Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 79(3): 155, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35218410

ABSTRACT

Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.


Subject(s)
Cellular Senescence/drug effects , Chemokines, CC/metabolism , Hydrogen Peroxide/pharmacology , NF-kappa B/metabolism , Protein-Arginine Deiminase Type 2/metabolism , Animals , Cell Differentiation/drug effects , Cell Line , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokine CCL7/antagonists & inhibitors , Chemokine CCL7/genetics , Chemokine CCL7/metabolism , Chemokines, CC/antagonists & inhibitors , Chemokines, CC/genetics , DNA Damage/drug effects , Down-Regulation/drug effects , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Protein-Arginine Deiminase Type 2/antagonists & inhibitors , Protein-Arginine Deiminase Type 2/genetics , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
2.
J Cell Mol Med ; 25(14): 6558-6572, 2021 07.
Article in English | MEDLINE | ID: mdl-34041839

ABSTRACT

The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and the underlying mechanism is unclear. An integrated bioinformatics analysis was performed to investigate the host factors that affect the therapeutic responsiveness in CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) were downloaded from the Gene Expression Omnibus (GEO) database and analysed to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs were conducted using the DAVID database. Immune cell infiltration characteristics were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a result, seventy-seven overlapping DEGs and 15 hub genes were identified including CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA-DRB1, ACTA1, CD69, CXCL10, HLA-DRB5, HLA-DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that the DEGs were mainly enriched in immune response and chemokine signalling pathways. Investigation of immune cell infiltration in liver samples suggested significantly different infiltration between responders and non-responders, mainly characterized by higher proportions of CD8+ T cells and activated NK cells in non-responders. The prediction of upstream miRNAs and lncRNAs led to the identification of a potential mRNA-miRNA-lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) and 5 miRNAs (hsa-mir-106b-5p, hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-6720-5p and hsa-mir-93-5p) targeting CCL5 mRNA. In conclusion, our study suggested that host genetic factors could affect therapeutic responsiveness in CHB patients. The antiviral process might be associated with the chemokine-mediated immune response and immune cell infiltration in the liver microenvironment.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B/drug therapy , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Biomarkers/chemistry , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Hepatitis B/genetics , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/drug effects , Hepatitis B virus/pathogenicity , Humans , Protein Interaction Maps/genetics , Signal Transduction/genetics
3.
Int J Mol Sci ; 21(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027922

ABSTRACT

Chrysin (5,7-dihydroxyflavone) is a natural polyphenolic compound that induces an anti-inflammatory response. In this study, we investigated the molecular mechanism underlying the chrysin-induced suppression of C-C motif chemokine ligand 5 (CCL5) gene expression in atopic dermatitis (AD)-like inflammatory microenvironment. We showed that chrysin inhibited CCL5 expression at the transcriptional level through the suppression of nuclear factor kappa B (NF-κB) in the inflammatory environment. Chrysin could bind to the ATP-binding pocket of the inhibitor of κB (IκB) kinase (IKK) and, subsequently, prevent IκB degradation and NF-κB activation. The clinical efficacy of chrysin in targeting IKK was evaluated in 2,4-dinitrochlorobenzene-induced skin lesions in BALB/c mice. Our results suggested that chrysin prevented CCL5 expression by targeting IKK to reduce the infiltration of mast cells to the inflammatory sites and at least partially attenuate the inflammatory responses. These findings suggested that chrysin might be useful as a platform for the design and synthesis of small-molecule IKK-targeting drugs for the treatment of chronic inflammatory diseases, such as AD.


Subject(s)
Chemokine CCL5/genetics , Dermatitis, Atopic/genetics , Flavonoids/pharmacology , I-kappa B Kinase/genetics , Inflammation/drug therapy , Animals , Cellular Microenvironment/drug effects , Cellular Microenvironment/genetics , Chemokine CCL5/antagonists & inhibitors , Dermatitis, Atopic/pathology , Flavonoids/chemistry , Humans , Inflammation/genetics , Inflammation/pathology , Mast Cells/drug effects , Mast Cells/metabolism , Mice , NF-kappa B/genetics , Tumor Necrosis Factor-alpha
4.
J Biol Chem ; 295(42): 14367-14378, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817341

ABSTRACT

Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight ß-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.


Subject(s)
Chemokine CCL5/antagonists & inhibitors , Salivary Proteins and Peptides/chemistry , Ticks/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Movement/drug effects , Chemokine CCL5/metabolism , Crystallography, X-Ray , Humans , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism
5.
Signal Transduct Target Ther ; 5(1): 38, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32300119

ABSTRACT

High expression of PD-L1 marks the poor prognosis of pancreatic ductal adenocarcinomas (PDAC). However, the regulatory mechanism of PD-L1 remains elusive. We recently reported that cancer Forkhead box protein 3 (Cancer-FOXP3 or C-FOXP3) promoted immune evasion of PDAC by recruiting Treg cells into PDAC via upregulation of CCL5. In this study, we confirmed that PD-L1 was overexpressed in PDAC samples from two independent cohorts of patients with radical resection. Moreover, C-FOXP3 was colocalized and correlated with the expression of PD-L1 in tumor cells at the mRNA and protein levels, and this finding was confirmed by the The Cancer Genome Atlas (TCGA) database. Chromatin immunoprecipitation (ChIP) revealed that C-FOXP3 directly bound to the promoter region of PD-L1 in pancreatic cancer cells. Furthermore, overexpression of C-FOXP3 activated the luciferase reporter gene under the control of the PD-L1 promoter. However, mutation of the binding motif-a completely reversed the luciferase activity. In addition, C-FOXP3-induced upregulation of PD-L1 effectively inhibited the activity of CD8+ T cells. Based on our recent finding that the CCL-5 antibody achieved a better response to PDAC models with high C-FOXP3 levels, we further demonstrated that the PD-L1 antibody strengthened the antitumor effect of CCL-5 blockade in xenograft and orthotopic mouse models with high C-FOXP3 levels. In conclusion, C-FOXP3 directly activates PD-L1 and represents a core transcription factor that mediates the immune escape of PDAC. Combined blockade of PD-L1 and CCL-5 may provide an effective therapy for patients with PDAC that have high C-FOXP3 levels.


Subject(s)
Adenocarcinoma/immunology , B7-H1 Antigen/genetics , Carcinoma, Pancreatic Ductal/immunology , Chemokine CCL5/genetics , Forkhead Transcription Factors/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aged , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Chemokine CCL5/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Middle Aged , Prognosis , T-Lymphocytes, Regulatory/immunology
6.
Oncol Rep ; 42(6): 2499-2511, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31578575

ABSTRACT

The recurrence and metastasis of breast cancer limit the effectiveness of clinical treatments, making them important issues for clinicians to address. Tumor­associated macrophages (TAMs) contribute to regulating the immune system. C­C motif chemokine ligand 5 (CCL5) is an inflammatory chemokine that promotes chemotaxis on cells involved in the immune/inflammatory response. Breast cancer cells that secrete CCL5 act on THP­1 cells, influencing the invasion and metastasis of tumors. However, knowledge remains limited regarding the mechanism underlying the effects of CCL5 on breast cancer cells and TAMs, as well as the mechanisms promoting the migration and invasion of breast cancer. The present study demonstrated that the positive expression of CCL5 was associated with lymph node status and tumor­node­metastasis stage. Treatment with ≥20 ng/ml CCL5 significantly promoted the migration and invasion of MCF­7 and MDA­MB­231 cells. CCL5­small interfering RNA intervention significantly decreased the migration and invasion of the two cell types. In vitro, THP­1 cells were successfully induced to become TAMs, which were then recruited via the chemotactic effects of CCL5. This process was achieved through the co­stimulation of phorbol­12­myristate­13­â€‹acetate, interleukin­4 (IL­4) and IL­13. The nuclear factor­κB (NF­κB) signaling pathway was activated to regulate EMT, as well as the migration and invasion process of MCF­7 cells, when co­cultured with TAMs. We also reported that blocking the expression of CCL5 in vivo may significantly inhibit the growth of human breast cancer xenografts. Therefore, targeting CCL5 may be considered as a novel therapeutic strategy for suppressing the invasion and metastasis of breast cancer.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/immunology , Chemokine CCL5/immunology , Lymphatic Metastasis/immunology , Macrophages/immunology , Adult , Aged , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Breast/pathology , Breast/surgery , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Chemotaxis/drug effects , Chemotaxis/immunology , Coculture Techniques , Female , Follow-Up Studies , Humans , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Lymphatic Metastasis/prevention & control , MCF-7 Cells , Mastectomy , Middle Aged , Neoplasm Invasiveness/immunology , Neoplasm Invasiveness/prevention & control , Survival Analysis , Treatment Outcome , Xenograft Model Antitumor Assays
7.
Med Hypotheses ; 131: 109313, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31443758

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare hereditary disease caused by a mutation in the intracellular domain of the activin A receptor type I and is characterized by episodes (flare-ups) of progressive heterotopic endochondral ossification (HO) in the soft tissues. The mutation alone is not sufficient for the occurrence of HO since flare-ups are triggered by inflammation and activation of the innate immune system. A number of cellular and humoral mediators have been implicated in animal and in vitro models. Observations in humans support the inflammatory nature of the condition, but data on the involved mediators are variable. We hypothesize that for induction of flare-ups in patients with FOP increase in at least one of the pro-inflammatory cytokines is both essential and sufficient to trigger the entire process of the inflammatory cells influx resulting in the novel ectopic bone formation and we suggest that C-C motif ligand 5 (CCL5), a pro-inflammatory chemokine also known as Regulated on activation, normal T-cell expressed and secreted (RANTES), might be the key candidate. CCL5 is a chemoattractant for all cellular types implicated in HO and is produced by the cells of the tissue microenvironment at the sites of HO as well as by the pro-inflammatory cellular mediators. CCL5 induces ossification in cultured human pluripotent mesenchymal cells (hMSCs) and in the primary culture of monocytes from FOP patients (but not from their healthy relatives), stimulation with lipopolysaccharide induces CCL5 expression. Finally, in a pilot study we used a panel of 23 cytokines and chemokines to screen the plasma samples of three subjects: a female patient with FOP during a flare-up; a female patient with hyperostosis corticalis generalisata (van Buchem disease), another rare disease characterized by excessive bone formation at the sites where it regularly occurs that does not include inflammatory events; and a healthy woman without bone disorders. There appeared a rather clear-cut signal of a 2-fold higher level of CCL5 in the FOP patient vs. the healthy subject and the van Buchem patient. Evaluation of the hypothesis would require an international prospective study, with main motivation being the lack of a conclusive treatment as the major unmet need in FOP. A treatment targeting CCL5 receptor already exists and is used in HIV-infected patients.


Subject(s)
Chemokine CCL5/blood , Molecular Targeted Therapy , Myositis Ossificans/blood , Ossification, Heterotopic/blood , Chemokine CCL5/antagonists & inhibitors , Cytokines/physiology , Female , Humans , Inflammation , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/metabolism , Models, Immunological , Monocytes/metabolism , Myositis Ossificans/drug therapy , Myositis Ossificans/immunology , Ossification, Heterotopic/immunology , Osteochondrodysplasias/blood , Pluripotent Stem Cells/metabolism
8.
Clin Cancer Res ; 25(13): 3873-3886, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30890553

ABSTRACT

PURPOSE: Malignant phyllodes tumor (PT) is a fast-progression neoplasm derived from periductal stromal cells of the breast, which currently still lack effective treatment strategies. Our previous studies showed that the high density of tumor-associated macrophages (TAM) plays an important role in the malignant progression of PTs. TAMs secreted large amount of CCL18 to promote myofibroblast differentiation and invasion via binding to its receptor PIPTNM3 on myofibroblasts. Herein, we investigate the mechanism of how TAMs are recruited and repolarized by PTs to drive the malignant progression. EXPERIMENTAL DESIGN: The cytokines secreted by PTs were identified by the cytokine array. The clinical and pathologic correlations of the cytokine with PTs were estimated with IHC. The mechanisms of the cytokine that recruited and polarized the macrophage were explored with a coculture model of primary PT cells and macrophages in vitro and in vivo. The patient-derived xenografts (PDX) of malignant PTs were used to evaluate the therapeutic effect of CCR5 inhibitor. RESULTS: A high level of malignant PT-secreted CCL5 correlated with poor outcome of PTs and could be an independent prognostic factor of PTs. CCL5 bound to its receptor, CCR5, on macrophages thus activated AKT signaling to recruit and repolarize TAMs. Subsequently, the TAMs released CCL18 to further promote the aggressive phenotype of malignant PTs by enhancing and maintaining the myofibroblast differentiation and invasion in vitro and in vivo. In a murine PDX model of human malignant PTs, the CCL5-CCR5 axis blocked by maraviroc, an FDA-proved CCR5 inhibitor, prevented recruitment of monocytes to the tumor and dramatically suppressed tumor growth. CONCLUSIONS: Our findings indicate that malignant PTs recruit and repolarize TAMs through a CCL5-CCR5-driven signaling cascade. Thus, a positive feedback loop of CCL5-CCR5 and CCL18-PIPTNM3 between myofibroblast and TAMs is constituted to drive the malignant progression of PTs. Furthermore, targeting CCR5 with maraviroc represents a potential clinically available strategy to treat malignant PTs.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chemokine CCL5/biosynthesis , Macrophages/metabolism , Phyllodes Tumor/metabolism , Phyllodes Tumor/pathology , Tumor Microenvironment , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Disease Models, Animal , Female , Gene Expression , Humans , Macrophages/pathology , Mice , Molecular Targeted Therapy , Neoplasm Grading , Neoplasm Staging , Phyllodes Tumor/drug therapy , Phyllodes Tumor/mortality , Prognosis , Proto-Oncogene Proteins c-akt , Receptors, CCR5/metabolism , Xenograft Model Antitumor Assays
9.
Front Immunol ; 9: 2139, 2018.
Article in English | MEDLINE | ID: mdl-30298073

ABSTRACT

Leptin is a cytokine, produced mainly by mature adipocytes, that regulates the central nervous system, mainly to suppress appetite and stimulate energy expenditure. Leptin also regulates the immune response by controlling activation of immunomodulatory cells, including eosinophils. While emerging as immune regulatory cells with roles in adipose tissue homeostasis, eosinophils have a well-established ability to synthesize pro-inflammatory molecules such as lipid mediators, a key event in several inflammatory pathologies. Here, we investigated the impact and mechanisms involved in leptin-driven activation of eicosanoid-synthesizing machinery within eosinophils. Direct in vitro activation of human or mouse eosinophils with leptin elicited synthesis of lipoxygenase as well as cyclooxygenase products. Displaying selectivity, leptin triggered synthesis of LTC4 and PGD2, but not PGE2, in parallel to dose-dependent induction of lipid body/lipid droplets biogenesis. While dependent on PI3K activation, leptin-driven eosinophil activation was also sensitive to pertussis toxin, indicating the involvement of G-protein coupled receptors on leptin effects. Leptin-induced lipid body-driven LTC4 synthesis appeared to be mediated through autocrine activation of G-coupled CCR3 receptors by eosinophil-derived CCL5, inasmuch as leptin was able to trigger rapid CCL5 secretion, and neutralizing anti-RANTES or anti-CCR3 antibodies blocked lipid body assembly and LTC4 synthesis induced by leptin. Remarkably, autocrine activation of PGD2 G-coupled receptors DP1 and DP2 also contributes to leptin-elicited lipid body-driven LTC4 synthesis by eosinophils in a PGD2-dependent fashion. Blockade of leptin-induced PGD2 autocrine/paracrine activity by a specific synthesis inhibitor or DP1 and DP2 receptor antagonists, inhibited both lipid body biogenesis and LTC4 synthesis induced by leptin stimulation within eosinophils. In addition, CCL5-driven CCR3 activation appears to precede PGD2 receptor activation within eosinophils, since neutralizing anti-CCL5 or anti-CCR3 antibodies inhibited leptin-induced PGD2 secretion, while it failed to alter PGD2-induced LTC4 synthesis. Altogether, sequential activation of CCR3 and then PGD2 receptors by autocrine ligands in response to leptin stimulation of eosinophils culminates with eosinophil activation, characterized here by assembly of lipidic cytoplasmic platforms synthesis and secretion of the pleiotropic lipid mediators, PGD2, and LTC4.


Subject(s)
Eosinophils/immunology , Leptin/metabolism , Leukotriene C4/biosynthesis , Receptors, CCR3/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Animals , Cells, Cultured , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Eosinophils/cytology , Eosinophils/drug effects , Eosinophils/metabolism , Female , Humans , Hydantoins/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Leptin/immunology , Leukotriene C4/immunology , Lipid Droplets/immunology , Lipid Droplets/metabolism , Male , Mice , Mice, Inbred BALB C , Piperidines/pharmacology , Primary Cell Culture , Prostaglandin D2/metabolism , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
10.
Lipids Health Dis ; 17(1): 182, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30064511

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is mainly responsible for cardiovascular diseases. The present study investigated whether Lipingshu capsule (LPS), whose ingredients are present in health food stores, has beneficial effect on AS. METHODS: C57BL/6 J mice were given a low fat rodent diet and assigned as control group (CON). ApoE-/- mice were placed on high fat rodent diet and randomly separated into high fat diet (HFD) group and HFD + LPS group whose animals were given 0.9 g/kg.BW LPS daily for 10 weeks. Atherosclerotic lesions in aorta and aortic root were evaluated. Serum lipids and multiple cytokine were measured. RESULTS: ApoE-/- mice fed with high fat diet had serious aortic lesions, whereas LPS markedly decreased plaque area of the total aorta and of the aortic root. LPS recovered the serum lipid profiles by substantially reducing TC, LDL-C, TG and Ox-LDL contents. Multi-cytokine analysis revealed greater serum levels of IL-1α, IL-1ß, IL-6, IFN-γ, GMCSF, RANTES and TNF-α induced by high fat diet slumped with LPS treatment. CONCLUSION: LPS reduces atherosclerotic lesions and thus alleviates AS by lipid profile modulation and inflammation inhibition.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Cardiovascular Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Plaque, Atherosclerotic/drug therapy , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/etiology , Atherosclerosis/pathology , Capsules , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/biosynthesis , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Lipoproteins, LDL/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plant Extracts/chemistry , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/pathology , Treatment Outcome , Triglycerides/blood , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis
11.
Breast Cancer Res ; 20(1): 54, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29898755

ABSTRACT

BACKGROUND: Metastatic triple-negative breast cancer (TNBC) is a heterogeneous and incurable disease. Numerous studies have been conducted to seek molecular targets to treat TNBC effectively, but chemotherapy is still the main choice for patients with TNBC. We have previously presented evidence of the important roles of interleukin-6 (IL-6) and chemokine (C-C motif) ligand 5 (CCL5) in TNBC tumor growth and metastasis. These experiments highlighted the importance of the crosstalk between cancer cells and stromal lymphatic endothelial cells (LECs) in tumor growth and metastasis. METHODS: We examined the viability and migration of MDA-MB-231-LN, SUM149, and SUM159 cells co-cultured with LECs when treated with maraviroc (CCR5 inhibitor) and tocilizumab (anti-IL-6 receptor antibody). To assess the anti-tumor effects of the combination of these two drugs in an athymic nude mouse model, MDA-MB-231-LN cells were implanted in the mammary fat pad and maraviroc (8 mg/kg, orally daily) and cMR16-1 (murine surrogate of the anti-IL-6R antibody, 10 mg/kg, IP, 3 days a week) were administrated for 5 weeks and effects on tumor growth and thoracic metastasis were measured. RESULTS: In this study, we used maraviroc and tocilizumab to confirm that IL-6 and CCL5 signaling are key pathways promoting TNBC cell proliferation and migration. Further, in a xenograft mouse model, we showed that tumor growth was dramatically inhibited by cMR16-1, the mouse version of the anti-IL6R antibody. The combination of maraviroc and cMR16-1 caused significant reduction of TNBC tumor growth compared to the single agents. Significantly, the combination of maraviroc and cMR16-1 abrogated thoracic metastasis. CONCLUSION: Taken together, these findings show that IL-6 and CCL5 signaling, which promote crosstalk between TNBC and lymphatic vessels, are key enhancers of TNBC tumor growth and metastasis. Furthermore, these results demonstrate that a drug combination inhibiting these pathways may be a promising therapy for TNBC patients.


Subject(s)
Chemokine CCL5/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CCL5/genetics , Female , Humans , Interleukin-6/genetics , Maraviroc/administration & dosage , Mice , Neoplasm Metastasis , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
12.
Cell Physiol Biochem ; 47(2): 707-720, 2018.
Article in English | MEDLINE | ID: mdl-29794461

ABSTRACT

BACKGROUND/AIMS: Hyperlipidemia induces dysfunction in the smooth muscle cells (SMCs) of the blood vessels, and the vascular remodeling that ensues is a key proatherogenic factor contributing to cardiovascular events. Chemokines and chemokine receptors play crucial roles in vascular remodeling. Here, we examined whether the hyperlipidemia-derived chemokine CCL5 and its receptor CCR5 influence vascular SMC proliferation, phenotypic switching, and explored the underlying mechanisms. METHODS: Thoracoabdominal aorta were isolated from wild-type, CCL5 and CCR5 double-knockout mice (CCL5-/-CCR5-/-) fed a high-fat diet (HFD) for 12 weeks. Expression of the contractile, synthetic, and proliferation markers were assayed using immunohistochemical and western blotting. The effects of CCL5 and palmitic acid on cultured SMC proliferation and phenotypic modulation were evaluated using flow cytometry, bromodeoxyuridine (BrdU), and western blotting. RESULTS: Wild-type mice fed an HFD showed markedly increased total cholesterol, triglyceride, and CCL5 serum levels, as well as significantly increased CCL5 and CCR5 expression in the thoracoabdominal aorta vs. normal-diet-fed controls. HFD-fed CCL5-/-CCR5-/- mice showed significantly decreased expression of the synthetic phenotype marker osteopontin and the proliferation marker proliferating cell nuclear antigen, and increased expression of the contractile phenotype marker smooth muscle α-actin in the thoracoabdominal aorta vs. wild-type HFD-fed mice. Human aorta-derived SMCs stimulated with palmitic acid showed significantly increased expression of CCL5, CCR5, and synthetic phenotype markers, as well as increased proliferation. CCL5-treated SMCs showed increased cell cycle regulatory protein expression, paralleling increased synthetic and decreased contractile phenotype marker expression. Inhibition of CCR5 activity by the specific antagonist maraviroc or its expression using small interfering RNA significantly inhibited human aortic SMC proliferation and synthetic phenotype formation. Therefore, CCL5 induces SMC proliferation and phenotypic switching from a contractile to synthetic phenotype via CCR5. CCL5-mediated SMC stimulation activated ERK1/2, Akt/p70S6K, p38 MAPK, and NF-κB signaling. NF-κB inhibition significantly reduced CCR5 expression along with CCR5-induced SMC proliferation and synthetic phenotype formation. CONCLUSIONS: Hyperlipidemia-induced CCL5/CCR5 axis activation serves as a pivotal mediator of vascular remodeling, indicating that CCL5 and CCR5 are key chemokine-related factors in atherogenesis. SMC proliferation and synthetic phenotype transformation attenuation by CCR5 pharmacological inhibition may offer a new approach to treatment or prevention of atherosclerotic diseases associated with hyperlipidemia.


Subject(s)
Cell Proliferation , Chemokine CCL5/genetics , Receptors, CCR5/genetics , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cell Line , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Diet, High-Fat , Humans , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Osteopontin/metabolism , Phenotype , Proliferating Cell Nuclear Antigen/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, CCR5/metabolism
13.
Int J Mol Med ; 42(1): 579-588, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29693154

ABSTRACT

Triple negative breast cancer (TNBC) has the lowest survival rate of the breast cancer subtypes owing to its aggressive and metastatic behavior. It has been reported that peritumoral adipose tissue contributes to the cell invasiveness and dissemination of TNBC. Emodin is an active anthraquinone derivative isolated from Rheum palmatum, with anticancer properties that have been reported to inhibit lung metastasis in a nude mouse xenograft model. In the present study, the effects of emodin on human TNBC cells and adipocytes were investigated in vivo and in vitro. The TNBC cell lines MDA­MB­231 and MDA­MB­453 were co­cultured with human adipocytes and treated with either emodin or epirubicin. Cell proliferation was assessed by MTT assay and migration and invasion were examined using a wound healing assay and a Transwell assay. interleukin­8, CC­chemokine ligand 5 (CCL5) and insulin­like growth factor­1 levels in the culture supernatants were detected by ELISA. The epithelial­mesenchymal transition (EMT) or metastasis associated markers were determined by western blot analysis. Nude mice fed with a high fat and sugar diet were used investigate the in vivo effect of emodin. The results showed that emodin inhibited TNBC proliferation and invasion more efficiently than epirubicin when co­cultured with adipocytes by downregulating the level of CCL5 in adipocyte supernatants; inhibiting the expression level of protein kinase B (AKT); and activating glycogen synthase kinase­3i (GSK3) and ß­catenin. This led to the suppressed expression of EMT­ and invasion­associated markers, including vimentin, snail, matrix metalloproteinase (MMP)­2 and MMP­9, and upregulation of E­cadherin, contributing to the inhibition of invasion. The in vivo assay showed that emodin inhibited tumor growth, and suppressed the lung and liver metastasis of TNBC cells by decreasing the secretion of CCL5 in mice fed a high fat and sugar diet more efficiently when compared with epirubicin. In conclusion, emodin inhibited the secretion of CCL5 from adipocytes, inhibited the EMT of TNBC cells, and inhibited tumor growth and lung and liver metastasis, which indicated a novel role of emodin in preventing the metastasis of TNBC.


Subject(s)
Adipocytes/metabolism , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Emodin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Triple Negative Breast Neoplasms/pathology , Adipocytes/drug effects , Adult , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Epirubicin/pharmacology , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction/drug effects
14.
J Immunol ; 200(7): 2291-2303, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29445009

ABSTRACT

Binge/moderate alcohol suppresses TLR4-MyD88 proinflammatory cytokines; however, alcohol's effects on TLR-TRIF signaling, especially after in vivo exposure in humans, are unclear. We performed a comparative analysis of the TLR4-MyD88, TLR4-TRIF, and TLR3-TRIF pathways in human monocytes following binge alcohol exposure. Mechanistic regulation of TLR-TRIF signaling by binge alcohol was evaluated by analyzing IRF3 and TBK1, upstream regulator protein phosphatase 1 (PP1), and immunoregulatory stress proteins HspA1A and XBP-1 in alcohol-treated human and mouse monocytes/macrophages. Two approaches for alcohol exposure were used: in vivo exposure of primary monocytes in binge alcohol-consuming human volunteers or in vitro exposure of human monocytes/murine macrophages to physiological alcohol concentrations (25-50 mM ethanol), followed by LPS (TLR4) or polyinosinic-polycytidylic acid (TLR3) stimulation ex vivo. In vivo and in vitro binge alcohol exposure significantly inhibited the TLR4-MyD88 cytokines TNF-α and IL-6, as well as the TLR4-TRIF cytokines/chemokines IFN-ß, IP-10, and RANTES, in human monocytes, but not TLR3-TRIF-induced cytokines/chemokines, as detected by quantitative PCR and ELISA. Mechanistic analyses revealed TBK-1-independent inhibition of the TLR4-TRIF effector IRF3 in alcohol-treated macrophages. Although stress protein XBP-1, which is known to regulate IRF3-mediated IFN-ß induction, was not affected by alcohol, HspA1A was induced by in vivo alcohol in human monocytes. Alcohol-induced HspA1A was required for inhibition of TLR4-MyD88 signaling but not TLR4-TRIF cytokines in macrophages. In contrast, inhibition of PP1 prevented alcohol-mediated TLR4-TRIF tolerance in macrophages. Collectively, our results demonstrate that in vivo and in vitro binge alcohol exposure in humans suppresses TLR4-MyD88 and TLR4-TRIF, but not TLR3-TRIF, responses. Whereas alcohol-mediated effects on the PP1-IRF3 axis inhibit the TLR4-TRIF pathway, HspA1A selectively suppresses the TLR4-MyD88 pathway in monocytes/macrophages.


Subject(s)
Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Binge Drinking/pathology , Ethanol/toxicity , Macrophages/immunology , Monocytes/immunology , Myeloid Differentiation Factor 88/antagonists & inhibitors , Toll-Like Receptor 3/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Adolescent , Adult , Animals , Cell Line , Chemokine CCL5/antagonists & inhibitors , Chemokine CXCL10/antagonists & inhibitors , Female , HSP70 Heat-Shock Proteins/metabolism , Humans , Inflammation/pathology , Interferon-beta/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Lipopolysaccharides/immunology , Macrophages/drug effects , Male , Mice , Middle Aged , Monocytes/drug effects , Poly I-C/immunology , RAW 264.7 Cells , Receptors, Neuropeptide Y/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , X-Box Binding Protein 1/drug effects , Young Adult
15.
J Vis Exp ; (131)2018 01 04.
Article in English | MEDLINE | ID: mdl-29364220

ABSTRACT

Insulin regulates systematic metabolism in the hypothalamus and the peripheral insulin response. An inflammatory reaction in peripheral adipose tissues contributes to type 2 diabetes mellitus (T2DM) development and appetite regulation in the hypothalamus. Chemokine CCL5 and C-C chemokine receptor type 5 (CCR5) levels have been suggested to mediate arteriosclerosis and glucose intolerance in type 2 diabetes mellitus (T2DM). In addition, CCL5 plays a neuroendocrine role in the hypothalamus by regulating food intake and body temperature, thus, prompting us to investigate its function in hypothalamic insulin signaling and the regulation of peripheral glucose metabolism. The micro-osmotic pump brain infusion system is a quick and precise way to manipulate CCL5 function and study its effect in the brain. It also provides a convenient alternative approach to generating a transgenic knockout animal. In this system, CCL5 signaling was blocked by intracerebroventricular (ICV) infusion of its antagonist, MetCCL5, using a micro-osmotic pump. The peripheral glucose metabolism and insulin responsiveness was detected by the Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Insulin signaling activity was then analyzed by protein blot from tissue samples derived from the animals. After 7-14 days of MetCCL5 infusion, the glucose metabolism and insulin responsiveness was impaired in mice, as seen in the results of the OGTT and ITT. The IRS-1 serine302 phosphorylation was increased and the Akt activity was reduced in mice hypothalamic neurons following CCL5 inhibition. Altogether, our data suggest that blocking CCL5 in the mouse brain increases the phosphorylation of IRS-1 S302 and interrupts hypothalamic insulin signaling, leading to a decrease in insulin function in peripheral tissues as well as the impairment of glucose metabolism.


Subject(s)
Brain/drug effects , Brain/metabolism , Chemokine CCL5/administration & dosage , Glucose Intolerance/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin/metabolism , Animals , Blood Glucose/metabolism , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Infusion Pumps , Male , Mice , Recombinant Proteins/administration & dosage , Signal Transduction
16.
J Hepatol ; 66(4): 743-753, 2017 04.
Article in English | MEDLINE | ID: mdl-28011329

ABSTRACT

BACKGROUND & AIMS: During liver inflammation, triggering fibrogenesis and carcinogenesis immune cells play a pivotal role. In the present study we investigated the role of CCL5 in human and in murine models of chronic liver inflammation leading to hepatocellular carcinoma (HCC) development. METHODS: CCL5 expression and its receptors were studied in well-defined patients with chronic liver disease (CLD) and in two murine inflammation based HCC models. The role of CCL5 in inflammation, fibrosis, tumor initiation and progression was analyzed in different cell populations of NEMOΔhepa/CCL5-/- animals and after bone marrow transplantation (BMT). For therapeutic intervention Evasin-4 was injected for 24h or 8weeks. RESULTS: In CLD patients, CCL5 and its receptor CCR5 are overexpressed - an observation confirmed in the Mdr2-/- and NEMOΔhepa model. CCL5 deletion in NEMOΔhepa mice diminished hepatocyte apoptosis, compensatory proliferation and fibrogenesis due to reduced immune cell infiltration. Especially, CD45+/Ly6G+ granulocytes, CD45+/CD11b+/Gr1.1+/F4/80+ pro-inflammatory monocytes, CD4+ and CD8+ T cells were decreased. One year old NEMOΔhepa/CCL5-/- mice displayed smaller and less malignant tumors, characterized by reduced proliferative capacity and less pronounced angiogenesis. We identified hematopoietic cells as the main source of CCL5, while CCL5 deficiency did not sensitise NEMOΔhepa hepatocytes towards TNFα induced apoptosis. Finally, therapeutic intervention with Evasin-4 over a period of 8weeks ameliorated liver disease progression. CONCLUSION: We identified an important role of CCL5 in human and functionally in mice with disease progression, especially HCC development. A novel approach to inhibit CCL5 in vivo thus appears encouraging for patients with CLD. LAY SUMMARY: Our present study identifies the essential role of the chemoattractive cytokine CCL5 for liver disease progression and especially hepatocellular carcinoma development in men and mice. Finally, the inhibition of CCL5 appears to be encouraging for therapy of human chronic liver disease.


Subject(s)
Carcinoma, Hepatocellular/immunology , Chemokine CCL5/metabolism , Hepatitis, Chronic/immunology , Liver Neoplasms/immunology , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/deficiency , Chemokine CCL5/genetics , Disease Progression , Hematopoiesis/immunology , Hepatitis, Chronic/complications , Hepatitis, Chronic/genetics , Humans , Liver Cirrhosis/etiology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR5/metabolism
17.
Sci Rep ; 6: 37659, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27898058

ABSTRACT

Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1S302) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1S302 through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, MetCCL5, abolished the de-phosphorylation of IRS-1S302 and insulin signal activation. In addition, intracerebroventricular delivery of MetCCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism.


Subject(s)
Chemokine CCL5/metabolism , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/genetics , Insulin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Glucose Transporter Type 4/genetics , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Insulin/genetics , Mice , Neurons/metabolism , Neurons/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/genetics
18.
Sci Rep ; 6: 30802, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27492684

ABSTRACT

Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and ß and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5(-/-) mice or adoptive transfer of splenic naïve CD4(+) T-cells from wild type or CCR5(-/-) mice into RAG-1(-/-). CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4(+) and CD11b(+) leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.


Subject(s)
Chemokine CCL5/metabolism , Colitis/pathology , Inflammation/prevention & control , Intestinal Mucosa/metabolism , Animals , CD11b Antigen/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/genetics , Chemokines/antagonists & inhibitors , Colitis/chemically induced , Colon/physiology , Cyclohexanes/pharmacology , Cyclohexanes/therapeutic use , Dextran Sulfate/toxicity , Disease Models, Animal , Homeodomain Proteins/genetics , Inflammation/immunology , Inflammation/metabolism , Leukocytes/cytology , Leukocytes/metabolism , Maraviroc , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/cytology , Th17 Cells/immunology , Triazoles/pharmacology , Triazoles/therapeutic use , Trinitrobenzenesulfonic Acid/toxicity , Up-Regulation/drug effects
19.
PLoS One ; 11(6): e0157483, 2016.
Article in English | MEDLINE | ID: mdl-27309956

ABSTRACT

BACKGROUND: Astrocytes and cerebral endothelial cells are important components of the blood-brain barrier (BBB). Disruption to this barrier through inflammation is a major contributor to Alzheimer's disease (AD) pathology. The amyloid beta (Aß) protein is known to exist in several forms and is a key modulator of AD that is known to cause inflammation and changes to BBB function. While one of these forms, fibrillary Aß (fAß), is known to cause endothelial cell death at the BBB, no studies have looked specifically at its role on inflammation in a model of the human BBB. AIMS: To determine if fAß is inflammatory to the human BBB. As statins have been shown to be anti-inflammatory and protective in AD, we also tested if these could inhibit the inflammatory effect of fAß. METHODS: Using cultured cerebral endothelial cells and astrocytes we determined changes in cytokine release, cell toxicity and barrier function in response to fibrillary ß-amyloid1-42 (fAß1-42) alone and in combination with statins. RESULTS: fAß1-42 induced inflammatory cytokine release from endothelial cells in the absence of cell toxicity. It also induced astrocyte cytokine release and cell death and caused a loss of barrier integrity. Statin treatment inhibited all of these effects. CONCLUSIONS: We conclude that fAß1-42 has both inflammatory and cytotoxic effects on the BBB and the protective effect of statins in AD may in part be through inhibiting these effects.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticholesteremic Agents/pharmacology , Blood-Brain Barrier/drug effects , Lovastatin/pharmacology , Peptide Fragments/antagonists & inhibitors , Simvastatin/pharmacology , Amyloid beta-Peptides/pharmacology , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cell Death/drug effects , Cell Line , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Chemokine CCL5/antagonists & inhibitors , Chemokine CCL5/metabolism , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Interleukin-8/antagonists & inhibitors , Interleukin-8/metabolism , Models, Biological , Peptide Fragments/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
20.
J Biol Chem ; 291(29): 15267-81, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27226559

ABSTRACT

Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4(+) and CD8(+) T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients.


Subject(s)
Chemokine CCL11/antagonists & inhibitors , Chemokine CCL5/antagonists & inhibitors , Dopaminergic Neurons/immunology , Parkinsonian Disorders/therapy , Adaptive Immunity , Aged , Aged, 80 and over , Animals , Antibodies, Blocking/administration & dosage , Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Chemokine CCL11/biosynthesis , Chemokine CCL11/immunology , Chemokine CCL5/biosynthesis , Chemokine CCL5/immunology , Disease Models, Animal , Dopaminergic Neurons/pathology , Humans , Immunosuppression Therapy , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Middle Aged , Parkinsonian Disorders/immunology , Parkinsonian Disorders/pathology , Substantia Nigra/immunology , Substantia Nigra/pathology
SELECTION OF CITATIONS
SEARCH DETAIL