Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.531
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836678

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Carcinoma, Squamous Cell , Cell Movement , Chemokine CXCL1 , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases , Macrophages , Phosphofructokinase-2 , Uterine Cervical Neoplasms , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Humans , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Macrophages/metabolism , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Cell Movement/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Cell Line, Tumor , Mice , Tumor Microenvironment/genetics , Glucose/metabolism , Mice, Nude , Glycolysis/genetics , Metabolic Reprogramming
2.
Int Immunopharmacol ; 136: 112383, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38843642

The treatment of autoimmune and inflammatory diseases often requires targeting multiple pathogenic pathways. KYS202004A is a novel bispecific fusion protein designed to antagonize TNF-α and IL-17A, pivotal in the pathophysiology of autoimmune and inflammatory diseases. Our initial efforts focused on screening for optimal structure by analyzing expression levels, purity, and binding capabilities. The binding affinity of KYS202004A to TNF-α and IL-17A was evaluated using SPR. In vitro, we assessed the inhibitory capacity of KYS202004A on cytokine-induced CXCL1 expression in HT29 cells. In vivo, its efficacy was tested using a Collagen-Induced Arthritis (CIA) model in transgenic human-IL-17A mice and an imiquimod-induced psoriasis model in cynomolgus monkeys. KYS202004A demonstrated significant inhibition of IL-17A and TNF-α signaling pathways, outperforming the efficacy of monotherapeutic agents ixekizumab and etanercept in reducing CXCL1 expression in vitro and ameliorating disease markers in vivo. In the CIA model, KYS202004A significantly reduced clinical symptoms, joint destruction, and serum IL-6 concentrations. The psoriasis model revealed that KYS202004A, particularly at a 2  mg/kg dose, was as effective as the combination of ixekizumab and etanercept. This discovery represents a significant advancement in treating autoimmune and inflammatory diseases, offering a dual-targeted therapeutic approach with enhanced efficacy over current monotherapies.


Arthritis, Experimental , Interleukin-17 , Macaca fascicularis , Psoriasis , Recombinant Fusion Proteins , Tumor Necrosis Factor-alpha , Animals , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/chemically induced , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Mice , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , HT29 Cells , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Mice, Transgenic , Disease Models, Animal , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Male , Drug Evaluation, Preclinical , Imiquimod , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Inbred DBA
3.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797538

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Acute Lung Injury , Hydrochloric Acid , Interleukins , Mice, Knockout , Animals , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Disease Models, Animal , Neutrophil Infiltration , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Male , Lung/pathology , Lung/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Mice , Neutrophils , Pulmonary Edema/etiology , Gene Expression
4.
Environ Pollut ; 351: 124081, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697251

Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.


Chemokine CXCL1 , Colorectal Neoplasms , Signal Transduction , Tumor-Associated Macrophages , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Animals , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Mice , Tumor-Associated Macrophages/metabolism , Microcystins/toxicity , Marine Toxins , Cell Line, Tumor , Disease Progression , Cell Proliferation/drug effects , Tumor Microenvironment
5.
J Immunother Cancer ; 12(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38724465

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


B7 Antigens , Chemokine CXCL1 , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Receptors, Interleukin-8B , Animals , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice , Humans , Receptors, Interleukin-8B/metabolism , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , B7 Antigens/metabolism , Chemokine CXCL1/metabolism , Extracellular Traps/metabolism , Tumor Escape , Female , Male , Mice, Knockout , Tumor Microenvironment
6.
Nat Commun ; 15(1): 4119, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750020

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Mice , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Disease Models, Animal , Male , Neutrophil Infiltration/drug effects , Cecum/surgery , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Humans , Pore Forming Cytotoxic Proteins/metabolism , Ligation , Lipopolysaccharides , Shock, Septic/immunology
7.
Sci Rep ; 14(1): 11062, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745005

To evaluate gene expression associated with unfavorable vaginal bleeding in users of the Etonogestrel (ENG) contraceptive implant. Prospective study involving 100 women who intended to use the ENG implant. Exclusion criteria included abnormal uterine bleeding, inability to attend a 1-year follow-up, and implant removal for reasons unrelated to vaginal bleeding or loss of follow-up. We obtained endometrial biopsies before implant placement and assessed the expression of 20 selected genes. Users maintained a uterine bleeding diary for 12 months post-implant placement. For statistical analysis, we categorized women into those with or without favorable vaginal bleeding at 3 and 12 months. Women with lower CXCL1 expression had a 6.8-fold increased risk of unfavorable vaginal bleeding at 3 months (OR 6.8, 95% CI 2.21-20.79, p < 0.001), while those with higher BCL6 and BMP6 expression had 6- and 5.1-fold increased risks, respectively. By the 12-month follow-up, women with lower CXCL1 expression had a 5.37-fold increased risk of unfavorable vaginal bleeding (OR 5.37, 95% CI 1.63-17.73, p = 0.006). Women with CXCL1 expression < 0.0675, BCL6 > 0.65, and BMP6 > 3.4 had a higher likelihood of experiencing unfavorable vaginal bleeding at 3 months, and CXCL1 < 0.158 at 12 months. Users of ENG contraceptive implants with elevated BCL6 and BMP6 expression exhibited a higher risk of breakthrough bleeding at the 3-month follow-up. Conversely, reduced CXCL1 expression was associated with an elevated risk of bleeding at both the 3 and 12-month follow-ups.


Contraceptive Agents, Female , Desogestrel , Uterine Hemorrhage , Humans , Female , Desogestrel/administration & dosage , Desogestrel/adverse effects , Adult , Prospective Studies , Uterine Hemorrhage/genetics , Contraceptive Agents, Female/adverse effects , Contraceptive Agents, Female/administration & dosage , Endometrium/metabolism , Endometrium/drug effects , Endometrium/pathology , Drug Implants , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Young Adult
8.
Cancer Lett ; 592: 216903, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38670307

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.


Acetyl Coenzyme A , Carcinoma, Hepatocellular , Chemokine CXCL1 , Liver Neoplasms , Neutrophils , Tumor Microenvironment , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Traps/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mice, Nude , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Adult , Middle Aged , Aged , Mice, Inbred BALB C
9.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649200

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Acupuncture Therapy , Arthritis, Experimental , Chemokine CXCL1 , Receptors, Interleukin-8B , Somatosensory Cortex , Animals , Humans , Male , Mice , Rats , Acupuncture Points , Arthritis, Experimental/therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred BALB C , Pain/metabolism , Pain/genetics , Pain Management , Rats, Wistar , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Signal Transduction , Somatosensory Cortex/metabolism
10.
PLoS One ; 19(4): e0298418, 2024.
Article En | MEDLINE | ID: mdl-38625857

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Interleukin-8 , Receptors, Interleukin-8B , Humans , Receptors, Interleukin-8B/genetics , Ligands , Interleukin-8/metabolism , Chemokines/metabolism , Chemokine CXCL1 , Chemotactic Factors/metabolism , Chemotaxis
11.
J Exp Clin Cancer Res ; 43(1): 121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654356

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and chemotherapy still serves as the cornerstone treatment functioning by inducing cytotoxic cell death. Notably, emerging evidence suggests that dying cell-released signals may induce cancer progression and metastasis by modulating the surrounding microenvironment. However, the underlying molecular mechanisms and targeting strategies are yet to be explored. METHODS: Apoptotic TNBC cells induced by paclitaxel or adriamycin treatment were sorted and their released extracellular vesicles (EV-dead) were isolated from the cell supernatants. Chemokine array analysis was conducted to identify the crucial molecules in EV-dead. Zebrafish and mouse xenograft models were used to investigate the effect of EV-dead on TNBC progression in vivo. RESULTS: It was demonstrated that EV-dead were phagocytized by macrophages and induced TNBC metastasis by promoting the infiltration of immunosuppressive PD-L1+ TAMs. Chemokine array identified CXCL1 as a crucial component in EV-dead to activate TAM/PD-L1 signaling. CXCL1 knockdown in EV-dead or macrophage depletion significantly inhibited EV-dead-induced TNBC growth and metastasis. Mechanistic investigations revealed that CXCL1EV-dead enhanced TAM/PD-L1 signaling by transcriptionally activating EED-mediated PD-L1 promoter activity. More importantly, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) was screened as a promising inhibitor targeting CXCL1 signals in EVs to enhance paclitaxel chemosensitivity and limit TNBC metastasis without noticeable toxicities. CONCLUSIONS: Our results highlight CXCL1EV-dead as a novel dying cell-released signal and provide TPCA-1 as a targeting candidate to improve TNBC prognosis.


B7-H1 Antigen , Chemokine CXCL1 , Extracellular Vesicles , Signal Transduction , Triple Negative Breast Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Vesicles/metabolism , Neoplasm Metastasis , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Zebrafish , Tumor-Associated Macrophages/metabolism
12.
Front Immunol ; 15: 1367019, 2024.
Article En | MEDLINE | ID: mdl-38686389

Background: Although hyperuricemia is not always associated with acute gouty arthritis, uric acid is a significant risk factor for gout. Therefore, we investigated the specific mechanism of uric acid activity. Methods: Using the gout-associated transcriptome dataset GSE160170, we conducted differential expression analysis to identify differentially expressed genes (DEGs). Moreover, we discovered highly linked gene modules using weighted gene coexpression network analysis (WGCNA) and evaluated their intersection. Subsequently, we screened for relevant biomarkers using the cytoHubba and Mcode algorithms in the STRING database, investigated their connection to immune cells and constructed a competitive endogenous RNA (ceRNA) network to identify upstream miRNAs and lncRNAs. We also collected PBMCs from acute gouty arthritis patients and healthy individuals and constructed a THP-1 cell gout inflammatory model, RT-qPCR and western blotting (WB) were used to detect the expression of C-X-C motif ligand 8 (CXCL8), C-X-C motif ligand 2 (CXCL2), and C-X-C motif ligand 1 (CXCL1). Finally, we predicted relevant drug targets through hub genes, hoping to find better treatments. Results: According to differential expression analysis, there were 76 upregulated and 28 downregulated mRNAs in GSE160170. Additionally, WGCNA showed that the turquoise module was most strongly correlated with primary gout; 86 hub genes were eventually obtained upon intersection. IL1ß, IL6, CXCL8, CXCL1, and CXCL2 are the principal hub genes of the protein-protein interaction (PPI) network. Using RT-qPCR and WB, we found that there were significant differences in the expression levels of CXCL8, CXCL1, and CXCL2 between the gouty group and the healthy group, and we also predicted 10 chemicals related to these proteins. Conclusion: In this study, we screened and validated essential genes using a variety of bioinformatics tools to generate novel ideas for the diagnosis and treatment of gout.


Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Gout , Humans , Gout/genetics , Chemokine CXCL1/genetics , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Computational Biology/methods , Transcriptome , THP-1 Cells , Interleukin-8/genetics , MicroRNAs/genetics , Uric Acid , Protein Interaction Maps , Gene Expression Regulation , Databases, Genetic , Arthritis, Gouty/genetics
13.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673949

Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.


Chemokine CXCL1 , Neoplasms , Humans , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Clinical Relevance
14.
BMC Cancer ; 24(1): 319, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454443

BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.


Lung Neoplasms , Minichromosome Maintenance Proteins , Humans , Chemokine CXCL1 , Minichromosome Maintenance Proteins/genetics , Proteins , Neoplastic Stem Cells/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Cell Cycle Proteins/genetics , Tumor Microenvironment
15.
Biochem Pharmacol ; 222: 116120, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461905

The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling. Moreover, lactate in the tumor microenvironment (TME) promotes dynamic lactylation of H3K18 (H3K18la), leading to transcriptional activation of VCAM1 in GC cells. Furthermore, VCAM1 actively mediates intercellular communication in the TME. AKT-mTOR-mediated CXCL1 expression is increased by VCAM1, facilitating the recruitment of human GC-derived mesenchymal stem cells (hGC-MSCs), thereby fostering immunesuppression and accelerating cancer progression. In summary, H3K18 lactylation upregulated VCAM1 transcription, which activated AKT-mTOR signaling, and promoted tumor cell proliferation, EMT Transition and tumor metastasis. VCAM1 upregulated CXCL1 expression by AKT-mTOR pathway, so as to facilitate hGC-MSCs and M2 macrophage recruitment and infiltration. These findings provide novel therapeutic targets for GC.


Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Chemokine CXCL1/metabolism
16.
Mol Immunol ; 169: 50-65, 2024 May.
Article En | MEDLINE | ID: mdl-38493581

Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1ß) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.


Chemokine CXCL1 , Peripheral Nerve Injuries , Receptors, Interleukin-8B , Animals , Mice , Chemokine CXCL1/metabolism , Macrophages/metabolism , Phenylurea Compounds/pharmacology , Sciatic Nerve
17.
J Leukoc Biol ; 115(6): 1177-1182, 2024 May 29.
Article En | MEDLINE | ID: mdl-38298146

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.


Chemokines, CXC , Lipopolysaccharides , Mice, Knockout , Neutrophils , Receptors, Interleukin-8B , Animals , Mice , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Lipopolysaccharides/pharmacology , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Neutrophil Infiltration , Mice, Inbred C57BL , Inflammation/immunology , Inflammation/pathology , Inflammation/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Monocytes/immunology , Monocytes/metabolism
18.
Mol Biol Rep ; 51(1): 331, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393465

BACKGROUND: ER positive breast cancer is currently targeted using various endocrine therapies. Despite the proven therapeutic efficacy, resistance to the drug and reoccurrence of tumor appears to be a complication that many patients deal with. Molecular pathways underlying the development of resistance are being widely studied. METHODS AND RESULTS: In this study, using four established endocrine resistant breast cancer (ERBC) cell lines, we characterized CXCL1 as a secreted factor in crosstalk between ERBC cells and fibroblasts. Protein array revealed upregulation of CXCL1 and we confirmed the CXCL1 expression by real-time qRT-PCR and U-Plex assay. Co-culturing ERBC cells with fibroblasts enhanced the cell growth and migration compared to monoculture. The crosstalk of ERBC cells with fibroblasts significantly activates ERK/MAPK signaling pathway while reparixin, CXCR1/2 receptor inhibitor, attenuates the activity. Reparixin displayed the ERBC cell growth inhibition and the combination treatment with reparixin and CDK4/6 inhibitor (palbociclib and ribociclib) increased these inhibitory effect. CONCLUSIONS: Taken together, our study implicates CXCL1 as a critical role in ERBC growth and metastasis via crosstalk with fibroblast and cotargeting CXCR1/2 and CDK4/6 could potentially overcome endocrine resistant breast cancer.


Breast Neoplasms , Chemokine CXCL1 , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemokine CXCL1/genetics , Drug Resistance, Neoplasm , Fibroblasts/metabolism , Sulfonamides/pharmacology
19.
Toxicon ; 240: 107627, 2024 Mar.
Article En | MEDLINE | ID: mdl-38253207

BACKGROUND: Lung adenocarcinoma (LUAD) is the most popular type of lung cancer. Sulfotanshinone IIA sodium (STS IIA) has been proven to have an anticancer effect. However, its role in LUAD and its underlying mechanism remain unclear. OBJECTIVE: To investigate the role and mechanism of STS IIA in LUAD angiogenesis. METHODS: The mRNA levels of genes, including forkhead box O3 (FOXO3) and chemokine C-X-C motif ligand 1 (CXCL1), were detected by qRT-PCR. The levels of proteins, including FOXO3, CXCL1, and vascular endothelial growth factor (VEGF), were measured by Western blot. The proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) were detected by the EdU assay and the tubule formation assay, respectively. The binding relationship between FOXO3 and CXCL1 was detected by dual-luciferase reporter assay. RESULTS: Our results illustrated that different concentrations of STS IIA inhibited the proliferation and angiogenesis of HUVECs. FOXO3 regulated the proliferation and angiogenesis of HUVECs inhibited by STS ⅡA via targeting CXCL1. Subsequently, we proved that exogenous CXCL1 alleviated the inhibition of proliferation and angiogenesis of HUVECs regulated by STS IIA via activating the STAT3/VEGF pathway. Finally, we found that STS IIA inhibited the angiogenesis of lung adenocarcinoma though FOXO3 to inhibit the CXCL1/STAT3/VEGF pathway. CONCLUSION: Our study finally elucidated the underlying molecular mechanism by which STS ⅡA inhibits LUAD angiogenesis.


Adenocarcinoma of Lung , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Signal Transduction , Cell Proliferation , Angiogenesis , Human Umbilical Vein Endothelial Cells , Adenocarcinoma of Lung/metabolism , Neovascularization, Pathologic , Chemokine CXCL1/metabolism , Chemokine CXCL1/pharmacology , Forkhead Box Protein O3/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology
20.
Life Sci ; 336: 122277, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37995936

Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.


Chemokines, CXC , Stomach Neoplasms , Humans , Chemokines, CXC/metabolism , Stomach Neoplasms/diagnosis , Stomach Neoplasms/therapy , Stomach Neoplasms/metabolism , Chemokines , Receptors, Chemokine/metabolism , Chemokine CXCL1
...