Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.818
1.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Article En | MEDLINE | ID: mdl-38838494

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Biodegradation, Environmental , Chlorella vulgaris , Waste Disposal, Fluid , Wastewater , Chlorella vulgaris/metabolism , Wastewater/chemistry , Mexico , Waste Disposal, Fluid/methods , Beverages , Food Industry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis
2.
Bioresour Technol ; 404: 130905, 2024 Jul.
Article En | MEDLINE | ID: mdl-38801952

Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.


Bacteria , Chlorella vulgaris , Drug Resistance, Microbial , Chlorella vulgaris/genetics , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Metagenomics/methods , Water Purification/methods , Genes, Bacterial , Microbial Consortia/genetics , Bacillus licheniformis/genetics , Water Microbiology , Cities , Drug Resistance, Bacterial/genetics
3.
Food Chem ; 453: 139686, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38788650

Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.


Antioxidants , Chlorella vulgaris , Digestion , Gastrointestinal Tract , Microalgae , Models, Biological , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Chlorella vulgaris/chemistry , Chlorella vulgaris/metabolism , Microalgae/chemistry , Microalgae/metabolism , Humans , Gastrointestinal Tract/metabolism , Biomass , Chlorophyta/chemistry , Chlorophyta/metabolism
4.
Environ Sci Pollut Res Int ; 31(24): 35952-35968, 2024 May.
Article En | MEDLINE | ID: mdl-38743336

The green microalga Chlorella vulgaris was used as a test organism during this study for evaluation of the impact of different heavy metal stress, Mn2+, Co2+, and Zn2+, on enhancing the biodiesel production. The algal cultures were grown for 13 days under heavy metal stress after which were subjected to estimation of growth, some primary metabolites, lipid, and fatty acid profiles. The maximum lipid accumulation (283.30 mg/g CDW) was recorded in the algal culture treated with 3 µM cobalt nitrate. Application of 2 mM manganese chloride; 1, 2, and 3 µM cobalt nitrate; and 0.2, 0.4, and 0.6 mM zinc sulfate caused highly significant increases in the lipid contents amounting to 183.8, 191.4, 230.6, 283.3, 176.3, 226.0, and 212.1 mg/g CDW, respectively, in comparison to control (153.4 mg/g CDW). The maximum proportion of saturated fatty acids (SFA) (64.44%) was noted in the culture treated with 6 mM MnCl2 due to the existence of palmitic acid (C16:0), stearic acid (C18:0), and pentadecylic acid (C15:0) which are represented by 53.59%, 5.96%, and 1.37%, respectively, of the total FAs. Relative increase in energy compound (REEC) showed that 1, 2, and 3 µM Co2+ lead to the highest stimulation in lipid and carbohydrate contents to 0.207, 0.352, and 0.329 × 103%, respectively. Empirical formulas were used for the assessment of biodiesel fuel properties based on FAME composition. The estimated properties met the prescribed international standard criteria.


Biofuels , Chlorella vulgaris , Fatty Acids , Metals, Heavy , Chlorella vulgaris/drug effects , Chlorella vulgaris/metabolism
5.
Food Chem ; 452: 139434, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38733680

Arthrospira (Limnospira) maxima (A. maxima) and Chlorella vulgaris (Ch. vulgaris) are among the approved microalgae and cyanobacteria (MaC) in the food industry that are known to be safe for consumption. However, both organisms are controversial regarding their vitamin B12 content, due to the possible occurrence of pseudo-cobalamin. Concurrently, their nutrition profiles remain understudied. The main purpose of the present study was to identify their nutrition profiles, focusing mainly on vitamin B12, amino acids, and micronutrients under iron-induced hormesis (10 mg/L Fe in treated samples). Our findings indicate a higher B12 content in A. maxima compared to Ch. vulgaris (both control and treated samples). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the cyanocobalamin content was determined as 0.42 ± 0.09 µg/g dried weight (DW) in the A. maxima control and 0.55 ± 0.02 µg/g DW in treated A. maxima, resulting in an insignificant difference. In addition, the iron-enriched medium increased the amount of iron in both tested biomasses (p < 0.01). However, a more pronounced (approximately 100×) boost was observed in Ch. vulgaris, indicating a better absorption capacity (control Ch. vulgaris 0.16 ± 0.01 mg/g Fe, treated Ch. vulgaris 15.40 ± 0.34 mg/g Fe). Additionally, Ch. vulgaris also showed a higher micronutrient content. Using both tested microalgae, meeting the sufficient recommended daily mineral allowance for an adult is possible. By combining biomass from A. maxima and Ch. vulgaris in a ratio of 6:1, we can fulfill the recommended daily allowance of vitamin B12 and iron by consuming 6 tablets/6 g. Importantly, iron hormesis stimulated amino acid composition in both organisms. The profile of amino acids may suggest these biomasses as promising potential nutrition sources.


Amino Acids , Chlorella vulgaris , Micronutrients , Spirulina , Vitamin B 12 , Chlorella vulgaris/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Vitamin B 12/metabolism , Vitamin B 12/analysis , Micronutrients/analysis , Micronutrients/metabolism , Amino Acids/metabolism , Amino Acids/analysis , Spirulina/chemistry , Spirulina/metabolism , Nutritive Value , Microalgae/chemistry , Microalgae/metabolism , Microalgae/growth & development , Tandem Mass Spectrometry , Iron/metabolism , Iron/analysis
6.
Bioresour Technol ; 403: 130868, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782193

Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production. The research evaluates the growth performance of Chlorella sorokiniana and Chlorella vulgaris across this integrated system for biomass and lipid production. Results indicate substantial biomass yields of 1.97 and 1.84 g/L, with lipid contents of 35 % and 41 % for C. sorokiniana and C. vulgaris, respectively. The macrobubble photobioreactor demonstrates high potential for microalgae biomass and lipid production, yielding quality fatty acid methyl esters such as palmitic, linoleic and stearic. This study presents an environmentally friendly system for efficient microalgae cultivation, generating lipid-rich biomass suitable for biodiesel production.


Biofuels , Biomass , Chlorella vulgaris , Chlorella , Lipids , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorella/growth & development , Chlorella/metabolism , Lipids/biosynthesis , Photobioreactors , Fatty Acids/metabolism , Microalgae/growth & development , Microalgae/metabolism
7.
Plant Foods Hum Nutr ; 79(2): 531-538, 2024 Jun.
Article En | MEDLINE | ID: mdl-38775982

Considering the growing popularity of functional foods, fortifying yoghurt with natural ingredients with various flavours and appearances could improve its nutritional and health potential. The current study aimed to evaluate the effect of Chlorella vulgaris (0.3 and 0.5%) and Moringa oleifera (0.3 and 0.5%) on the fermentation kinetics, apparent viscosity, antioxidant activity, microbiological, sensorial, and FTIR properties of yoghurt during storage. The results demonstrated that the incorporation of Chlorella vulgaris and Moringa oleifera into yoghurt increased acidification rate and decreased fermentation time (p < 0.05). Moringa oleifera (0.5%) improved the growth and survival of lactic acid bacteria as well as the phenolic and antioxidant properties of yoghurt. However, Chlorella vulgaris, at a concentration of 0.5% reduced the viability of lactic acid bacteria, viscosity, total phenolic, and antioxidant properties of yoghurt. In conclusion, it was found that Chlorella vulgaris, at 0.3%, and Moringa oleifera improved the phenolic, antioxidant properties, and acidification rate of yoghurt.


Antioxidants , Chlorella vulgaris , Fermentation , Food, Fortified , Moringa oleifera , Yogurt , Yogurt/analysis , Yogurt/microbiology , Moringa oleifera/chemistry , Chlorella vulgaris/growth & development , Antioxidants/analysis , Antioxidants/pharmacology , Food, Fortified/analysis , Viscosity , Phenols/analysis , Phenols/pharmacology , Functional Food , Hydrogen-Ion Concentration , Powders , Lactobacillales
8.
Aquat Toxicol ; 272: 106976, 2024 Jul.
Article En | MEDLINE | ID: mdl-38820742

Aquatic organism uptake and accumulate microplastics (MPs) through various pathways, with ingestion alongside food being one of the primary routes. However, the impact of food concentration on the accumulation of different types of MPs, particularly across various colors, remains largely unexplored. To address this gap, we selected Daphnia magna as a model organism to study the ingestion/egestion kinetics and the preference for different MP colors under varying concentrations of Chlorella vulgaris. Our findings revealed that as the concentration of Chlorella increased, the ingestion of MPs by D. magna initially increased and then showed a decline. During the egestion phase within clean medium without further food supply, an increase in food concentration during the ingestion phase led to a slower rate of MP discharge; while when food was present during the egestion phase, the discharge rate accelerated for all treatments, indicating the importance of food ingestion/digestion process on the MPs bioaccumulation. Furthermore, in the presence of phytoplankton, D. magna demonstrated a preference for ingesting green-colored MPs, especially at low and medium level Chlorella supply, possibly due to the enhanced food searching activities. Beyond gut passage, we also examined the attachment of MPs to the organism's body surface, finding that the number of adhered MPs increased with increasing food concentration, likely due to the intensified filtering current during food ingestion. In summary, this study demonstrated that under aquatic environment with increasing phytoplankton concentrations, the ingestion and egestion rates, color preferences, as well as surface adherence of MPs to filter feeding zooplanktons will be significantly influenced, which may further pose ecological risks. Our results offer novel insights into the unintentional accumulation of MPs by zooplankton, highlighting the complex interactions between food availability and MPs accumulation dynamics.


Daphnia , Microplastics , Water Pollutants, Chemical , Animals , Daphnia/physiology , Chlorella vulgaris/metabolism , Eating , Color , Phytoplankton , Bioaccumulation , Daphnia magna
9.
Mol Biol Rep ; 51(1): 613, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704764

BACKGROUND: The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS: This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS: A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION: This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.


Chlorella vulgaris , Diet, High-Fat , Kidney , Lacticaseibacillus casei , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Probiotics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/pathology , Animals , Diet, High-Fat/adverse effects , Mice , Kidney/pathology , Kidney/metabolism , Probiotics/pharmacology , Probiotics/administration & dosage , Male , Oxidative Stress/drug effects , Disease Models, Animal , Liver/pathology , Liver/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/therapy , Antioxidants/metabolism
10.
Harmful Algae ; 134: 102623, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705613

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
11.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722391

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
12.
J Environ Manage ; 359: 121034, 2024 May.
Article En | MEDLINE | ID: mdl-38703649

Frequent algal blooms cause algal cells and their algal organic matter (AOM) to become critical precursors of disinfection by-products (DBPs) during water treatment. The presence of bromide ion (Br-) in water has been demonstrated to affect the formation laws and species distribution of DBPs. However, few researchers have addressed the formation and toxicity alteration of halonitromethanes (HNMs) from algae during disinfection in the presence of Br-. Therefore, in this work, Chlorella vulgaris was selected as a representative algal precursor to investigate the formation and toxicity alteration of HNMs during UV/chloramination involving Br-. The results showed that the formation concentration of HNMs increased and then decreased during UV/chloramination. The intracellular organic matter of Chlorella vulgaris was more susceptible to form HNMs than the extracellular organic matter. When the Br-: Cl2 mass ratio was raised from 0.004 to 0.08, the peak of HNMs total concentration increased 33.99%, and the cytotoxicity index and genotoxicity index of HNMs increased 67.94% and 22.80%. Besides, the formation concentration and toxicity of HNMs increased with increasing Chlorella vulgaris concentration but decreased with increasing solution pH. Possible formation pathways of HNMs from Chlorella vulgaris during UV/chloramination involving Br- were proposed based on the alteration of nitrogen species and fluorescence spectrum analysis. Furthermore, the formation laws of HNMs from Chlorella vulgaris in real water samples were similar to those in deionized water samples. This study contributes to a better comprehension of HNMs formation from Chlorella vulgaris and provides valuable information for water managers to reduce hazards associated with the formation of HNMs.


Bromides , Chlorella vulgaris , Chlorella vulgaris/drug effects , Bromides/chemistry , Bromides/toxicity , Disinfection , Water Purification , Ultraviolet Rays
13.
Environ Pollut ; 349: 123987, 2024 May 15.
Article En | MEDLINE | ID: mdl-38621453

Algae-driven photosynthetic CO2 fixation is a promising strategy to mitigate global climate changes and energy crises. Yet, the presence of metal nanoparticles (NPs), particularly dissolvable NPs, in aquatic ecosystems introduces new complexities due to their tendency to release metal ions that may perturb metabolic processes related to algal CO2 fixation. This study selected six representative metal NPs (Fe3O4, ZnO, CuO, NiO, MgO, and Ag) to investigate their impacts on CO2 fixation by algae (Chlorella vulgaris). We discovered an intriguing phenomenon that bivalent metal ions released from the metal NPs, especially from ZnO NPs, substituted Mg2+ within the porphyrin ring. This interaction led to 81.8% and 76.1% increases in Zinc-chlorophyll and Magnesium-chlorophyll contents within algal cells at 0.01 mM ZnO NPs, respectively. Integrating metabolomics and transcriptomics analyses revealed that ZnO NPs mainly promoted the photosynthesis-antenna protein pathway, porphyrin and chlorophyll metabolism, and carbon fixation pathway, thereby mitigating the adverse effects of Zn2+ substitution in light harvesting and energy transfer for CO2 fixation. Ultimately, the genes encoding Rubisco large subunit (rbcL) responsible for CO2 fixation were upregulated to 2.60-fold, resulting in a 76.3% increase in carbon fixation capacity. Similar upregulations of rbcL expression (1.13-fold) and carbon fixation capacity (76.1%) were observed in algal cells even at 0.001 mM ZnO NPs, accompanied by valuable lipid accumulation. This study offers novel insights into the molecular mechanism underlying NPs on CO2 fixation by algae and potentially introduces strategies for global carbon sequestration.


Carbon Cycle , Carbon Dioxide , Chlorophyll , Metal Nanoparticles , Photosynthesis , Metal Nanoparticles/chemistry , Carbon Dioxide/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Chlorella vulgaris/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
14.
Bioresour Technol ; 400: 130687, 2024 May.
Article En | MEDLINE | ID: mdl-38614148

This study explores bioremediation's effectiveness in reducing carbon emissions through the use of microalgae Chlorella vulgaris, known for capturing carbon dioxide and producing biomass. The impact of temperature and light intensity on productivity and carbon dioxide capture was investigated, and cultivation conditions were optimized in a photobioreactor using response surface methodology (RSM), analysis of variance (ANOVA), and deep neural networks (DNN). The optimal conditions determined were 28.74 °C and 225 µmol/m2/s with RSM, and 29.55 °C and 226.77 µmol/m2/s with DNN, closely aligning with literature values (29 °C and 225 µmol/m2/s). DNN demonstrated superior performance compared to RSM, achieving higher accuracy due to its capacity to process larger datasets using epochs and batches. The research serves as a foundation to further in this field by demonstrating the potential of utilizing diverse mathematical models to optimize bioremediation conditions, and offering valuable insights to improve carbon dioxide capture efficiency in microalgae cultivation.


Biomass , Carbon Dioxide , Chlorella vulgaris , Photobioreactors , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Carbon Dioxide/metabolism , Photobioreactors/microbiology , Machine Learning , Analysis of Variance , Microalgae/metabolism , Microalgae/growth & development , Temperature , Light , Biodegradation, Environmental , Models, Biological
15.
Environ Sci Pollut Res Int ; 31(19): 28494-28506, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561529

Porous carbon generated from biomass has a rich pore structure, is inexpensive, and has a lot of promise for use as a carbon material for energy storage devices. In this work, nitrogen-doped porous carbon was prepared by co-pyrolysis using bagasse as the precursor and chlorella as the nitrogen source. ZnCl2 acts as both an activator and a nitrogen fixer during activation to generate pores and reduce nitrogen loss. The thermal weight loss experiments showed that the pyrolysis temperatures of bagasse and chlorella overlap, which created the possibility for the synthesis of nitrogen-rich biochar. The optimum sample (ZBC@C-5) possessed a surface area of 1508 m2g-1 with abundant nitrogen-containing functional groups. ZBC@C-5 in the three-electrode system exhibited 244.1F/g at 0.5A/g, which was extremely close to ZBC@M made with melamine as the nitrogen source. This provides new opportunities for the use of low-cost nitrogen sources. Furthermore, the devices exhibit better voltage retention (39%) and capacitance retention (96.3%). The goal of this research is to find a low cost, and effective method for creating nitrogen-doped porous carbon materials with better electrochemical performance for highly valuable applications using bagasse and chlorella.


Biomass , Carbon , Chlorella vulgaris , Nitrogen , Pyrolysis , Triazines , Nitrogen/chemistry , Carbon/chemistry , Porosity , Triazines/chemistry , Cellulose/chemistry
16.
Environ Sci Pollut Res Int ; 31(19): 28620-28631, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561535

In recent years, there has been a significant rise in the utilization of amino-functionalized polystyrene nanoplastics (PS-NH2). This surge in usage can be attributed to their exceptional characteristics, including a substantial specific surface area, high energy, and strong reactivity. These properties make them highly suitable for a wide range of industrial and medical applications. Nevertheless, there is a growing apprehension regarding their potential toxicity to aquatic organisms, particularly when considering the potential impact of heavy metals like lead (Pb) on the toxicity of PS-NH2. Herein, we examined the toxic effects of sole PS-NH2 (90 nm) at five concentrations (e.g., 0, 0.125, 0.25, 0.5, and 1 mg/L), as well as the simultaneous exposure of PS-NH2 and Pb2+ (using two environmental concentrations, e.g., 20 µg/L for Pb low (PbL) and 80 µg/L for Pb higher (PbH)) to the microalga Chlorella vulgaris. After a 96-h exposure, significant differences in chlorophyll a content and algal growth (biomass) were observed between the control group and other treatments (ANOVA, p < 0.05). The algae exposed to PS-NH2, PS-NH2 + PbL, and PS-NH2 + PbH treatment groups exhibited dose-dependent toxicity responses to chlorophyll a content and biomass. According to the Abbott toxicity model, the combined toxicity of treatment groups of PS-NH2 and PbL,H showed synergistic effects. The largest morphological changes such as C. vulgaris' size reduction and cellular aggregation were evident in the medium treated with elevated concentrations of both PS-NH2 and Pb2+. The toxicity of the treatment groups followed the sequence PS-NH2 < PS-NH2 + PbL < PS-NH2 + PbH. These results contribute novel insights into co-exposure toxicity to PS-NH2 and Pb2+ in algae communities.


Antioxidants , Chlorella vulgaris , Lead , Lipid Peroxidation , Polystyrenes , Chlorella vulgaris/drug effects , Lead/toxicity , Polystyrenes/toxicity , Lipid Peroxidation/drug effects , Water Pollutants, Chemical/toxicity
17.
Poult Sci ; 103(6): 103721, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613915

Microalgae have potentially beneficial effects on animal health and nutritional value when added to feed. Crucial hereby is that intracellular bio-active molecules are released in the intestinal tract. Digestibility of Chlorella vulgaris and its impact on total digestibility of broiler feed is a first step in assessing its characteristics as feed supplement. Different methods could be used to increase the digestibility of the algae. Among other, pulsed electric field (PEF) and freezing to disrupt autotrophic (A) and heterotrophic (H) Chlorella vulgaris cells was assessed to increase their availability followed by in-vivo trials. In these trials effect of algae type (A and H) and effect of PEF-processing was evaluated on the apparent nutrient digestibility. Pulsed electric field showed to have a disruption efficiency of 83.90% and 79.20% for heterotrophic and autotrophic C. vulgaris respectively. Freezing C. vulgaris only showed efficiencies ranging from 3.86 to 11.58%. In the in-vivo trials, microscopic counting of intact C. vulgaris cells showed an increase in digested intact C. vulgaris cells of PEF-processed C. vulgaris compared to nonprocessed cells ranging from 12.16% to 15.20%. Autotrophic C. vulgaris had a higher digestibility compared to heterotrophic C. vulgaris, with an increase of 7.29, 9.44, and 17.29% in digestibility of C. vulgaris in the 1, 2, and 5% feed respectively. Feeds with PEF-processed C. vulgaris showed no significant increase in digestibility compared to nonprocessed C. vulgaris supplemented feeds. The 5% C. vulgaris feeds showed lower fat digestibility than the 1 and 2% and control feeds. Protein digestibility was lower for all C. vulgaris feeds compared to the control feed. There was a significant linear decreasing effect (P < 0.001) for all digestibility parameters. Except for crude ash digestibility, which first lowered for the 1 and 2% feeds, but then increased at 5% inclusion. Considering this study, including low dosages of 1 and 2% of C. vulgaris in broiler feed does not compromise its digestibility.


Animal Feed , Chickens , Chlorella vulgaris , Diet , Digestion , Chlorella vulgaris/metabolism , Animals , Chickens/physiology , Animal Feed/analysis , Digestion/physiology , Diet/veterinary , Animal Nutritional Physiological Phenomena , Dietary Supplements/analysis , Microalgae/chemistry , Electricity , Food Handling/methods , Male
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612474

The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.


Chlorella vulgaris , Hydrogenase , Metals , Iron , Hydrogen , Sulfur , Water
19.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615650

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
20.
PLoS One ; 19(4): e0297464, 2024.
Article En | MEDLINE | ID: mdl-38598537

Microalgae biomass is regarded as a promising feedstock for biodiesel production. The biomass lipid content and fatty acids composition are among the main selective criteria when screening microalgae strains for biodiesel production. In this study, three strains of Chlorella microalgae (C. kessleri, C. sorokiniana, C. vulgaris) were cultivated nutrient media with different nitrogen contents, and on a medium with the addition of dairy wastewater. Moreover, microalgae grown on dairy wastewater allowed the removal of azote and phosphorous. The removal efficiency of 90%, 53% and 95% of ammonium nitrogen, total nitrogen and phosphate ions, respectively, were reached. The efficiency of wastewater treatment from inorganic carbon was 55%, while the maximum growth of biomass was achieved. All four samples of microalgae had a similar fatty acid profile. Palmitic acid (C16:0) was the most abundant saturated fatty acid (SFA), and is suitable for the production of biodiesel. The main unsaturated fatty acids (UFA) present in the samples were oleic acid (C18:1 n9); linoleic acid (C18:2 n6) and alpha-linolenic acid (C18:3 n3), which belong to omega-9, omega-6, omega-3, respectively.


Chlorella vulgaris , Microalgae , Wastewater , Biofuels/analysis , Fatty Acids , Nutrients , Biomass , Nitrogen
...