Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Bioresour Technol ; 403: 130868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782193

ABSTRACT

Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production. The research evaluates the growth performance of Chlorella sorokiniana and Chlorella vulgaris across this integrated system for biomass and lipid production. Results indicate substantial biomass yields of 1.97 and 1.84 g/L, with lipid contents of 35 % and 41 % for C. sorokiniana and C. vulgaris, respectively. The macrobubble photobioreactor demonstrates high potential for microalgae biomass and lipid production, yielding quality fatty acid methyl esters such as palmitic, linoleic and stearic. This study presents an environmentally friendly system for efficient microalgae cultivation, generating lipid-rich biomass suitable for biodiesel production.


Subject(s)
Biofuels , Biomass , Chlorella vulgaris , Chlorella , Lipids , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorella/growth & development , Chlorella/metabolism , Lipids/biosynthesis , Photobioreactors , Fatty Acids/metabolism , Microalgae/growth & development , Microalgae/metabolism
2.
Harmful Algae ; 134: 102623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705613

ABSTRACT

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Subject(s)
Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
3.
Food Chem ; 452: 139434, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733680

ABSTRACT

Arthrospira (Limnospira) maxima (A. maxima) and Chlorella vulgaris (Ch. vulgaris) are among the approved microalgae and cyanobacteria (MaC) in the food industry that are known to be safe for consumption. However, both organisms are controversial regarding their vitamin B12 content, due to the possible occurrence of pseudo-cobalamin. Concurrently, their nutrition profiles remain understudied. The main purpose of the present study was to identify their nutrition profiles, focusing mainly on vitamin B12, amino acids, and micronutrients under iron-induced hormesis (10 mg/L Fe in treated samples). Our findings indicate a higher B12 content in A. maxima compared to Ch. vulgaris (both control and treated samples). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the cyanocobalamin content was determined as 0.42 ± 0.09 µg/g dried weight (DW) in the A. maxima control and 0.55 ± 0.02 µg/g DW in treated A. maxima, resulting in an insignificant difference. In addition, the iron-enriched medium increased the amount of iron in both tested biomasses (p < 0.01). However, a more pronounced (approximately 100×) boost was observed in Ch. vulgaris, indicating a better absorption capacity (control Ch. vulgaris 0.16 ± 0.01 mg/g Fe, treated Ch. vulgaris 15.40 ± 0.34 mg/g Fe). Additionally, Ch. vulgaris also showed a higher micronutrient content. Using both tested microalgae, meeting the sufficient recommended daily mineral allowance for an adult is possible. By combining biomass from A. maxima and Ch. vulgaris in a ratio of 6:1, we can fulfill the recommended daily allowance of vitamin B12 and iron by consuming 6 tablets/6 g. Importantly, iron hormesis stimulated amino acid composition in both organisms. The profile of amino acids may suggest these biomasses as promising potential nutrition sources.


Subject(s)
Amino Acids , Chlorella vulgaris , Micronutrients , Spirulina , Vitamin B 12 , Chlorella vulgaris/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Vitamin B 12/metabolism , Vitamin B 12/analysis , Micronutrients/analysis , Micronutrients/metabolism , Amino Acids/metabolism , Amino Acids/analysis , Spirulina/chemistry , Spirulina/metabolism , Nutritive Value , Microalgae/chemistry , Microalgae/metabolism , Microalgae/growth & development , Tandem Mass Spectrometry , Iron/metabolism , Iron/analysis
4.
Plant Foods Hum Nutr ; 79(2): 531-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38775982

ABSTRACT

Considering the growing popularity of functional foods, fortifying yoghurt with natural ingredients with various flavours and appearances could improve its nutritional and health potential. The current study aimed to evaluate the effect of Chlorella vulgaris (0.3 and 0.5%) and Moringa oleifera (0.3 and 0.5%) on the fermentation kinetics, apparent viscosity, antioxidant activity, microbiological, sensorial, and FTIR properties of yoghurt during storage. The results demonstrated that the incorporation of Chlorella vulgaris and Moringa oleifera into yoghurt increased acidification rate and decreased fermentation time (p < 0.05). Moringa oleifera (0.5%) improved the growth and survival of lactic acid bacteria as well as the phenolic and antioxidant properties of yoghurt. However, Chlorella vulgaris, at a concentration of 0.5% reduced the viability of lactic acid bacteria, viscosity, total phenolic, and antioxidant properties of yoghurt. In conclusion, it was found that Chlorella vulgaris, at 0.3%, and Moringa oleifera improved the phenolic, antioxidant properties, and acidification rate of yoghurt.


Subject(s)
Antioxidants , Chlorella vulgaris , Fermentation , Food, Fortified , Moringa oleifera , Yogurt , Yogurt/analysis , Yogurt/microbiology , Moringa oleifera/chemistry , Chlorella vulgaris/growth & development , Antioxidants/analysis , Antioxidants/pharmacology , Food, Fortified/analysis , Viscosity , Phenols/analysis , Phenols/pharmacology , Functional Food , Hydrogen-Ion Concentration , Powders , Lactobacillales
5.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615650

ABSTRACT

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Subject(s)
Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
6.
Bioresour Technol ; 400: 130687, 2024 May.
Article in English | MEDLINE | ID: mdl-38614148

ABSTRACT

This study explores bioremediation's effectiveness in reducing carbon emissions through the use of microalgae Chlorella vulgaris, known for capturing carbon dioxide and producing biomass. The impact of temperature and light intensity on productivity and carbon dioxide capture was investigated, and cultivation conditions were optimized in a photobioreactor using response surface methodology (RSM), analysis of variance (ANOVA), and deep neural networks (DNN). The optimal conditions determined were 28.74 °C and 225 µmol/m2/s with RSM, and 29.55 °C and 226.77 µmol/m2/s with DNN, closely aligning with literature values (29 °C and 225 µmol/m2/s). DNN demonstrated superior performance compared to RSM, achieving higher accuracy due to its capacity to process larger datasets using epochs and batches. The research serves as a foundation to further in this field by demonstrating the potential of utilizing diverse mathematical models to optimize bioremediation conditions, and offering valuable insights to improve carbon dioxide capture efficiency in microalgae cultivation.


Subject(s)
Biomass , Carbon Dioxide , Chlorella vulgaris , Photobioreactors , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Carbon Dioxide/metabolism , Photobioreactors/microbiology , Machine Learning , Analysis of Variance , Microalgae/metabolism , Microalgae/growth & development , Temperature , Light , Biodegradation, Environmental , Models, Biological
7.
Chemosphere ; 356: 141931, 2024 May.
Article in English | MEDLINE | ID: mdl-38614391

ABSTRACT

Chlorella vulgaris was cultivated for 15 days in 10 different treatments under mixotrophic and heterotrophic conditions, using wastewater from oil and poultry industries as the culture medium. The blends were made with produced water (PW), sterilized produced water (PWs), sterilized poultry wastewater (PoWs), sterilized seawater (SWs), and the addition of sodium nitrate to evaluate cell growth in treatments and the removal of PAHs. The heterotrophic condition showed more effective removal, having an initial concentration of 3.93 µg L-1 and a final concentration of 0.57 µg L-1 of total PAHs reporting 83%, during phycoremediation of (PW) than the mixotrophic condition, with an initial concentration of 3.93 µg L-1 and a final concentration of 1.96 and 43% removal for the PAHs. In the heterotrophic condition, the blend with (PWs + SWs) with an initial concentration of 0.90 µg L-1 and a final concentration of 0.32 µg L-1 had 64% removal of total PAHs compared to the mixotrophic condition with 37% removal having an initial concentration of 0.90 µg L-1 and a final concentration of 0.56 µg L-1. However, the best result in the mixotrophic condition was obtained using a blend of (PWs + PoWs) that had an initial cell concentration of 1.18 × 105 cells mL-1 and reached a final cell concentration of 4.39 × 105 cells mL-1, an initial concentration of 4.76 µg L-1 and a final concentration of 0.37 µg L-1 having a 92% total removal of PAHs. The biostimulation process increased the percentage of PAHs removal by 45% (PW) in the mixotrophic condition. This study showed that it is possible to allow an environmental remediation strategy that significantly reduces effluent toxicity and generates high value-added biomass in contaminated effluents rich in nutrients and carbon, based on a circular bioeconomy model.


Subject(s)
Biodegradation, Environmental , Chlorella vulgaris , Microalgae , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Water Pollutants, Chemical/metabolism , Wastewater/chemistry , Microalgae/metabolism , Heterotrophic Processes , Waste Disposal, Fluid/methods
8.
Environ Res ; 252(Pt 1): 118755, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38555091

ABSTRACT

The rising global demand for agricultural products is leading to the widespread application of pesticides, such as spinetoram, resulting in environmental pollution and ecotoxicity to nontarget organisms in aquatic ecosystems. This research focused on assessing the toxicity of spinetoram at various concentrations (0, 0.01, 0.1, 0.5, 1.0, and 3.0 mg L-1) on two common freshwater microalgae, Chlorella vulgaris and Microcystis aeruginosa, to shed light on the ecotoxicological effects of insecticides. Our findings demonstrate that M. aeruginosa is more sensitive to spinetoram than is C. vulgaris, with a concentration-dependent reduction in the growth rate observed for M. aeruginosa, whereas only the highest concentration of spinetoram adversely affected C. vulgaris. At a concentration of 0.01 mg L-1, the growth rate of M. aeruginosa unexpectedly increased beginning on day 7, indicating a potential hormetic effect. Although initial exposure to spinetoram improved the photosynthetic efficiency of both microalgae strains at all concentrations, detrimental effects became apparent at higher concentrations and with prolonged exposure. The photosynthetic efficiency of C. vulgaris recovered, in contrast to that of M. aeruginosa, which exhibited limited recovery. Spinetoram more significantly inhibited the effective quantum yield of PSII (EQY) in M. aeruginosa than in C. vulgaris. Although spinetoram is not designed to target phytoplankton, its toxicity can disrupt primary productivity and modify phytoplankton-consumer interactions via bottom-up control mechanisms. This study enhances our understanding of spinetoram's ecotoxicity and potential effects on aquatic ecosystems.


Subject(s)
Chlorella vulgaris , Microcystis , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Microcystis/drug effects , Microcystis/growth & development , Water Pollutants, Chemical/toxicity , Fresh Water/microbiology , Microalgae/drug effects , Photosynthesis/drug effects , Dose-Response Relationship, Drug , Insecticides/toxicity , Macrolides/toxicity
9.
Bioprocess Biosyst Eng ; 45(1): 15-30, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34677674

ABSTRACT

Kinetic growth models are a useful tool for a better understanding of microalgal cultivation and for optimizing cultivation conditions. The evaluation of such models requires experimental data that is laborious to generate in bioreactor settings. The experimental shake flask setting used in this study allows to run 12 experiments at the same time, with 6 individual light intensities and light durations. This way, 54 biomass data sets were generated for the cultivation of the microalgae Chlorella vulgaris. To identify the model parameters, a stepwise parameter estimation procedure was applied. First, light-associated model parameters were estimated using additional measurements of local light intensities at differ heights within medium at different biomass concentrations. Next, substrate related model parameters were estimated, using experiments for which biomass and nitrate data were provided. Afterwards, growth-related model parameters were estimated by application of an extensive cross validation procedure.


Subject(s)
Bioreactors , Chlorella vulgaris/metabolism , Models, Biological , Chlorella vulgaris/growth & development , Culture Media , Hydrogen-Ion Concentration , Kinetics , Light , Nitrates/metabolism , Photosynthesis , Temperature
10.
Cells ; 10(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34944079

ABSTRACT

Using a mathematical simulation approach, we studied the dynamics of the green microalga Chlorella vulgaris phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations. The distribution of phosphorous between cell pools was examined for three different stages of the experiment: growth in phosphate-rich medium, incubation in phosphate-free medium, and phosphate addition to the phosphorus-starving culture. Mathematical modeling offers two possible scenarios for the appearance of the peak of polyphosphates (PolyP). The first scenario explains the accumulation of PolyP by activation of the processes of its synthesis, and the decline in PolyP is due to its redistribution between dividing cells during growth. The second scenario includes a hysteretic mechanism for the regulation of PolyP hydrolysis, depending on the intracellular content of inorganic phosphate. The new model of the dynamics of P pools in the cell allows one to better understand the phenomena taking place during P starvation and re-feeding of the P-starved microalgal cultures with inorganic phosphate such as transient PolyP accumulation. Biotechnological implications of the observed dynamics of the polyphosphate pool of the microalgal cell are considered. An approach enhancing the microalgae-based wastewater treatment method based on these scenarios is proposed.


Subject(s)
Chlorella vulgaris/metabolism , Phosphates/metabolism , Phosphorus/deficiency , Phosphorus/pharmacology , Cell Count , Cells, Cultured , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Microalgae/drug effects , Microalgae/metabolism , Models, Biological , Polyphosphates/metabolism
11.
World J Microbiol Biotechnol ; 37(12): 216, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34762196

ABSTRACT

The algae-based technology has a positive effect on the treatment of biogas slurry and the purification of biogas, while vitamin B12 (VB12) is one of the important regulatory substances in the algae-based cultivation system. In this study, different concentrations of VB12 were used in three microalgal treatment technologies to assess their effect on simultaneous removal of nutrients from biogas slurry and removal of CO2 from raw biogas. Results showed that Chlorella vulgaris exhibited higher growth rate, mean daily productivity, chlorophyll a content, carbonic anhydrase activity and better photosynthetic properties when co-cultivated with Ganoderma lucidum, rather than when co-cultivated with activated sludge or under mono-cultivation. Maximum mean chemical oxygen demand, total nitrogen, total phosphorus and CO2 removal efficiencies were found to be 84.29 ± 8.28%, 83.27 ± 8.14%, 85.27 ± 8.46% and 65.71 ± 6.35%, respectively when microalgae were co-cultivated with Ganoderma lucidum under 100 ng L-1 of VB12. This study shows the potential of microalgae and fungi co-cultivation supplemented with VB12 for the simultaneous upgradation of biogas production as well as for the purification of biogas slurry.


Subject(s)
Biofuels/analysis , Carbon Dioxide/metabolism , Chlorella vulgaris/metabolism , Microalgae/metabolism , Reishi/metabolism , Vitamin B 12/metabolism , Biodegradation, Environmental , Biomass , Chlorella vulgaris/growth & development , Chlorophyll A/metabolism , Microalgae/growth & development , Nitrogen/metabolism , Nutrients/metabolism , Phosphorus/metabolism , Reishi/growth & development , Sewage/microbiology
12.
Sci Rep ; 11(1): 21621, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732760

ABSTRACT

Algal biofilms in streams are simultaneously controlled by light and nutrient availability (bottom-up control) and by grazing activity (top-down control). In addition to promoting algal growth, light and nutrients also determine the nutritional quality of algae for grazers. While short-term experiments have shown that grazers increase consumption rates of nutrient-poor algae due to compensatory feeding, nutrient limitation in the long run can constrain grazer growth and hence limit the strength of grazing activity. In this study, we tested the effects of light and phosphorus availability on grazer growth and thus on the long-term control of algal biomass. At the end of the experiment, algal biomass was significantly affected by light, phosphorus and grazing, but the interactive effects of the three factors significantly changed over time. At both high light and phosphorus supply, grazing did not initially reduce algal biomass, but the effect of grazing became stronger in the final three weeks of the experiment. Snail growth was enhanced by light, rather than phosphorus, suggesting that algal quantity rather than quality was the main limiting factor for grazer growth. Our results highlight the role of feedback effects and the importance of long-term experiments in the study of foodweb interactions.


Subject(s)
Biofilms/growth & development , Chlorella vulgaris/growth & development , Ecosystem , Eutrophication , Microalgae/growth & development , Rivers/chemistry , Snails/physiology , Animals , Light , Nitrogen/metabolism , Phosphorus/metabolism
13.
Sci Rep ; 11(1): 16741, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408229

ABSTRACT

Alginates derived from macroalgae have been widely used in a variety of applications due to their stability, biodegradability and biocompatibility. Alginate was extracted from Egyptian Sargassum latifolium thallus yielding 17.5% w/w. The chemical composition of S. latifolium is rich in total sugars (41.08%) and uronic acids (47.4%); while, proteins, lipids and sulfates contents are 4.61, 1.13 and 0.09%, respectively. NMR, FTIR and TGA analyses were also performed. Crystallinity index (0.334) indicates alginate semicrystalline nature. Sodium alginate hydrolysate was evaluated as Chlorella vulgaris growth promoter. The highest stimulation (0.7 g/L biomass) was achieved by using 0.3 g/L alginate hydrolysate supplementation. The highest total soluble proteins and total carbohydrates were 179.22 mg/g dry wt and 620.33 mg/g dry wt, respectively. The highest total phenolics content (27.697 mg/g dry wt.), guaiacol peroxidase activity (2.899 µmol min-1 g-1) were recorded also to 0.3 g/L alginate hydrolysate supplementation. Riboflavin-entrapped barium alginate-Arabic gum polymeric matrix (beads) was formulated to achieve 89.15% optimum drug entrapment efficiency (EE%). All formulations exhibited prolonged riboflavin release over 120 min in simulated gastric fluid, followed Higuchi model (R2 = 0.962-0.887) and Korsmeyer-Peppas model with Fickian release (n ranges from 0.204 to 0.3885).


Subject(s)
Alginates , Chlorella vulgaris/growth & development , Drug Delivery Systems , Riboflavin/chemistry , Sargassum/chemistry , Alginates/chemistry , Alginates/isolation & purification , Alginates/pharmacology
14.
N Biotechnol ; 65: 61-68, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34384916

ABSTRACT

Microalgae produce a broad range of organic compounds that are increasingly being recognised for their value in novel product production and biotechnological applications. Most microalgae are photoautotrophic, but some are capable of either mixotrophy or heterotrophy. Reported enhanced biomass yields or contrasting metabolite profiles compared to autotrophic growth improve the economics of large-scale production of microalgae, which currently limits industrial applications. Here, the potential of a high-throughput method for the rapid screening of microalgal metabolism was assessed against 95 different carbon sources, using the cost-effective Biolog plate. Of the 5 microalgae tested, Desmodesmus communis (30 carbon sources) and Chlorella vulgaris (19 carbon sources) had the highest number of positive responses to carbon sources, whereas Chlorella sorokiniana had the most negative (toxic) response to the various carbon sources (77 carbon sources). Comparison of Biolog plate results with traditional culture techniques showed good agreement. Species with a high number of positive responses on the Biolog plate exhibited the highest biomass yield under heterotrophic conditions, whilst those with low number of positive responses exhibited the highest biomass yield under autotrophic conditions, using traditional culturing techniques. While the use of these plates is limited to obtaining axenic lines of microalgal species, the method provided a high-throughput assessment of carbon source metabolism, without the expense of undertaking large, laborious traditional culturing assessments. Such high-throughput assessments can be regarded as useful tools for progressing species selection, metabolic capacity and optimal culture conditions for microalgal biotechnology applications.


Subject(s)
Chlorella vulgaris , Microalgae , Biomass , Carbon , Chlorella vulgaris/growth & development , Heterotrophic Processes , High-Throughput Screening Assays , Microalgae/growth & development
15.
PLoS One ; 16(4): e0249915, 2021.
Article in English | MEDLINE | ID: mdl-33831101

ABSTRACT

Ultraviolet (UV) filters are used in cosmetics, personal care products and packaging materials to provide sun protection for human skin and other substances. Little is known about these substances, but they continue to be released into the environment. The acute toxicity of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC to Chlorella vulgaris and Daphnia magna were analyzed in this study. The 96 h-EC50 values of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC on C. vulgaris were 183.60, 3.50 and 0.16874 mg/L, respectively. The 48 h-LC50 of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC on D. magna were 12.50, 3.74 and 0.54445 mg/L, respectively. The toxicity of a mixture of 4,4'-dihydroxybenzophenone and 4-MBC showed addictive effect on C. vulgaris, while the toxicity of mixtures of 4,4'-dihydroxybenzophenone and 2,4,4'-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC as well as 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC all showed antagonistic effect on C. vulgaris. The induced no-effect concentrations of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC by the assessment factor (AF) method were 0.0125, 0.00350 and 0.000169 mg/L, respectively.


Subject(s)
Benzophenones/toxicity , Camphor/analogs & derivatives , Chlorella vulgaris/growth & development , Daphnia/growth & development , Animals , Benzophenones/chemistry , Camphor/chemistry , Camphor/toxicity , Chlorella vulgaris/drug effects , Daphnia/drug effects , Drug Synergism , Molecular Structure , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Toxicity Tests, Acute
16.
Environ Toxicol Pharmacol ; 85: 103635, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33716093

ABSTRACT

Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 µg l-1 and 16-10000 µg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.


Subject(s)
Antimalarials/toxicity , Araceae/drug effects , Chlorella vulgaris/drug effects , Chlorophyta/drug effects , Lumefantrine/toxicity , Microalgae/drug effects , Water Pollutants, Chemical/toxicity , Araceae/growth & development , Araceae/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll/metabolism , Chlorophyta/growth & development , Chlorophyta/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Malondialdehyde/metabolism , Microalgae/growth & development , Microalgae/metabolism , Oxidative Stress/drug effects , Peroxidase/metabolism , Plant Proteins/metabolism
17.
Sci Rep ; 11(1): 4002, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597585

ABSTRACT

The architecture of microalgae biofilms has been poorly investigated, in particular with respect to shear stress, which is a crucial factor in biofilm-based reactor design and operation. To investigate how microalgae biofilms respond to different hydrodynamic regimes, the architecture and cohesion of Chlorella vulgaris biofilms were studied in flow-cells at three shear stress: 1.0, 6.5 and 11.0 mPa. Biofilm physical properties and architecture dynamics were monitored using a set of microscopic techniques such as, fluorescence recovery after photobleaching (FRAP) and particle tracking. At low shear, biofilms cohesion was heterogeneous resulting in a strong basal (close to the substrate) layer and in more loose superficial ones. Higher shear (11.0 mPa) significantly increased the cohesion of the biofilms allowing them to grow thicker and to produce more biomass, likely due to a biological response to resist the shear stress. Interestingly, an acclimation strategy seemed also to occur which allowed the biofilms to preserve their growth rate at the different hydrodynamic regimes. Our results are in accordance with those previously reported for bacteria biofilms, revealing some general physical/mechanical rules that govern microalgae life on substrates. These results may bring new insights about how to improve productivity and stability of microalgae biofilm-based systems.


Subject(s)
Biofilms/growth & development , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Biomass , Hydrodynamics , Microalgae/growth & development , Shear Strength/physiology , Stress, Mechanical
18.
Biotechnol Lett ; 43(4): 803-812, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33438120

ABSTRACT

OBJECTIVE: The effects of a brief (3 days) and prolonged (6 days) period of incubation in darkness and light on the biomass content, lipid content and fatty acid profile in Chlorella vulgaris UMT-M1 were determined. RESULTS: Three days of incubation in darkness increased saturated fatty acid (SFA) content from 34.0 to 41.4% but decreased monounsaturated fatty acid (MUFA) content from 36.7 to 29.8%. Palmitic acid (C16:0) content was increased from 23.2 to 28.9%, whereas oleic acid (C18:1) content was reduced from 35.4 to 28.8%. Total oil content was slightly decreased from 20.4 to 18.7% after 3 days of darkness, without a significant reduction in biomass compared to 3 days of incubation in light. Biomass and oil content was highest in cultures incubated for 6 days in light, however the stimulatory and inhibitory effects of darkness (or light) on SFA and MUFA content was no longer present at 6 days of incubation. CONCLUSIONS: Findings from this study suggests that fatty acid composition in C. vulgaris could be modulated to favor either C16:0 or C18:1 by a brief period of either darkness or light incubation, prior to harvesting.


Subject(s)
Chlorella vulgaris/growth & development , Fatty Acids, Monounsaturated/analysis , Fatty Acids/biosynthesis , Biomass , Chlorella vulgaris/metabolism , Chromatography, Gas , Culture Media/chemistry , Darkness , Fatty Acids/analysis , Fatty Acids, Monounsaturated/metabolism
19.
Sci Rep ; 11(1): 438, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432049

ABSTRACT

Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.


Subject(s)
Chlorella vulgaris/metabolism , Fatty Acids/physiology , Lipid Metabolism/physiology , Salinity , Biofuels , Biomass , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Culture Media/chemistry , Culture Media/pharmacology , Fatty Acids/classification , Sodium Chloride/pharmacology
20.
Molecules ; 26(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513787

ABSTRACT

Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.


Subject(s)
Microalgae/drug effects , Microalgae/growth & development , Nutrients/chemistry , Nutrients/pharmacology , Soil/chemistry , Carbon/chemistry , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Forests , Kinetics , Malaysia , Nitrogen/chemistry , Phosphorus/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...