Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
1.
Curr Protoc ; 4(8): e1117, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39126326

ABSTRACT

Acute liver injury is a life-threatening disease. Although immune responses are involved in the development and exacerbation of acute liver injury, the cellular and molecular mechanisms are not fully understood. Intravenous administration of the plant lectin concanavalin A (ConA) is widely used as a model of acute liver injury. ConA triggers T cell activation and cytokine production by crosslinking glycoproteins, including the T cell receptor, leading to the infiltration of myeloid cells into the liver and the subsequent amplification of inflammation in the liver. Thus, the pathogenesis of ConA-induced acute liver injury is considered a model of immune-mediated acute liver injury or autoimmune hepatitis in humans. However, the severity of the liver injury and the analyses of immune cells and non-hematopoietic cells in the liver following ConA injection are significantly influenced by the experimental conditions. This article outlines protocols for ConA-induced acute liver injury in mice and evaluation methods for liver injury, immune cells, and non-hematopoietic cells in the liver. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Induction of acute liver injury by ConA injection Basic Protocol 2: Evaluation of inflammatory cytokines in mouse plasma Basic Protocol 3: Preparation of liver sections and histological analysis of liver injury Basic Protocol 4: Preparation of liver immune cells Basic Protocol 5: Preparation of hepatocytes, endothelial cells, and hepatic stellate cells Basic Protocol 6: Flow cytometry of immune and non-hematopoietic liver cells Basic Protocol 7: Flow cytometric sorting of endothelial cells and hepatic stellate cells Basic Protocol 8: Quantitative reverse transcription polymerase chain reaction.


Subject(s)
Chemical and Drug Induced Liver Injury , Concanavalin A , Liver , Concanavalin A/toxicity , Animals , Mice , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Liver/pathology , Liver/drug effects , Liver/injuries , Liver/metabolism , Cytokines/metabolism , Disease Models, Animal
2.
Hepatol Commun ; 8(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39185906

ABSTRACT

BACKGROUND: The clinical features, liver histology, and genetic variants in 57 patients with moderate to severe immune-mediated liver injury from checkpoint inhibitors (ILICI) are presented. METHODS: Between 2010 and 2022, 57 high-causality ILICI cases were enrolled in the Drug-Induced Liver Injury Network. HLA and selected candidate gene variants were tested for association with ILICI risk compared to the general population and other DILI controls. RESULTS: The 57 high-causality cases were attributed to pembrolizumab (16), ipilimumab (15), ipilimumab and nivolumab (13), and other immune checkpoint inhibitors (13) and occurred at a median of 72 days after the first infusion. Median age was 57.8 years, 66% male, and 89% were non-Hispanic Whites. At DILI onset, 53% had hepatocellular, 35% mixed, and 15% cholestatic, with younger patients more likely to have hepatocellular injury. The incidence of ANA, smooth muscle antibody, and elevated IgG levels was low (17%, 23%, and 0%), but corticosteroids were given to 86%. Microgranulomas and hepatic steatosis were seen in 54% and 46% of the 26 liver biopsies, respectively. The HLA alleles associated with autoimmune hepatitis were not over-represented, but 2 host immune response genes (EDIL3 and SAMA5A) and 3 other genes (GABRP, SMAD3, and SLCO1B1) were associated with ILICI (OR: 2.08-2.4, p<0.01). CONCLUSIONS: ILICI typically arises within 12 weeks of initiating immunotherapy and is self-limited in most cases. Genetic variants involved in host T-cell regulation and drug disposition were identified, implicating these pathways in the pathogenesis of ILICI. If validated, these findings could lead to improved diagnostic instruments and possible treatments for ILICI.


Subject(s)
Chemical and Drug Induced Liver Injury , Immune Checkpoint Inhibitors , Humans , Male , Middle Aged , Female , Immune Checkpoint Inhibitors/adverse effects , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/etiology , Aged , Adult , Genetic Variation , Ipilimumab/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Nivolumab/adverse effects , Nivolumab/therapeutic use
3.
Int Immunopharmacol ; 140: 112895, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39133957

ABSTRACT

OBJECTIVE: This study explores the therapeutic effects and mechanisms of DHA-enriched phosphatidylserine (DHA-PS) on liver injury induced by cyclophosphamide (CTX) in mice, focusing on the gut-liver axis. METHODS: A mouse model was established by administering CTX (80 mg/kg) intraperitoneally for 5 days. DHA-PS (50 or 100 mg/kg) was administered for the next 7 days to assess its reparative impact on liver damage. RESULTS: The findings revealed significant improvements in liver biochemical indices, inflammatory markers, and oxidative stress levels in the mice treated with DHA-PS. Through non-targeted metabolomics analysis, DHA-PS mitigated CTX-induced metabolic disruptions by modulating lipid, amino acid, and pyrimidine metabolism. Immunofluorescence analysis further confirmed that DHA-PS reduced the expression of liver-associated inflammatory proteins by inhibiting the TLR4/NF-κB pathway. Additionally, DHA-PS restored the intestinal barrier, evidenced by adjustments in the levels of intestinal lipopolysaccharide (LPS), secretory immunoglobulin A (sIgA), and tight junction proteins (Claudin-1, Occludin, and ZO-1). It also improved gut microbiota balance by enhancing microbial diversity, increasing beneficial bacteria, and altering community structures. CONCLUSION: These results suggest that DHA-PS could be a potential therapeutic agent or functional food for CTX-induced liver injury through its regulation of the gut-liver axis.


Subject(s)
Chemical and Drug Induced Liver Injury , Cyclophosphamide , Gastrointestinal Microbiome , Liver , Phosphatidylserines , Animals , Cyclophosphamide/adverse effects , Phosphatidylserines/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Liver/drug effects , Liver/metabolism , Liver/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/prevention & control , Male , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Disease Models, Animal
4.
Int Immunopharmacol ; 141: 112926, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39159559

ABSTRACT

The inflammatory response is a significant factor in acetaminophen (APAP)-induced acute liver injury. And it can be mediated by macrophages of different origins. However, whether Kupffer cells and mononuclear-derived macrophages play an injury or protective role in APAP hepatotoxicity is still unclear. In this study, C57/BL6N mice were performed to establish the APAP acute liver injury model. Intervention experiments were also carried out using clodronate liposomes or TREM2 knockout. We found that APAP overdose triggered the activation of inflammatory factors and enhanced the expression of the RIPK1-MLKL pathway in mice's livers. Moreover, our study showed that inflammation-related protein expression was increased after clodronate liposome administration or TREM2 knockout. The RIPK1-MLKL-mediated necroptosis was also significantly activated after the elimination of Kupffer cells or the inhibition of mononuclear-derived macrophages. More importantly, clodronate liposomes treatment and TREM2 deficiency all worsen APAP-induced liver damage in mice. In conclusion, the results indicate that Kupffer cells and mononuclear macrophages play a protective role in APAP-induced liver injury by regulating necroptosis. Therefore, macrophages hold as a potential therapeutic target for APAP-induced liver damage.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Kupffer Cells , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Knockout , Receptors, Immunologic , Animals , Kupffer Cells/metabolism , Kupffer Cells/immunology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice , Macrophages/immunology , Macrophages/metabolism , Male , Clodronic Acid/pharmacology , Liver/pathology , Liver/metabolism , Liver/immunology , Liver/drug effects , Necroptosis , Liposomes , Disease Models, Animal , Protein Kinases/metabolism , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
5.
J Ethnopharmacol ; 334: 118523, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38969149

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY: To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS: Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS: Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION: The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Emodin , Fallopia multiflora , Animals , Humans , Male , Mice , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/genetics , Emodin/pharmacology , Fallopia multiflora/chemistry , Granzymes/metabolism , Granzymes/genetics , HLA-B35 Antigen , Interferon-gamma/metabolism , Liver/drug effects , Liver/pathology , Liver/immunology , Liver/metabolism , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Front Immunol ; 15: 1371446, 2024.
Article in English | MEDLINE | ID: mdl-38994365

ABSTRACT

Background: Acetaminophen (APAP) is commonly used as an antipyretic analgesic. However, acetaminophen overdose may contribute to liver injury and even liver failure. Acetaminophen-induced liver injury (AILI) is closely related to mitochondrial oxidative stress and dysfunction, which play critical roles in cuproptosis. Here, we explored the potential role of cuproptosis-related genes (CRGs) in AILI. Methods: The gene expression profiles were obtained from the Gene Expression Omnibus database. The differential expression of CRGs was determined between the AILI and control samples. Protein protein interaction, correlation, and functional enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was evaluated. The AILI mouse model was established by intraperitoneal injection of APAP solution. Quantitative real-time PCR and western blotting were used to validate hub gene expression in the AILI mouse model. The copper content in the mouse liver samples and AML12 cells were quantified using a colorimetric assay kit. Ammonium tetrathiomolybdate (ATTM), was administered to mouse models and AML12 cells in order to investigate the effects of copper chelator on AILI. Results: The analysis identified 7,809 differentially expressed genes, 4,245 of which were downregulated and 3,564 of which were upregulated. Four optimal feature genes (OFGs; SDHB, PDHA1, NDUFB2, and NDUFB6) were identified through the intersection of two machine learning algorithms. Further nomogram, decision curve, and calibration curve analyses confirmed the diagnostic predictive efficacy of the four OFGs. Enrichment analysis indicated that the OFGs were involved in multiple pathways, such as IL-17 pathway and chemokine signaling pathway, that are related to AILI progression. Immune infiltration analysis revealed that macrophages were more abundant in AILI than in control samples, whereas eosinophils and endothelial cells were less abundant. Subsequently, the AILI mouse model was successfully established, and histopathological analysis using hematoxylin-eosin staining along with liver function tests revealed a significant induction of liver injury in the APAP group. Consistent with expectations, both mRNA and protein levels of the four OFGs exhibited a substantial decrease. The administration of ATTAM effectively mitigates copper elevation induced by APAP in both mouse model and AML12 cells. However, systemic administration of ATTM did not significantly alleviate AILI in the mouse model. Conclusion: This study first revealed the potential role of CRGs in the pathological process of AILI and offered novel insights into its underlying pathogenesis.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Computational Biology , Machine Learning , Acetaminophen/adverse effects , Acetaminophen/toxicity , Animals , Mice , Computational Biology/methods , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/immunology , Copper , Disease Models, Animal , Male , Mice, Inbred C57BL , Gene Expression Profiling , Transcriptome , Liver/metabolism , Liver/drug effects , Liver/pathology , Protein Interaction Maps
7.
Hepatol Commun ; 8(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38896080

ABSTRACT

BACKGROUND: Neutrophils are key mediators of inflammation during acute liver injury (ALI). Emerging evidence suggests that they also contribute to injury resolution and tissue repair. However, the different neutrophil subsets involved in these processes and their kinetics are undefined. Herein, we characterized neutrophil kinetics and heterogeneity during ALI. METHODS: We used the carbon tetrachloride model of ALI and employed flow cytometry, tissue imaging, and quantitative RT-PCR to characterize intrahepatic neutrophils during the necroinflammatory early and late repair phases of the wound healing response to ALI. We FACS sorted intrahepatic neutrophils at key time points and examined their transcriptional profiles using RNA-sequencing. Finally, we evaluated neutrophil protein translation, mitochondrial function and metabolism, reactive oxygen species content, and neutrophil extracellular traps generation. RESULTS: We detected 2 temporarily distinct waves of neutrophils during (1) necroinflammation (at 24 hours after injury) and (2) late repair (at 72 hours). Early neutrophils were proinflammatory, characterized by: (1) upregulation of inflammatory cytokines, (2) activation of the noncanonical NF-κB pathway, (3) reduction of protein translation, (4) decreased oxidative phosphorylation, and (5) higher propensity to generate reactive oxygen species and neutrophil extracellular traps. In contrast, late neutrophils were prorepair and enriched in genes and pathways associated with tissue repair and angiogenesis. Finally, early proinflammatory neutrophils were characterized by the expression of a short isoform of C-X-C chemokine receptor 5, while the late prorepair neutrophils were characterized by the expression of C-X-C chemokine receptor 4. CONCLUSIONS: This study underscores the phenotypic and functional heterogeneity of neutrophils and their dual role in inflammation and tissue repair during ALI.


Subject(s)
Neutrophils , Animals , Neutrophils/immunology , Neutrophils/metabolism , Mice , Disease Models, Animal , Mice, Inbred C57BL , Male , Reactive Oxygen Species/metabolism , Liver/pathology , Liver/immunology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/genetics , Cytokines/metabolism , Extracellular Traps/metabolism
8.
Cell Mol Gastroenterol Hepatol ; 18(3): 101367, 2024.
Article in English | MEDLINE | ID: mdl-38849082

ABSTRACT

BACKGROUND & AIMS: Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS: Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS: Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS: During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.


Subject(s)
Dendritic Cells , Interferon-gamma , Interleukins , Mice, Knockout , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Interferon-gamma/metabolism , Interleukins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Th1 Cells/immunology , STAT3 Transcription Factor/metabolism , Concanavalin A/pharmacology , Signal Transduction , Liver/pathology , Liver/immunology , Liver/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Male
10.
Int Immunopharmacol ; 138: 112513, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38917520

ABSTRACT

In specific pathological conditions, addressing liver injury may yield favorable effects on renal function through the phenomenon of liver-kidney crosstalk. Mitochondrial DNA (mtDNA) possesses the capability to trigger downstream pathways of inflammatory cytokines, ultimately leading to immune-mediated organ damage. Consequently, understanding the intricate molecular mechanisms governing mtDNA involvement in diseases characterized by liver-kidney crosstalk is of paramount significance. This study seeks to elucidate the role of mtDNA in conditions marked by liver-kidney crosstalk. In previous clinical cases, it has been observed that patients with Trichloroethylene Hypersensitivity Syndrome (TCE-HS) who experience severe liver injury often also exhibit renal injury. In this study, patients diagnosed with trichloroethylene hypersensitivity syndrome were recruited from Shenzhen Occupational Disease Control Center. And Balb/c mice were treated with trichloroethylene. The correlation between liver and kidney injuries in patients with TCE-HS was assessed using Enzyme-Linked Immunosorbent Assay (ELISA). Alterations in mtDNA levels were examined in mouse hepatocytes, red blood cells (RBCs), and renal tubular epithelial cells utilizing immunofluorescence and PCR techniques. TCE-sensitized mice exhibited a significant increase in reactive oxygen species (ROS) and the opening of the mitochondrial permeability transition pore in hepatocytes, resulting in the release of mtDNA. Furthermore, heightened levels of mtDNA and Toll-like Receptor 9 (TLR9) expression were observed in RBCs. Additional experiments demonstrated elevated expression of TLR9 and its downstream mediator MyD88 in renal tubule epithelial cells of TCE-sensitized mice. In vitro investigations confirmed that mtDNA activates the TLR9 pathway in TCMK-1 cells. Collectively, these results suggest that mtDNA released from mitochondrial damage in hepatocytes is carried by RBCs to renal tubular epithelial cells and mediates inflammatory injury in renal tubular epithelial cells through activation of the TLR9 receptor.


Subject(s)
DNA, Mitochondrial , Liver , Mice, Inbred BALB C , Reactive Oxygen Species , Toll-Like Receptor 9 , Trichloroethylene , Animals , Trichloroethylene/toxicity , DNA, Mitochondrial/genetics , Humans , Liver/pathology , Liver/drug effects , Liver/metabolism , Liver/immunology , Female , Mice , Adult , Male , Reactive Oxygen Species/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Middle Aged , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Drug Hypersensitivity Syndrome/immunology , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/immunology
11.
Int Immunopharmacol ; 138: 112580, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38943970

ABSTRACT

Acute liver failure is mainly caused by the overdose of acetaminophen (APAP) globally. The traditional Chinese medicinal (TCM) herb, Taraxacum, contains Taraxasterol (TAX) as one of the active components. It is a pentacyclic-triterpene compound isolated from this herb. Present work aimed to investigate the in vitro and in vivo protection effect of TAX in APAP-induced acute liver injury, and determine the potential regulatory mechamisms. The liver injury caused by APAP is attenuated by TAX, as shown by the alleviated pathological changes of mice liver and the reduced serological indexes. TAX evidently controlled the oxidative stress and liver inflammation in mice liver. In vitro studies found that TAX reversed the decrease in LO2 cell viability induced by APAP, and protected LO2 cells from APAP-induced injury. In addition, TAX reduced the secretion of inflammatory factors in RAW264.7 macrophages as induced via APAP. Besides, TAX inhibited oxidative stress in LO2 cells induced by APAP in vitro. Noteworthy, TAX enhanced protein and mRNA expressions of Nrf2 in vivo, and knockdown of Nrf2 by using adeno-associated virus (AAV)-Nrf2-KO attenuated inhibitory impact of TAX in acute liver injury induced by APAP. Also, AAV-NRF2-KO weakened the inhibitory impact of TAX against APAP-triggered liver inflammation and oxidative stress of mice liver. Moreover, TAX activated the Nrf2 signaling in APAP-induced LO2 cells, as shown by the increased nuclear Nrf2 expression together with downstream HO-1 expression in vitro. Inhibition of Nrf2 by using ML-385, anNrf2inhibitor, weakened the inhibitory effect of TAX against APAP-induced oxidative stress and cell injury in LO2 cells. Moreover, inhibition of Nrf2 attenuated anti-inflammatory effect of TAX for APAP-induced RAW264.7 cells. Collectively, TAX could protect against APAP-triggered hepatotoxicitythrough suppression of liver oxidative stress and inflammatory response in mice.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Oxidative Stress/drug effects , Mice , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , NF-E2-Related Factor 2/metabolism , Male , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/immunology , Triterpenes/pharmacology , Triterpenes/therapeutic use , RAW 264.7 Cells , Mice, Inbred C57BL , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Sterols
12.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745150

ABSTRACT

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Subject(s)
CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
13.
Int Immunopharmacol ; 132: 111937, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569427

ABSTRACT

Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.


Subject(s)
Latilactobacillus sakei , Mycobacterium tuberculosis , Probiotics , Animals , Probiotics/therapeutic use , Probiotics/administration & dosage , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Mice , Pneumonia/drug therapy , Pneumonia/immunology , Antitubercular Agents/therapeutic use , Antitubercular Agents/adverse effects , Female , Tuberculosis/drug therapy , Tuberculosis/immunology , Mice, Inbred C57BL , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/etiology , Humans , Lung/pathology , Lung/drug effects , Lung/immunology , Lung/microbiology , Interleukin-10/metabolism , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Liver/drug effects , Liver/pathology , Liver/immunology
14.
Mol Immunol ; 170: 60-75, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626622

ABSTRACT

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Subject(s)
Carbon Tetrachloride , Cromolyn Sodium , Liver Cirrhosis , Liver , Mast Cells , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Carbon Tetrachloride/toxicity , Rats , Male , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/chemically induced , Cromolyn Sodium/pharmacology , Liver/pathology , Liver/metabolism , Liver/drug effects , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Ketotifen/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36972392

ABSTRACT

BACKGROUND: Acute liver failure (ALF) is characterized by rapid clinical deterioration and high mortality. Acetaminophen (APAP or paracetamol) overdose is a leading cause of ALF, resulting in hepatocellular necrosis with subsequent inflammation, inflicting further liver damage. Infiltrating myeloid cells are early drivers of liver inflammation. However, the role of the abundant population of liver-resident innate lymphocytes, which commonly express the chemokine receptor CXCR6, is incompletely understood in ALF. METHODS: We investigated the role of CXCR6-expressing innate lymphocytes using the model of acute APAP toxicity in mice deficient in CXCR6 (Cxcr6gfp/gfp). RESULTS: APAP-induced liver injury was strongly aggravated in Cxcr6gfp/gfp mice compared with wild-type counterparts. Immunophenotyping using flow cytometry revealed a reduction in liver CD4+T cells, natural killer (NK) cells, and most prominently, NKT cells, whereas CXCR6 was dispensable for CD8+ T-cell accumulation. CXCR6-deficient mice exhibited excessive neutrophil and inflammatory macrophage infiltration. Intravital microscopy revealed dense cellular clusters of neutrophils in necrotic liver tissue, with higher numbers of clustering neutrophils in Cxcr6gfp/gfp mice. Gene expression analysis linked hyperinflammation in CXCR6 deficiency to increased IL-17 signaling. Although reduced in overall numbers, CXCR6-deficient mice had a shift in NKT cell subsets with increased RORγt-expressing NKT17 cells as a likely source of IL-17. In patients with ALF, we found a prominent accumulation of IL-17-expressing cells. Accordingly, CXCR6-deficient mice lacking IL-17 (Cxcr6gfp/gfpx Il17-/-) had ameliorated liver damage and reduced inflammatory myeloid infiltrates. CONCLUSIONS: Our study identifies a crucial role of CXCR6-expressing liver innate lymphocytes as orchestrators in acute liver injury containing IL-17-mediated myeloid cell infiltration. Hence, strengthening the CXCR6-axis or downstream inhibition of IL-17 could yield novel therapeutics in ALF.


Subject(s)
Chemical and Drug Induced Liver Injury , Interleukin-17 , Receptors, CXCR6 , Animals , Mice , Acetaminophen/toxicity , Inflammation , Killer Cells, Natural , Receptors, CXCR6/metabolism , Chemical and Drug Induced Liver Injury/immunology , T-Lymphocytes
18.
World J Gastroenterol ; 28(46): 6537-6550, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36569272

ABSTRACT

BACKGROUND: Immune cells, including neutrophils, natural killer (NK) cells, T cells, NKT cells and macrophages, participate in the progression of acute liver injury and hepatic recovery. To date, there has been no systematic study on the quantitative changes in these different immune cells from initial injury to subsequent recovery. AIM: To investigate the infiltration changes of various immune cells in acute liver injury models over time, and to study the relationship between the changes in leukocyte cell-derived chemotaxin 2 (LECT2) and the infiltration of several immune cells. METHODS: Carbon tetrachloride- and concanavalin A-induced acute liver injury models were employed to mimic toxin-induced and autoimmune-mediated liver injury respectively. The quantitative changes in various immune cells were monitored at different time points. Serum samples were collected, and liver tissues were harvested. Ly6G, CD161, CD4, CD8 and F4/80 staining were used to indicate neutrophils, NK/NKT cells, CD4+ T cells, CD8+ T cells and macrophages, respectively. Lect2-KO mice were used to detect the function of LECT2. RESULTS: During the injury and repair process, different types of immune cells began to increase, reached their peaks and fell into decline at different time points. Furthermore, when the serum alanine transaminase (ALT) and aspartate transaminase (AST) indices reverted to normal levels 7 d after the injury, the infiltration of immune cells still existed even 14 d after the injury, showing an obvious lag effect. We found that the expression of LECT2 was upregulated in acute liver injury mouse models, and the liver injuries of Lect2-KO mice were less severe than those of wild-type mice. Compared with wild-type mice, Lect2-KO mice had different immune cell infiltration. CONCLUSION: The recovery time of immune cells was far behind that of serum ALT and AST during the process of liver repair. LECT2 could regulate monocyte/macrophage chemotaxis and might be used as a therapeutic target for acute liver injury.


Subject(s)
CD8-Positive T-Lymphocytes , Chemical and Drug Induced Liver Injury , Hepatitis, Autoimmune , Liver , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Concanavalin A/metabolism , Concanavalin A/pharmacology , Killer Cells, Natural/immunology , Liver/immunology , Liver/pathology , Liver/physiopathology , Mice, Inbred C57BL , Neutrophils/immunology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/pathology , Hepatitis, Autoimmune/physiopathology
19.
Arch Toxicol ; 96(10): 2785-2797, 2022 10.
Article in English | MEDLINE | ID: mdl-35763063

ABSTRACT

Occupational exposure to trichloroethylene (TCE) causes a systemic skin disorder with hepatitis known as TCE hypersensitivity syndrome (TCE-HS). Human Leukocyte Antigen (HLA)-B*13:01 is its susceptibility factor; however, the immunological pathogenesis of TCE-HS remains unknown. We herein examined the hypothesis that autoantibodies to CYP2E1 are primarily involved in TCE-HS. A case-control study of 80 TCE-HS patients, 186 TCE-tolerant controls (TCE-TC), and 71 TCE-nonexposed controls (TCE-nonEC) was conducted to measure their serum anti-CYP2E1 antibody (IgG) levels. The effects of TCE exposure indices, such as 8-h time-weighted-average (TWA) airborne concentrations, urinary metabolite concentrations, and TCE usage duration; sex; smoking and drinking habits; and alanine aminotransferase (ALT) levels on the antibody levels were also analyzed in the two control groups. There were significant differences in anti-CYP2E1 antibody levels among the three groups: TCE-TC > TCE-HS patients > TCE-nonEC. Antibody levels were not different between HLA-B*13:01 carriers and noncarriers in TCE-HS patients and TCE-TC. The serum CYP2E1 measurement suggested increased immunocomplex levels only in patients with TCE-HS. Multiple regression analysis for the two control groups showed that the antibody levels were significantly higher by the TCE exposure. Women had higher antibody levels than men; however, smoking, drinking, and ALT levels did not affect the anti-CYP2E1 antibody levels. Anti-CYP2E1 antibodies were elevated at concentrations lower than the TWA concentration of 2.5 ppm for TCE exposure. Since HLA-B*13:01 polymorphism was not involved in the autoantibody levels, the possible mechanism underlying the pathogenesis of TCE-HS is that TCE exposure induces anti-CYP2E1 autoantibody production, and HLA-B*13:01 is involved in the development of TCE-HS.


Subject(s)
Cytochrome P-450 CYP2E1 , Drug Hypersensitivity Syndrome , Occupational Exposure , Trichloroethylene , Autoantibodies/blood , Autoantibodies/genetics , Autoantibodies/immunology , Case-Control Studies , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Cytochrome P-450 CYP2E1/blood , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/immunology , Drug Hypersensitivity Syndrome/blood , Drug Hypersensitivity Syndrome/etiology , Drug Hypersensitivity Syndrome/immunology , Female , HLA-B Antigens/blood , HLA-B Antigens/genetics , HLA-B Antigens/immunology , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Occupational Exposure/adverse effects , Polymorphism, Genetic , Trichloroethylene/immunology , Trichloroethylene/toxicity
20.
Toxicology ; 468: 153101, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35065160

ABSTRACT

Monocrotaline (MCT), an unsaturated pyrrolizidine alkaloid (PA) in plants, is mainly toxic to the lung and liver of mammals. As a commonly used tool for liver injury model, the mechanism of MCT hepatoxicity has still not been fully clarified. Kupffer cells (KCs) are the liver-resident macrophages and have various responses to different toxicants and liver damage. However, the role of KCs in MCT-induced liver injury remains controversial. In current work, we investigated the effects of KCs on MCT-induced liver injury, especially on MCT-induced hepatocyte death. KCs were depleted in Balb/c mice by liposome-entrapped clodronate (Lip/Clo) (0.2 mL/mouse, i.p.) or GdCl3 (0.7 mg/kg, i.p.) before MCT administration (300 mg/kg, i.p.), we found that the Lip/Clo group showed higher efficiency in KCs depletion and stronger hepatoprotective effects against MCT. We also found TNF-α was remarkably decreased after KCs depletion, the experiment of administering anti-TNF-α antibody (20 µg/mouse, i.p.) to MCT-treated animals generated the similar results. To further elaborate the function of KCs, we compared the ALT levels released from co-culturing murine hepatic parenchymal cells (HPCs) and RAW264.7 cells with that from HPCs alone. After the treatment of MCT, the released ALT levels in co-culture system were shown to be dependent on the number of RAW264.7 cells, while the anti-TNF-α antibody could suppress it. Finally, we discovered RIPK3/MLKL pathway might be activated by TNF-α released from KCs, and subsequently induced hepatocyte necrosis. Noteworthy, the known mechanisms including ER stress and NF-κB pathways were also found to be involved in the activation of KCs. In conclusion, our study reveals a further mechanism to MCT-induced hepatoxicity mediated directly by KCs via producing TNF-α.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Kupffer Cells/physiology , Monocrotaline/toxicity , Tumor Necrosis Factor-alpha/biosynthesis , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/pathology , Hemagglutinins/blood , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL