Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 965
Filter
1.
Carbohydr Res ; 541: 109170, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830279

ABSTRACT

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Subject(s)
Antifungal Agents , Bacillus , Chitin , Chitinases , Chitinases/metabolism , Chitinases/isolation & purification , Chitinases/chemistry , Chitinases/pharmacology , Chitin/chemistry , Chitin/metabolism , Chitin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/metabolism , Bacillus/enzymology , Fusarium/enzymology , Fusarium/drug effects , Hydrogen-Ion Concentration , Temperature
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928474

ABSTRACT

Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or ß-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/ß-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that ß-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the ß conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. ß-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.


Subject(s)
Chitin , Chitinase-3-Like Protein 1 , Chitosan , Melanocytes , Oligosaccharides , Chitosan/chemistry , Chitosan/pharmacology , Melanocytes/drug effects , Melanocytes/metabolism , Humans , Chitin/analogs & derivatives , Chitin/pharmacology , Chitin/chemistry , Oligosaccharides/pharmacology , Chitinase-3-Like Protein 1/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124646, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38875926

ABSTRACT

In this research, we fabricated a functional conductive nanocomposite with valuable properties through a chitin (CH) and cellulose (CE) polymerization process, incorporating ZnO/(0.1, 0.2, 0.3 mol.%) CuO bioactive nanoparticles. These bioactive nanoparticles, synthesized through sol-gel and polymerization interactions, greatly enhanced the structural, dielectric, and antimicrobial characteristics of CH-CE@ZnO/CuO conductive nanocomposites. The morphological analysis revealed that these nanoparticles, with diameters ranging from 11-25 nm, formed covalent bonds with the membrane matrix, bolstering the conductive nanocomposites ' structural integrity and dielectric performance. The dielectric properties of the conductive nanocomposites were significantly enhanced by the even distribution of ZnO/CuO nanoparticles within the CH-CE composite. Additionally, antimicrobial assessments demonstrated that the CH-CE@ZnO/CuO conductive nanocomposites displayed significant antibacterial properties against the Escherichia coli and Staphylococcus aureus, showcasing their potential as active packaging materials for electronic, biosensors, and sustainable applications.


Subject(s)
Cellulose , Chitin , Copper , Electric Conductivity , Escherichia coli , Microbial Sensitivity Tests , Nanocomposites , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Copper/pharmacology , Chitin/chemistry , Chitin/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Dielectric Spectroscopy , X-Ray Diffraction
4.
Carbohydr Res ; 542: 109177, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880715

ABSTRACT

Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.


Subject(s)
Chitin , Lipopolysaccharides , Oligosaccharides , Animals , Mice , Acetylation , Lipopolysaccharides/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Chitin/chemistry , Chitin/pharmacology , RAW 264.7 Cells , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism
6.
Int J Biol Macromol ; 270(Pt 2): 132283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735605

ABSTRACT

A new conjugate, galloyl-oligochitosan nanoparticles (GOCNPs), was fabricated and used as nano-vehicle for effective and controlled delivery of propolis extract (PE) in the form of PE#GOCNPs, targeting improving its pharmaceutical potential. H-bonding interactions between the carboxyl, amino, and hydroxyl groups of the GOCNPs and PE resulted in successful encapsulation, with an entrapment efficacy of 97.3 %. The PE#GOCNPs formulation also exhibited excellent physicochemical stability and time-triggered drug release characteristics under physiological conditions. Furthermore, PE#GOCNPs showed significant activity against MCF-7 and HEPG2 carcinoma cells by scavenging free oxygen radicals and upregulating antioxidant enzymes. Additionally, PE#GOCNPs displayed anti-inflammatory properties by increasing IL10 and reducing pro-inflammatory cytokines more effectively than celecoxib. Furthermore, PE#GOCNPs reduced the expression of epidermal growth factor receptor (EGFR) and survivin genes. Furthermore, the encapsulated PE demonstrated significant activity in suppressing sonic hedgehog protein (SHH). The use of GOCNPs in combination with propolis presents a promising new strategy for chemotherapy with reduced toxicity and enhanced biocompatibility. This novel approach has the potential to revolutionize the field of chemotherapy. Future studies should focus on the application of the encapsulated PE in various cancer cell lines, distinct gene expression factors, and cell cycles.


Subject(s)
Antioxidants , Cell Proliferation , Chitin , Chitosan , Nanoparticles , Oligosaccharides , Propolis , Humans , Propolis/chemistry , Propolis/pharmacology , Chitosan/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Chitin/analogs & derivatives , Chitin/chemistry , Chitin/pharmacology , Cell Proliferation/drug effects , Hep G2 Cells , MCF-7 Cells , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Drug Delivery Systems
7.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690023

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Subject(s)
Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
8.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710571

ABSTRACT

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Subject(s)
Cell Wall , Chitin , Chitosan , Glucans , Oryza , Plant Diseases , Rhizoctonia , Rhizoctonia/drug effects , Oryza/microbiology , Oryza/chemistry , Cell Wall/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Chitin/chemistry , Chitin/pharmacology , Glucans/chemistry , Glucans/pharmacology , Plant Diseases/microbiology , Disease Resistance , Reactive Oxygen Species/metabolism
9.
Chem Biodivers ; 21(6): e202400044, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591818

ABSTRACT

Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.


Subject(s)
Antifungal Agents , Chitosan , Fungi , Oligosaccharides , Chitosan/chemistry , Chitosan/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Fungi/drug effects , Humans , Chitin/chemistry , Chitin/pharmacology , Chitin/analogs & derivatives , Microbial Sensitivity Tests
10.
Int J Biol Macromol ; 269(Pt 2): 131927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685538

ABSTRACT

The accumulation of methylglyoxal (MGO) produced in high-temperature processed foods and excessive production in the body contributes to intestinal barrier dysfunction. In this study, we investigated the effects of chitooligosaccharides (COSs) of different molecular weights (<1 kDa, 1-3 kDa, 3-5 kDa, 5-10 kDa, and >10 kDa) on MGO-induced intestinal barrier dysfunction. We investigated the effect of COSs on inhibiting intracellular MGO accumulation/MGO-derived AGEs production and regulating the receptor for AGE (RAGE)-mediated downstream protein expression, including proteins related to apoptosis and inflammation, intestinal barrier integrity, and paracellular permeability. Pretreatment with COSs ameliorated MGO-induced increased RAGE protein expression, activation of apoptotic cascade/inflammatory response, loss of intestinal epithelial barrier integrity, and increased paracellular permeability, ameliorating intestinal dysfunction through MGO scavenging. 1-3 kDa COSs most effectively ameliorated MGO-induced intestinal dysfunction. Our results suggest the potential of COSs in improving intestinal health by ameliorating intestinal barrier dysfunction by acting as an MGO scavenger and highlighting the need for the optimization of the molecular weight of COSs to optimize its protective effects.


Subject(s)
Chitosan , Glycation End Products, Advanced , Intestinal Mucosa , Molecular Weight , Oligosaccharides , Pyruvaldehyde , Receptor for Advanced Glycation End Products , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Chitosan/pharmacology , Chitosan/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Humans , Intestines/drug effects , Intestines/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Apoptosis/drug effects , Chitin/pharmacology , Chitin/analogs & derivatives , Chitin/chemistry , Permeability/drug effects
11.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605414

ABSTRACT

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Subject(s)
Chitin , Chitinases , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Chitin/pharmacology , Chitin/therapeutic use , Chitinases/therapeutic use , Immunosuppression Therapy , Lymphatic Metastasis , Proteins/therapeutic use , Triple Negative Breast Neoplasms/pathology
12.
Int J Biol Macromol ; 265(Pt 2): 131120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527680

ABSTRACT

Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.


Subject(s)
Cartilage, Articular , Tissue Scaffolds , Tissue Scaffolds/chemistry , Chitin/pharmacology , Chitin/therapeutic use , Cartilage , Tissue Engineering/methods , Hydrogels/chemistry , Polymers
13.
Biochemistry ; 63(8): 1051-1065, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38533731

ABSTRACT

Climate and environmental changes have modified the habitats of fungal pathogens, inflicting devastating effects on livestock and crop production. Additionally, drug-resistant fungi are increasing worldwide, driving the urgent need to identify new molecular scaffolds for the development of antifungal agents for humans, animals, and plants. Poacic acid (PA), a plant-derived stilbenoid, was recently discovered to be a novel molecular scaffold that inhibits the growth of several fungi. Its antifungal activity has been associated with perturbation of the production/assembly of the fungal cell wall ß-1,3-glucan, but its mode of action is not resolved. In this study, we investigated the antifungal activity of PA and its derivatives on a panel of yeast. PA had a fungistatic effect on S. cerevisiae and a fungicidal effect on plasma membrane-damaged Candida albicans mutants. Live cell fluorescence microscopy experiments revealed that PA increases chitin production and modifies its cell wall distribution. Chitin production and cell growth returned to normal after prolonged incubation. The antifungal activity of PA was reduced in the presence of exogenous chitin, suggesting that the potentiation of chitin production is a stress response that helps the yeast cell overcome the effect of this antifungal stilbenoid. Growth inhibition was also reduced by metal ions, indicating that PA affects the metal homeostasis. These findings suggest that PA has a complex antifungal mechanism of action that involves perturbation of the cell wall ß-1,3-glucan production/assembly, chitin production, and metal homeostasis.


Subject(s)
Antifungal Agents , Coumaric Acids , Stilbenes , Humans , Animals , Antifungal Agents/pharmacology , Saccharomyces cerevisiae , Chitin/pharmacology , Stilbenes/pharmacology , Candida albicans , Cell Wall , Glucans
14.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494231

ABSTRACT

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Subject(s)
Agaricales , Anti-Infective Agents , Gastrointestinal Microbiome , Animals , Humans , Prebiotics , Polysaccharides/pharmacology , Polysaccharides/chemistry , Chitin/pharmacology , Glucans/pharmacology , Anti-Infective Agents/pharmacology
15.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431420

ABSTRACT

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Subject(s)
Chitosan , Liquid Crystals , Animals , Chitosan/chemistry , Hydrogels/pharmacology , Hydrogels/metabolism , Chitin/pharmacology , Chitin/metabolism , Vibrissae , Tissue Scaffolds/chemistry , Bone Regeneration , Tissue Engineering , Osteogenesis , Extracellular Matrix/metabolism , Anti-Bacterial Agents/pharmacology
16.
Chem Biol Drug Des ; 103(3): e14496, 2024 03.
Article in English | MEDLINE | ID: mdl-38444006

ABSTRACT

Chitooligosaccharide (COS) is a derivative of chitosan, which is a natural macromolecular compound. COS has been shown effects in an inflammatory response. Recent reports show that COS derivatives have enhanced anti-inflammatory activity by inhibiting intracellular signals. Evaluation of the anti-inflammatory effect of caffeic acid conjugated COS chain (CA-COS) was performed in this study. The effects of CA-COS on the inflammatory response were demonstrated in lipopolysaccharide-stimulated RAW264.7 macrophages. The results showed that CA-COS inhibited nitric oxide (NO) production and downregulated the gene expression of nitric oxide synthase (iNOS), and cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6 without cytotoxic effect. In addition, western blot analysis showed that CA-COS inhibits the protein expression of iNOS and nuclear factor kappa B (NF-kB), including p50 and p65, and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these results provide clear evidence for the anti-inflammatory mechanism of CA-COS that show great potential as a novel agent for the prevention and therapy of inflammatory diseases.


Subject(s)
Caffeic Acids , Chitosan , Mitogen-Activated Protein Kinases , NF-kappa B , Oligosaccharides , Chitin/pharmacology , Anti-Inflammatory Agents/pharmacology
17.
J Glob Antimicrob Resist ; 37: 62-68, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408565

ABSTRACT

OBJECTIVES: This study aimed to identify the resistance mechanisms to micafungin and fluconazole in a clinical isolate of Candida glabrata. METHODS: The isolate was whole-genome sequenced to identify amino acid changes in key proteins involved in antifungal resistance, and the isolate was further characterised by pathogenicity-related phenotypic assays that supported the sequencing results. RESULTS: Amino acid substitutions were detected in 8 of 17 protein candidates. Many of these substitutions were novel, including in CHS3, CHS3B, and KRE5, which are involved in the development of micafungin resistance. Regarding fluconazole resistance, overexpression of efflux pumps was observed. Our isolate did not exhibit an increased virulence potential compared with the control strain; however, a significant increase in chitin content and potential to resist the cell surface disruptant sodium dodecyl sulphate was observed. CONCLUSIONS: This clinical Candida glabrata isolate experienced a change in cell wall architecture, which correlates with the development of micafungin resistance.


Subject(s)
Antifungal Agents , Candida glabrata , Chitin , Drug Resistance, Fungal , Micafungin , Microbial Sensitivity Tests , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/isolation & purification , Antifungal Agents/pharmacology , Humans , Micafungin/pharmacology , Chitin/metabolism , Chitin/pharmacology , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Whole Genome Sequencing , Candidiasis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Amino Acid Substitution , Cell Wall
18.
J Wound Care ; 33(Sup2): S10-S23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38348864

ABSTRACT

OBJECTIVE: Keeping a wound moist can allow effective and rapid healing, and it can control the formation of scabs, thereby allowing cell proliferation and epithelial formation. When regularly changing a dressing, thermosensitive hydrogel as a moist dressing does not cause a secondary wound from adhesion. The main aim of this study was to evaluate the effect of a new sprayable thermosensitive hydrogel on wound healing. METHOD: The hydrophobic N-acetyl group of chitin was removed by microwave reaction with lye until the degree of acetylation was 60%, followed by reaction with propylene oxide to obtain hydroxypropyl chitin (HPCH) with a degree of substitution of 40%. After mixing HPCH with fish scale collagen (FSC), a thermosensitive hydrogel with a gel temperature of 26.5°C was obtained. Ampelopsis brevipedunculata extracts (ABE), which have been found to accelerate wound repair and improve healing, were added. HPCH/FSC is not toxic to the mouse L929 cell line and forms a hydrogel at body surface temperature. It can be easily sprayed on a wound. The HPCH/FSC has a three-dimensional network porous structure with a swelling ratio of 10.95:1 and a water vapour transmission rate of 2386.03±228.87g/m2/day; it can facilitate the penetration of water and air, and promote absorption of wound exudate. Wound repair was performed on five Sprague-Dawley rats. Each rat had three wounds, which were treated with medical gauze, HPCH/FSC and HPCH/FSC/ABE, respectively. RESULTS: The wounds in the HPCH/FSC/ABE group recovered the fastest in vivo, the mature wound site was smoother, the re-epithelialisation was even and thicker, and the angiogenesis developed rapidly to the mature stage. CONCLUSION: In this study, HPCH/FSC/ABE thermosensitive hydrogel was shown to effectively accelerate wound healing and was convenient for practical application.


Subject(s)
Ampelopsis , Hydrogels , Mice , Rats , Animals , Hydrogels/pharmacology , Chitin/chemistry , Chitin/pharmacology , Rats, Sprague-Dawley , Wound Healing , Collagen/pharmacology
19.
Int J Biol Macromol ; 258(Pt 2): 129155, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171440

ABSTRACT

Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.


Subject(s)
Cockroaches , Osteogenesis , Animals , Humans , Tissue Scaffolds/chemistry , Quercetin/pharmacology , Chitin/pharmacology , Staphylococcus aureus , Tissue Engineering/methods , Bone Regeneration , Cell Differentiation
20.
Carbohydr Res ; 536: 109042, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244321

ABSTRACT

Two selenized chitooligosaccharide (O-Se-COS and N,O-Se-COS) with different sites modification were synthesized to alleviate liver injury in vivo. Comparing to traditional COS, both selenized COS exhibited enhanced reducibility as well as antioxidant capacity in vitro. Furthermore, O-Se-COS demonstrated superior efficacy in reducing intracellular reactive oxygen species (ROS) and mitochondrial damage compared to N,O-Se-COS as its enhanced cellular uptake by the positive/negative charge interactions. Two mechanisms were proposed to explained these results: one is to enhance the enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which effectively scavenge free radicals; the other is to down-regulate intracellular cytochrome P450 (CYP2E1) levels, inhibiting carbon tetrachloride (CCl4)-induced peroxidation damage. In vivo studies further demonstrated the effective alleviation of CCl4-induced liver injury by selenized COS, with therapeutic efficacy observed in the following order: O-Se-COS > N,O-Se-COS > COS. Finally, hemolysis and histological tests confirmed the biosafety of both selenized COS. Taken together, these finding demonstrated that selenium has the potential to improve the biological activity of COS, and precise selenylation was more conducive to achieving the synergistic effect where 1 + 1>2.


Subject(s)
Chitosan , Liver , Oligosaccharides , Selenium , Antioxidants/pharmacology , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Reactive Oxygen Species/metabolism , Chitin/pharmacology , Chitin/therapeutic use , Chitin/metabolism , Oxidative Stress , Selenium/pharmacology , Selenium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...