Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107.047
Filter
1.
Anim Sci J ; 95(1): e13977, 2024.
Article in English | MEDLINE | ID: mdl-38982658

ABSTRACT

Hard meat has low market value; hence, we used bittern as a novel meat tenderizer for bovine M. semitendinosus, one of a hard muscle. We investigated the effects of beef immersion in bittern, a basic solution primarily comprising MgCl2, on textural properties and water-holding capacity. Muscle samples from M. semitendinosus of Holstein steers were immersed in seven different solutions (RO, NaCl, MgCl2, red wine, pH 3, bittern, and pH 8) and heated at 80°C for 5min. The pH of the beef and immersion solutions, water-holding capacity, and maximum load of the meat were measured. Although beef immersed in red wine (pH 3) had a lower pH and water-holding capacity, that immersed in bittern (pH 8.4) had a higher pH and higher water holding capacity. These results indicate that immersion in acidic red wine may harden beef and that immersion in basic bittern may be more effective in maintaining water-holding capacity and softening beef.


Subject(s)
Food Handling , Red Meat , Water , Wine , Animals , Cattle , Hydrogen-Ion Concentration , Wine/analysis , Food Handling/methods , Red Meat/analysis , Immersion , Food Quality , Muscle, Skeletal , Chemical Phenomena , Male , Solutions , Hot Temperature , Meat/analysis , Hardness
2.
Food Res Int ; 190: 114659, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945631

ABSTRACT

Multi-layered structure of reconstituted meat-based products from minced fish was formed by physical extrusion, followed by an investigation into the impact of extrusion strength on structural and physicochemical properties before and after frying. Under an appropriate pressure (3-9 kPa), the air within minced fish underwent enrichment and rearrangement to form a stratified phase, promoting the formation of multi-layered structure during frying. Conversely, the lower pressure (≤1.5 kPa) was insufficient for phase separation and directional rearrangement, while the higher pressure (≥15 kPa) would cause the stratified phase to flow out of food system. Moreover, by directly increasing water mobility and meat compactness, physical extrusion indirectly caused more water loss and stronger ionic bonds during frying, which was positively correlated with multi-layered structure. However, an excessive pressure caused an increase in random coil and hydrophobic interactions during frying, which was negatively correlated with multi-layered structure. In conclusion, appropriate physical extrusion strength promoted the formation of multi-layered structure.


Subject(s)
Cooking , Meat Products , Pressure , Cooking/methods , Meat Products/analysis , Animals , Food Handling/methods , Fish Products/analysis , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Fishes , Chemical Phenomena
3.
J Oleo Sci ; 73(7): 943-952, 2024.
Article in English | MEDLINE | ID: mdl-38945923

ABSTRACT

Eleven kinds of Camellia oleifera seed oils (CSOs) were evaluated in terms of chemical constituents, antioxidant activities, acid value (AV) as well as peroxide value (POV). These CSOs contained abundant ß-sitosterol, squalene, α-tocopherol and phenolics, in which the squalene was the distinct constituent with the content between 45.8±0.8 and 184.1±5.5 mg/kg. The ß-sitosterol ranging from 143.7±4.8 to 1704.6±72.0 mg/kg contributed a considerable content to total accompaniments. Palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid were present in these CSOs, in which the dominant fatty acid was oleic acid with the content between 59.66±0.72 and 82.89±2.16 g/100 g. The AV ranged from 0.1±0.0 to 1.3±0.0 mg KOH/g, and the POV was between 0.1±0.0 and 1.0±0.0 g/100 g. These CSOs showed antioxidant activity based on DPPH and ABTS radical scavenging assay. Both α-tocopherol and ß-sitosterol contents showed a positive correlation with DPPH and ABTS values, respectively, while the α-tocopherol content showed a negative correlation with AV. These results suggested that CSO can be categorized into high oleic acid vegetable oil with abundant active constituents, of which the quality presented variation among different origins. These accompaniments may contribute to the delay of its quality deterioration.


Subject(s)
Antioxidants , Camellia , Oleic Acid , Plant Oils , Seeds , Sitosterols , Squalene , alpha-Tocopherol , Camellia/chemistry , Antioxidants/analysis , Plant Oils/chemistry , Plant Oils/analysis , Sitosterols/analysis , Seeds/chemistry , Squalene/analysis , China , alpha-Tocopherol/analysis , Oleic Acid/analysis , Chemical Phenomena , Fatty Acids/analysis , Palmitic Acid/analysis , Phenols/analysis , Linoleic Acid/analysis , Peroxides/analysis
4.
J Oleo Sci ; 73(7): 921-941, 2024.
Article in English | MEDLINE | ID: mdl-38945922

ABSTRACT

This comprehensive review offers a chemical analysis of cutting fluids, delving into both their formulation and deformulation processes. The study covers a wide spectrum of cutting fluid formulations, ranging from simple compositions predominantly comprising oils, whether mineral or vegetable, to emulsions. The latter involves the integration of surfactants, encompassing both nonionic and anionic types, along with a diverse array of additives. Concerning oils, the current trend leans towards the use of vegetable oils instead of mineral oils for environmental reasons. As vegetable oils are more prone to oxidation, chemical alterations, the addition of antioxidant may be necessary. The chemical aspects of the different compounds are scrutinized, in order to understand the role of each component and its impact on the fluid's lubricating, cooling, anti-wear, and anti-corrosion properties. Furthermore, the review explores the deformulation methodologies employed to dissect cutting fluids. This process involves a two-step approach: separating the aqueous and organic phases of the emulsions by physical or chemical treatments, and subsequently conducting a detailed analysis of each to identify the compounds. Several analytical techniques, including spectrometric or chromatographic, can be employed simultaneously to reveal the chemical structures of samples. This review aims to contribute to the improvement of waste treatment stemming from cutting fluids. By gathering extensive information about the formulation, deformulation, and chemistry of the ingredients, there is a potential to enhance the waste management and disposal effectively.


Subject(s)
Emulsions , Surface-Active Agents , Emulsions/chemistry , Surface-Active Agents/chemistry , Plant Oils/chemistry , Mineral Oil/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Oxidation-Reduction , Lubrication , Lubricants/chemistry , Chemical Phenomena
5.
Int J Biol Macromol ; 272(Pt 1): 132843, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830489

ABSTRACT

The study aimed to inhibit the stimulating impact of garlic oil (GO) on the stomach and attain high release in the intestine during digestion. So, wheat porous starch (WPS) was modified with octenyl succinic acid (OSA) and malic acid (MA) to obtain esterified WPS, OWPS and MWPS, respectively. The differences in physicochemical, encapsulation, and digestive properties of two GO microcapsules, WPI/OWPS/GO and WPI/MWPS/GO microcapsules produced by using OWPS and MWPS as variant carrier materials and whey protein isolate (WPI) as the same coating agent, were compared. The results found that OWPS had greater amphiphilicity, while MWPS had better hydrophobicity and anti-digestive ability than WPS. Encapsulation efficiency of WPI/OWPS/GO (94.67 %) was significantly greater than WPI/MWPS/GO (91.44 %). The digestion inhibition and low GO release (approximately 23 %) of WPI/OWPS/GO and WPI/MWPS/GO microcapsules in the gastric phase resulted from the protective effect of WPI combined with the good adsorption and lipophilicity of OWPS and MWPS. Especially, WPI/OWPS/GO microcapsule was relatively stable in the gastric phase and had sufficient GO release (67.24 %) in the intestinal phase, which was significantly higher than WPI/MWPS/GO microcapsule (56.03 %), benefiting from the adsorption and digestive properties of OWPS, and resulting in a total cumulative GO release rate of 90.86 %.


Subject(s)
Digestion , Starch , Triticum , Whey Proteins , Whey Proteins/chemistry , Starch/chemistry , Triticum/chemistry , Porosity , Capsules , Chemical Phenomena , Plant Oils/chemistry , Hydrophobic and Hydrophilic Interactions , Drug Compounding , Garlic/chemistry
6.
Int J Biol Macromol ; 272(Pt 1): 132801, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825263

ABSTRACT

The changes of physicochemical, structural and functional properties and the lysinoalanine (LAL) formation during the unfolding and refolding of black soldier fly larvae albumin (BSFLA) induced by acid/alkaline pH shift were explored. The results showed that acid/alkaline conditions induced unfolding of BSFLA structure, but also accompanied by the formation of some large aggregates due to the hydrophobic interactions, hydrogen bonds, and disulfide bonds. Compared with control or pH1.5 shift, pH12 shift treatment significantly increased the electrostatic repulsion, surface hydrophobicity, free sulfhydryl group, and deamidation reactions, but reduced the fluorescence intensity of BSFLA, and these change in protein conformation contributed to increase in solubility, emulsion activity, and emulsion stability. But the content of LAL in BSFLA was increased by 93.39 % by pH 12 shift treatment. In addition, pH1.5 shift modified BSFLA tended to form ß-sheet structure through unfolding and refolding, resulting in the formation of aggregates with larger particle sizes, and reducing the solubility and the LAL content by 7.93 % and 65.53 %, respectively. SDS-PAGE profile showed that pH12/1.5 shifting did not cause irreversible denaturation of protein molecules. Therefore, pH12-shift is good way to improve the functional properties of BSFLA, but the content of LAL should be reduced to make it better used in food.


Subject(s)
Albumins , Diptera , Lysinoalanine , Animals , Albumins/chemistry , Chemical Phenomena , Diptera/chemistry , Diptera/growth & development , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Larva , Lysinoalanine/chemistry , Protein Refolding/drug effects , Protein Unfolding , Solubility
7.
Int J Biol Macromol ; 273(Pt 2): 132972, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876241

ABSTRACT

The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Drug Liberation , Nanoparticles , Oils, Volatile , Plant Leaves , Chitosan/chemistry , Chitosan/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Chemical Phenomena , Microbial Sensitivity Tests , Drug Carriers/chemistry , Particle Size , Nanocapsules/chemistry
8.
Int J Biol Macromol ; 273(Pt 2): 133127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876245

ABSTRACT

In this work, the metabolomics, physicochemical and in vitro digestion properties of black beans influenced by different calcium ion solutions (0, 0.5 %, 1 %, and 2 %) were explored. The addition of calcium ions had a significant effect on the metabolic processing of black beans, including 16 differential metabolites and 4 metabolic pathways related to the cell wall. From the results of FT-IR and ICP-OES, it was confirmed that calcium ions can interact with COO- in non-methylated galacturonic acid in pectin to form calcium carboxylate strengthening the middle lamellae of the cell wall. Based on this mechanism, the soaked beans with an intact and dense cell structure were verified by the analyses of SEM and CLSM. Compared with other soaked beans, BB-2 exhibited lower cell permeability with electrical conductivity value decreased to 0.60 µs·cm-1. Additionally, BB-2 demonstrated slower digestion properties with digestion rate coefficient at 0.0020 min-1 and digestion extent only at 30.83 %, which is attributed to its increasingly compact cell wall and densely cellular matrix. This study illustrates the effect of calcium ions on the cellular structure of black beans, providing an effective process method for low glycemic index diets.


Subject(s)
Calcium , Cell Wall , Metabolomics , Pectins , Pectins/pharmacology , Pectins/chemistry , Pectins/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Calcium/metabolism , Digestion/drug effects , Ions , Phaseolus/chemistry , Fabaceae/chemistry , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared
9.
Int J Biol Macromol ; 273(Pt 2): 133196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885865

ABSTRACT

Gum arabic finds extensive application and typically undergoes sterilization prior to utilization in the food industry. This study explored the impact of steam sterilization temperature and duration on the physicochemical and emulsification characteristics of gum arabic, accompanied by proposed mechanisms elucidating observed effects. The results showed that when gum arabic was treated with high temperature sterilization (110 °C âˆ¼ 140 °C), the emulsion prepared turned unstable. The interfacial tension decreased from 8.26 mN/m to 6.77 mN/m after sterilization, while the elastic modulus decreased from 23.65 mN/m to 16.16 mN/m. Moreover, the circular dichroic chromatographic results indicated that the arabinogalactan protein (AGP) structure of gum arabic was more relaxed after high temperature treatment with ß-sheets content decreased from 36.2 % to 29.8 % and random coil content increased from 41.3 % to 51.8 %. Quartz crystal microbalance with dissipation (QCM-D) results demonstrated that emulsion surface film thickness and toughness decreased after sterilization treatment of gum arabic. The study indicates that high temperature sterilization may change protein structure in gum arabic and reduce the stability of prepared emulsions.


Subject(s)
Emulsions , Gum Arabic , Steam , Gum Arabic/chemistry , Emulsions/chemistry , Chemical Phenomena , Plant Proteins/chemistry , Temperature , Mucoproteins/chemistry , Sterilization/methods , Surface Tension
10.
Int J Biol Macromol ; 273(Pt 2): 133079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942664

ABSTRACT

Proteins impact starch digestion, but the specific mechanism under heat-moisture treatment remains unclear. This study examined how proteins from various sources-white kidney bean, soybean, casein, whey-altered corn starch's structure, physicochemical properties, and digestibility during heat-moisture treatment (HMT). HMT and protein addition could significantly reduce starch's digestibility. The kidney bean protein-starch complex under HMT had the highest resistant starch at 19.74 %. Most proteins effectively inhibit α-amylase, with kidney bean being the most significantly (IC50 = 1.712 ± 0.085 mg/mL). HMT makes starch obtain a more rigid structure, limits its swelling ability, and reduces paste viscosity and amylose leaching. At the same time, proteins also improve starch's short-range order, acting as a physical barrier to digestion. Rheological and low-field NMR analyses revealed that protein enhanced the complexes' shear stability and water-binding capacity. These findings enrich the understanding of how proteins from different sources affect starch digestion under HMT, aiding the creation of nutritious, hypoglycemic foods.


Subject(s)
Digestion , Hot Temperature , Starch , Zea mays , alpha-Amylases , Starch/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Zea mays/chemistry , Viscosity , Chemical Phenomena , Water/chemistry , Plant Proteins/chemistry , Amylose/chemistry , Rheology , Whey Proteins/chemistry
11.
J Oleo Sci ; 73(6): 825-837, 2024.
Article in English | MEDLINE | ID: mdl-38825536

ABSTRACT

Hair is important to our appearance as well as to protect our heads. Human hair mainly consists of proteins (80-85%), melanin pigments (0-5%), water (10-13%), and lipids (1-6%). The physicochemical properties of hair have been studied for over 100 years. However, they are not yet thoroughly understood. In this review, recent progress and the latest findings are summarized from the following three perspectives: structural characteristics, delivery and distribution of active ingredients, and hair as a template. The structural characteristics of hair have been mainly investigated by microscopic and/or spectroscopic techniques such as atomic force microscopy integrated with infrared spectroscopy (AFM-IR) and rheological measurements. The distribution of active ingredients has been generally evaluated through techniques such as nanoscale secondary ion mass spectrometry (NanoSIMS). And finally, attempts to explore the potential of hair to be used as a substrate for flexible device fabrication will be introduced.


Subject(s)
Hair , Hair/chemistry , Humans , Microscopy, Atomic Force , Melanins , Chemical Phenomena , Spectrometry, Mass, Secondary Ion/methods , Rheology , Spectrophotometry, Infrared/methods , Lipids/analysis , Lipids/chemistry , Water , Proteins/analysis
12.
Ultrason Sonochem ; 107: 106935, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850642

ABSTRACT

Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the ß-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.


Subject(s)
Gels , Muscle Proteins , Pectinidae , Pectinidae/chemistry , Animals , Gels/chemistry , Muscle Proteins/chemistry , Ultrasonic Waves , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry
13.
Int J Biol Macromol ; 272(Pt 2): 132773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823746

ABSTRACT

The structure and physicochemical properties of the complex system of peanut protein and gluten with different concentrations (0 %, 0.5 %, 1 %, and 2 %) of carboxymethyl cellulose (CMC) or sodium alginate (SA) under high-moisture extrusion were studied. The water absorption index and low-field nuclear magnetic resonance showed that adding 0.5 % SA could significantly improve the water uniformity of peanut protein extrudates, while the increase in water absorption was not significant. The texture properties showed that adding CMC or SA increased the hardness, vertical shearing force, and parallel shearing force of the system. Furthermore, adding 0.5 % SA increased approximately 33 % and 75.2 % of the tensile distance and strength of the system, respectively. The secondary structure showed that CMC or SA decreased the proportion of α-helix, ß-turn, and random coil, while increased ß-sheet proportion. The results of hydrophobicity, unextractable protein, and endogenous fluorescence revealed that CMC and SA reduced the surface hydrophobicity of the system and caused fluorescence quenching in the system. Additionally, it was found that CMC generally increased the free sulfhydryl group content, while SA exhibited the opposite effect.


Subject(s)
Arachis , Colloids , Glutens , Plant Proteins , Polysaccharides , Triticum , Glutens/chemistry , Arachis/chemistry , Colloids/chemistry , Plant Proteins/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Triticum/chemistry , Chemical Phenomena , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Carboxymethylcellulose Sodium/chemistry , Tensile Strength , Alginates/chemistry , Alginates/pharmacology
14.
Molecules ; 29(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893498

ABSTRACT

Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.


Subject(s)
Polysaccharides , Rheology , Seeds , Starch , Tamarindus , Temperature , Tamarindus/chemistry , Polysaccharides/chemistry , Seeds/chemistry , Viscosity , Starch/chemistry , Chemical Phenomena
16.
Int J Biol Macromol ; 273(Pt 1): 133041, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857720

ABSTRACT

The effects of soluble dietary fiber (SDF) from pomegranate peel obtained through enzyme (E-SDF) and alkali (A-SDF) extractions on the structural, physicochemical properties, and in vitro digestibility of sweet potato starch (SPS) were investigated. The expansion degree of SPS granules, pasting viscosity, gel strength and hardness were decreased after adding E-SDF. The setback was accelerated in the presence of A-SDF but E-SDF delayed this effect during the cooling of the starch paste. However, the addition of A-SDF significantly reduced the breakdown of SPS and improved the freeze-thaw stability of starch gels, even at low concentrations (0.1 %), while E-SDF showed the opposite result. The structural characterization of SDF-SPS mixtures showed that A-SDF can help SPS form an enhanced microstructure compared with E-SDF, while polar groups such as hydroxyl group in E-SDF may bind to leached amylose through hydrogen bonding, leading to a decrease in SPS viscoelasticity. In addition, the results of in vitro digestion analysis indicated that A-SDF and E-SDF could decreased the digestibility of SPS and increased the content of resistant starch, especially when 0.5 % E-SDF was added. This study provides a new perspective on the application of SDF from pomegranate peel in improving starch-based foods processing and nutritional characteristics.


Subject(s)
Dietary Fiber , Ipomoea batatas , Pomegranate , Solubility , Starch , Ipomoea batatas/chemistry , Pomegranate/chemistry , Starch/chemistry , Starch/metabolism , Viscosity , Chemical Phenomena , Digestion
17.
New Phytol ; 243(1): 407-422, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750646

ABSTRACT

Strong disturbances may induce ecosystem transitions into new alternative states that sustain through plant-soil interactions, such as the transition of dwarf shrub-dominated into graminoid-dominated vegetation by herbivory in tundra. Little evidence exists on soil microbial communities in alternative states, and along the slow process of ecosystem return into the predisturbance state. We analysed vegetation, soil microbial communities and activities as well as soil physico-chemical properties in historical reindeer enclosures in northernmost Finland in the following plot types: control heaths in the surrounding tundra; graminoid-dominated; 'shifting'; and recovered dwarf shrub-dominated vegetation inside enclosures. Soil fungal communities followed changes in vegetation, whereas bacterial communities were more affected by soil physico-chemical properties. Graminoid plots were characterized by moulds, pathotrophs and dark septate endophytes. Ericoid mycorrhizal and saprotrophic fungi were typical for control and recovered plots. Soil microbial communities inside the enclosures showed historical contingency, as their spatial variation was high in recovered plots despite the vegetation being more homogeneous. Self-maintaining feedback loops between plant functional types, soil microbial communities, and carbon and nutrient mineralization act effectively to stabilize alternative vegetation states, but once predisturbance vegetation reestablishes itself, soil microbial communities and physico-chemical properties return back towards their predisturbance state.


Subject(s)
Bacteria , Fungi , Soil Microbiology , Soil , Tundra , Soil/chemistry , Fungi/physiology , Bacteria/classification , Finland , Chemical Phenomena , Plants/microbiology
18.
Int J Biol Macromol ; 272(Pt 1): 132656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810848

ABSTRACT

Our previous experiments found that rapeseed protein (RP) has applicability in low-moisture textured proteins. The amount of RP added is limited to <20 %, but the addition of 20 % RP still brings some negative effects. Therefore, in order to improve the quality of 20%RP textured protein, this experiment added different proportions of sodium tripolyphosphate (STPP) to improve the quality of the product, and studied the physical-chemical properties and molecular structure changes of the product to explore the possible modification mechanism. The STPP not only improved the expansion characteristics of extrudates, but also increased the brightness of the extrudates, the rehydration rate. In addition, STPP increased the specific mechanical energy during extrusion, decreased the material mass flow rate. Furthermore, STPP decreased the starch digestibility, increased the content of slow-digesting starch and resistant starch. STPP increased the degree of denaturation of extrudate proteins, the proportion of ß-sheets in the secondary structure of proteins, as well as the intermolecular hydrogen bonding interactions. The gelatinization degradation degree of starch molecules also decreased with the addition of STPP. STPP also increased the protein-starch interactions and enhanced the thermal stability of the extrudate. All these indicate that STPP can improve the physical-chemical properties of extrudate.


Subject(s)
Plant Proteins , Polyphosphates , Soybean Proteins , Soybean Proteins/chemistry , Plant Proteins/chemistry , Polyphosphates/chemistry , Brassica rapa/chemistry , Chemical Phenomena , Starch/chemistry , Water/chemistry , Hydrogen Bonding
19.
Int J Biol Macromol ; 269(Pt 2): 132214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729489

ABSTRACT

Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.


Subject(s)
Dietary Fiber , Structure-Activity Relationship , Chemical Phenomena , Antioxidants/chemistry , Antioxidants/pharmacology , Humans
20.
Int J Biol Macromol ; 271(Pt 1): 132549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782331

ABSTRACT

Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.


Subject(s)
Nanofibers , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Animals , Nanofibers/chemistry , Hydrogen-Ion Concentration , Cattle , Emulsions/chemistry , Chemical Phenomena , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...