hyper-sensitivity to siRNA- and pharmacological-mediated-Chk1 inhibition, as observed at both the in vitro and in vivo levels. Mechanistically, this was attributable to the synthetic lethal relationship between p53-NEIL1-Chk1 abnormalities. The Chk1 inhibitor (AZD7762) tested showed good synergism with standard-of-care myeloma drugs, velcade and melphalan, thus further reinforcing the translational potential of this therapeutic approach. In summary, combination of NEIL1-p53 abnormalities with an ensuing Chk1 activation could serve as an Achilles heel and predispose MM cells with co-existing 1q21(gain) and 17p13(del) to therapeutic vulnerability for Chk1 inhibition.


Checkpoint Kinase 1 , DNA Glycosylases , Multiple Myeloma , Tumor Suppressor Protein p53 , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/genetics , Chromosome Aberrations , Chromosome Deletion , DNA Glycosylases/genetics , Genomic Instability , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Synthetic Lethal Mutations , Tumor Suppressor Protein p53/genetics
12.
Acta Pharmacol Sin ; 43(1): 220-228, 2022 Jan.
Article En | MEDLINE | ID: mdl-33782542

Checkpoint kinase 1 inhibitors (CHK1i) have shown impressive single-agent efficacy in treatment of certain tumors, as monotherapy or potentiators of chemotherapy in clinical trials, but the sensitive tumor types and downstream effectors to dictate the therapeutic responses to CHK1i remains unclear. In this study we first analyzed GDSC (Genomics of Drug Sensitivity in Cancer) and DepMap database and disclosed that hematologic malignancies (HMs) were relatively sensitive to CHK1i or CHK1 knockdown. This notion was confirmed by examining PY34, a new and potent in-house selective CHK1i, which exhibited potent anti-HM effect in vitro and in vivo, as single agent. We demonstrated that the downregulation of c-Myc and its signaling pathway was the common transcriptomic profiling response of sensitive HM cell lines to PY34, whereas overexpressing c-Myc could partially rescue the anticancer effect of PY34. Strikingly, we revealed the significant correlations between downregulation of c-Myc and cell sensitivity to PY34 in 17 HM cell lines and 39 patient-derived cell (PDC) samples. Thus, our results demonstrate that HMs are more sensitive to CHK1i than solid tumors, and c-Myc downregulation could represent the CHK1i efficacy in HMs.


DNA-Binding Proteins/antagonists & inhibitors , Down-Regulation/drug effects , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cells, Cultured , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/deficiency , Checkpoint Kinase 1/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119168, 2022 01.
Article En | MEDLINE | ID: mdl-34728235

The induction of DNA damage together with the interference with DNA repair represents a promising strategy in cancer treatment. Here we show that the PARP-1/2/3 inhibitor AZD2461 in combination with the CHK1 inhibitor UCN-01 altered the DNA damage response and reduced cell proliferation in PEL cells, an aggressive B cell lymphoma highly resistant to chemotherapies. AZD2461/UCN-01 combination activated p53/p21 and downregulated c-Myc in these cells, leading to a reduced expression level of RAD51, molecule involved in DNA repair. The effect of AZD2461/UCN-01 on c-Myc and p53/p21 was inter-dependent and, besides impairing cell proliferation, contributed to the activation of the replicative cycle of KSHV, carried in a latent state in PEL cells. Finally, we found that the pharmacological or genetic inhibition of p21 counteracted the viral lytic cycle activation and further reduced PEL cell proliferation, suggesting that it could induce a double beneficial effect in this setting. This study unveils that, therapeutic approaches, based on the induction of DNA damage and the reduction of DNA repair, could be used to successfully treat this malignant lymphoma.


Cell Proliferation , DNA Damage , Lymphoma, Primary Effusion/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/metabolism , Virus Replication , Cell Line , Cells, Cultured , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/metabolism , Herpesvirus 8, Human/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphoma, Primary Effusion/genetics , Lymphoma, Primary Effusion/virology , Phthalazines/pharmacology , Piperidines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/toxicity , Protein Kinase Inhibitors/toxicity , Staurosporine/analogs & derivatives , Staurosporine/pharmacology
14.
Oncogene ; 41(4): 476-488, 2022 01.
Article En | MEDLINE | ID: mdl-34773074

We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.


Checkpoint Kinase 1/antagonists & inhibitors , High-Throughput Screening Assays/methods , Receptor, IGF Type 1/metabolism , Cell Line, Tumor , Humans , Transfection
15.
Cancer Sci ; 113(2): 587-596, 2022 Feb.
Article En | MEDLINE | ID: mdl-34807483

Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. In this study, one CHK1i-sensitive neuroblastoma cell line, CHP134, was investigated, which characteristically carries MYCN amplification and a chromosome deletion within the 10q region. Among several cancer-related genes in the chromosome 10q region, mRNA expression of fibroblast growth factor receptor 2 (FGFR2) was altered in CHP134 cells and associated with an unfavorable prognosis of patients with neuroblastoma. Induced expression of FGFR2 in CHP134 cells reactivated downstream MEK/ERK signaling and resulted in cells resistant to CHK1i-mediated cell growth inhibition. Consistently, the MEK1/2 inhibitor, trametinib, potentiated CHK1 inhibitor-mediated cell death in these cells. These results suggested that FGFR2 loss might be prone to highly effective CHK1i treatment. In conclusion, extreme cellular dependency of ERK activation may imply a possible application for the MEK1/2 inhibitor, either as a single inhibitor or in combination with CHK1i in MYCN-amplified neuroblastomas.


Apoptosis/drug effects , Checkpoint Kinase 1/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/genetics , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gene Amplification , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Signaling System , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Prognosis , Pyridones/pharmacology , Pyrimidinones/pharmacology , RNA, Messenger/genetics
16.
Cell Rep ; 37(9): 110060, 2021 11 30.
Article En | MEDLINE | ID: mdl-34852220

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Carcinoma, Pancreatic Ductal/drug therapy , Checkpoint Kinase 1/antagonists & inhibitors , DNA Damage , Mutation , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Xenograft Model Antitumor Assays
17.
Biochem Biophys Res Commun ; 584: 7-14, 2021 12 20.
Article En | MEDLINE | ID: mdl-34753066

Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.


Aminohydrolases/antagonists & inhibitors , Checkpoint Kinase 1/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Administration, Oral , Aminohydrolases/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Checkpoint Kinase 1/metabolism , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Female , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multifunctional Enzymes/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
18.
J Med Chem ; 64(20): 15069-15090, 2021 10 28.
Article En | MEDLINE | ID: mdl-34665631

Checkpoint kinase 1 (CHK1) plays an important role in the DNA damage response pathway, being a potential anti-cancer drug target. In this study, we used a strategy for trifluoromethyl substitution to obtain orally bioavailable CHK1 inhibitors to overcome the limitations of lead compound 1, which can only be administered intravenously. After detailed investigation, we identified compound 6c as an oral CHK1 inhibitor, which demonstrated a considerably higher plasma exposure in mice. Compound 6c also showed good kinase selectivity. Moreover, it exhibited a significant antiproliferative effect in MV-4-11 cells singly and a synergistic effect in combination with gemcitabine in HT-29, A549, and RPMI-8226 cells. Additionally, compound 6c could inhibit tumor growth in the MV-4-11 xenograft mouse model. The combination of 6c and gemcitabine exhibited synergistic effect in the HT-29 xenograft mouse model. Thus, compound 6c was found to be a selective and oral potential anticancer CHK1 inhibitor.


Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Drug Development , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line , Cell Proliferation/drug effects , Checkpoint Kinase 1/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
19.
Nucleic Acids Res ; 49(14): 8214-8231, 2021 08 20.
Article En | MEDLINE | ID: mdl-34320214

Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells' response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.


14-3-3 Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Checkpoint Kinase 1/genetics , DNA Damage/genetics , DNA-Activated Protein Kinase/genetics , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , CRISPR-Cas Systems/genetics , Checkpoint Kinase 1/antagonists & inhibitors , Genomic Instability/genetics , Humans , Microfilament Proteins/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
...