Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.660
Filter
1.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39248655

ABSTRACT

Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.


Subject(s)
Chylomicrons , Dietary Fats , Mesocricetus , Receptors, Serotonin, 5-HT4 , Serotonin , Triglycerides , Animals , Male , Chylomicrons/metabolism , Serotonin/metabolism , Receptors, Serotonin, 5-HT4/metabolism , Dietary Fats/pharmacology , Triglycerides/metabolism , Triglycerides/blood , Cricetinae , Fenclonine/pharmacology , Intestinal Absorption/drug effects , Fluoxetine/pharmacology , Postprandial Period/drug effects , Diet, High-Fat/adverse effects , Selective Serotonin Reuptake Inhibitors/pharmacology
2.
AAPS PharmSciTech ; 25(7): 206, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237659

ABSTRACT

Intestinal lymphatic transport offers an alternative and effective way to deliver drugs, such as avoiding first-pass metabolism, enhancing oral bioavailability, and facilitating the treatment of targeted lymphoid-related diseases. However, the clinical use of luteolin (LUT) is limited by its poor water solubility and low bioavailability, and enhancing lymphatic transport by nanoemulsion may be an efficient way to enhance its oral bioavailability. The objective of this work is to prepare the luteolin nanoemulsions (LUT NEs), optimized its preparation parameters by using Box-Behnken design optimization (BBD) and evaluated it in vitro and in vivo. An Caco-2 / Raji B cell co-incubation monolayer model was established to simulate the M-cell pathway, and the differences in the transmembrane transport of LUT and NEs were compared. Cycloheximide (CHX) was utilized to establish rat chylomicron (CM) blocking model, and for investigating the influence of pharmacokinetic parameters in rats thereafter. The results showed that LUT NEs have good stability, the particle sizes were about 23.87 ± 0.57 nm. Compared with LUT suspension, The Papp of LUT NEs was enhanced for 3.5-folds, the oral bioavailability was increased by about 2.97-folds. In addition, after binding with chylomicron, the oral bioavailability of LUT NEs was decreased for about 30% (AUC 0-∞ (µg/L*h): 5.356 ± 1.144 vs 3.753 ± 0.188). These results demonstrated that NEs could enhance the oral absorption of luteolin via lymphatic transport routes.


Subject(s)
Biological Availability , Emulsions , Luteolin , Nanoparticles , Particle Size , Rats, Sprague-Dawley , Luteolin/pharmacokinetics , Luteolin/administration & dosage , Luteolin/chemistry , Animals , Rats , Humans , Caco-2 Cells , Administration, Oral , Male , Nanoparticles/chemistry , Solubility , Intestinal Absorption/physiology , Chylomicrons/metabolism , Biological Transport/physiology , Lymphatic System/metabolism
3.
J Pharmacol Toxicol Methods ; 129: 107548, 2024.
Article in English | MEDLINE | ID: mdl-39098619

ABSTRACT

Scientists have developed and employed various models to investigate intestinal lymphatic uptake. One approach involves using specific blocking agents to influence the chylomicron-mediated lymphatic absorption of drugs. Currently utilized models include pluronic L-81, puromycin, vinca alkaloids, colchicine, and cycloheximide. This review offers a thorough analysis of the diverse models utilized, evaluating existing reports while delineating the gaps in current research. It also explores pharmacokinetic related aspects of intestinal lymphatic uptake pathway and its blockage through the discussed models. Pluronic L-81 has a reversible effect, minimal toxicity, and unique mode of action. Yet, it lacks clinical reports on chylomicron pathway blockage, likely due to low concentrations used. Puromycin and vinca alkaloids, though documented for toxicity, lack information on their application in drug intestinal lymphatic uptake. Other vinca alkaloids show promise in affecting triglyceride profiles and represent possible agents to test as blockers. Colchicine and cycloheximide, widely used in pharmaceutical development, have demonstrated efficacy, with cycloheximide preferred for lower toxicity. However, further investigation into effective and toxic doses of colchicine in humans is needed to understand its clinical impact. The review additionally followed the complete journey of oral lymphatic targeting drugs from intake to excretion, provided a pharmacokinetic equation considering the intestinal lymphatic pathway for assessing bioavailability. Moreover, the possible application of urinary data as a non-invasive way to measure the uptake of drugs through intestinal lymphatics was illustrated, and the likelihood of drug interactions when specific blockers are employed in human subjects was underscored.


Subject(s)
Chylomicrons , Chylomicrons/metabolism , Humans , Animals , Retrospective Studies , Prospective Studies , Drug Delivery Systems/methods , Intestinal Absorption/drug effects , Lymphatic System/drug effects , Lymphatic System/metabolism , Biological Availability , Colchicine/pharmacokinetics , Colchicine/administration & dosage , Poloxamer/administration & dosage
4.
ACS Nano ; 18(34): 23136-23153, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39153194

ABSTRACT

Nanocrystals exhibit significant advantages in improving the oral bioavailability of poorly soluble drugs. However, the complicated absorption properties of nanocrystals and the differences in physiological characteristics between children and adults limit pediatric applications of nanocrystals. To elucidate the absorption differences and the underlying mechanisms between children and adults, the pharmacokinetics and tissue distribution of aprepitant crystals with different particle sizes (NC200, NC500, and MC2.5) in rats and mice at different ages were studied, and their absorption mechanisms were investigated in Caco-2 cells, mice, and rats. It was found that childhood animals demonstrated higher bioavailability compared with adolescent and adult animals, which was related to higher bile salt concentration and accelerated drug dissolution in the intestine of childhood animals. The majority of nanocrystals were dissolved and formed micelles under the influence of bile salts. Compared with intact nanocrystals, the bile salt micelle-associated aprepitant was absorbed through the chylomicron pathway, wherein Apo B assisted in the reassembling of the aprepitant micelles after endocytosis. Higher bile salt concentration and Apo B expression in the intestines of childhood animals are both responsible for the higher chylomicron transport pathways. Elucidation of the chylomicron pathway in the varied absorption of nanocrystals among children, adolescents, and adults provides strong theoretical guidance for promoting the rational and safe use of nanocrystals in pediatric populations.


Subject(s)
Chylomicrons , Nanoparticles , Animals , Nanoparticles/chemistry , Nanoparticles/metabolism , Humans , Caco-2 Cells , Rats , Mice , Male , Chylomicrons/metabolism , Chylomicrons/chemistry , Particle Size , Micelles , Aprepitant/pharmacokinetics , Aprepitant/chemistry , Aprepitant/pharmacology , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Child , Biological Availability , Rats, Sprague-Dawley , Intestinal Absorption , Administration, Oral , Tissue Distribution
5.
Sci Adv ; 10(34): eadp2254, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178255

ABSTRACT

Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.


Subject(s)
Ceramides , Chylomicrons , Diet, High-Fat , Intestinal Mucosa , Animals , Ceramides/metabolism , Chylomicrons/metabolism , Diet, High-Fat/adverse effects , Rats , Intestinal Mucosa/metabolism , Humans , Male , Lipidomics , Intestines/metabolism
6.
J Lipid Res ; 65(7): 100551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39002195

ABSTRACT

Intestinal disease is one of the earliest manifestations of cystic fibrosis (CF) in children and is closely tied to deficits in growth and nutrition, both of which are directly linked to future mortality. Patients are treated aggressively with pancreatic enzyme replacement therapy and a high-fat diet to circumvent fat malabsorption, but this does not reverse growth and nutritional defects. We hypothesized that defects in chylomicron production could explain why CF body weights and nutrition are so resistant to clinical treatments. We used gold standard intestinal lipid absorption and metabolism approaches, including mouse mesenteric lymph cannulation, in vivo chylomicron secretion kinetics, transmission electron microscopy, small intestinal organoids, and chylomicron metabolism assays to test this hypothesis. In mice expressing the G542X mutation in cystic fibrosis transmembrane conductance regulator (CFTR-/- mice), we find that defective FFA trafficking across the epithelium into enterocytes drives a chylomicron formation defect. Furthermore, G542X mice secrete small, triglyceride-poor chylomicrons into the lymph and blood. These defective chylomicrons are cleared into extraintestinal tissues at ∼10-fold faster than WT chylomicrons. This defect in FFA absorption resulting in dysfunctional chylomicrons cannot be explained by steatorrhea or pancreatic insufficiency and is maintained in primary small intestinal organoids treated with micellar lipids. These studies suggest that the ultrahigh-fat diet that most people with CF are counselled to follow may instead make steatorrhea and malabsorption defects worse by overloading the absorptive capacity of the CF small intestine.


Subject(s)
Chylomicrons , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis/genetics , Animals , Chylomicrons/metabolism , Mice , Fatty Acids, Nonesterified/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Exocrine Pancreatic Insufficiency/metabolism , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/pathology , Biological Transport , Humans , Intestinal Mucosa/metabolism
7.
Eur J Pharm Biopharm ; 202: 114392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977066

ABSTRACT

Colchicine (COL) is known for its ability to inhibit the formation of intestinal chylomicrons and has been utilized as a non-surgical tool to explore drug absorption via the intestinal lymphatics. However, there is limited understanding of its pharmacokinetics and its relationship to effect and toxicity with the doses used. This study aimed to provide comprehensive COL pharmacokinetic data and correlate it with the lymphatic-blocking and toxicological effects of low-doses. Male Sprague-Dawley rats with jugular-vein cannulation (JVC) received 0.1 to 0.5 mg/kg COL via oral, 0.25 mg/kg intraperitoneal, and 0.1 mg/kg intravenous routes, followed by blood and urine sampling for LC-MS/MS analysis. Effects on lipid absorption were assessed in another eight JVC rats receiving peanut oil with and without COL, followed by blood pharmacokinetic and plasma biochemistry analysis. The results revealed that COL exhibited moderate extraction ratio and high volume of distribution, with low oral bioavailability (<8%). About 20 % was recovered in the urine after parenteral dosing. Modest but significant reductions in cholesterol absorption was observed after oral doses of 0.5 mg/kg, accompanied by signs of inflammation and increased liver enzymes persisting for a week. The effect of COL on triglycerides formation was not significant. Despite its use as a non-surgical tool in rats to investigate drug absorption via the lymphatic pathway, COL demonstrated increased levels of liver function enzymes, emphasizing the need for caution and dose optimization in its utilization.


Subject(s)
Biological Availability , Chylomicrons , Colchicine , Rats, Sprague-Dawley , Animals , Male , Colchicine/pharmacokinetics , Colchicine/administration & dosage , Colchicine/toxicity , Rats , Chylomicrons/metabolism , Administration, Oral , Intestinal Absorption/drug effects , Dose-Response Relationship, Drug , Tandem Mass Spectrometry/methods , Peanut Oil/administration & dosage , Peanut Oil/pharmacokinetics , Peanut Oil/toxicity , Cholesterol
8.
Article in English | MEDLINE | ID: mdl-38657943

ABSTRACT

In mammals, physiological processes related to lipid metabolism, such as chylomicron synthesis or fatty acid oxidation (FAO), modulate eating, highlighting the importance of energostatic mechanisms in feeding control. This study, using rainbow trout (Oncorhynchus mykiss) as model, aimed to characterize the role of FAO and chylomicron formation as peripheral lipid sensors potentially able to modulate feeding in fish. Fish fed with either a normal- (24%) or high- (32%) fat diet were intraperitoneally injected with water alone or containing etomoxir (inhibitor of FAO rate-limiting enzyme carnitine palmitoyl-transferase 1). First, feed intake levels were recorded. We observed an etomoxir-derived decrease in feeding at short times, but a significant increase at 48 h after treatment in fish fed normal-fat diet. Then, we evaluated putative etomoxir effects on the mRNA abundance of genes related to lipid metabolism, chylomicron synthesis and appetite-regulating peptides. Etomoxir treatment upregulated mRNA levels of genes related to chylomicron assembly in proximal intestine, while opposite effects occurred in distal intestine, indicating a clear regionalization in response. Etomoxir also modulated gastrointestinal hormone mRNAs in proximal intestine, upregulating ghrl in fish fed normal-fat diet and pyy and gcg in fish fed high-fat diet. These results provide evidence for an energostatic control of feeding related to FAO and chylomicron formation at the peripheral level in fish.


Subject(s)
Chylomicrons , Dietary Fats , Fatty Acids , Lipid Metabolism , Oncorhynchus mykiss , Oxidation-Reduction , Animals , Oncorhynchus mykiss/metabolism , Fatty Acids/metabolism , Chylomicrons/metabolism , Dietary Fats/metabolism , Dietary Fats/pharmacology , Gastrointestinal Tract/metabolism , Epoxy Compounds/metabolism , Epoxy Compounds/pharmacology , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics
9.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38618651

ABSTRACT

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Subject(s)
Chylomicrons , Diet, High-Fat , MAP Kinase Signaling System , Animals , Male , Mice , Acyltransferases/metabolism , Acyltransferases/genetics , CD36 Antigens/metabolism , CD36 Antigens/genetics , Chylomicrons/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Intestinal Absorption/drug effects , Linoleic Acids, Conjugated/pharmacology , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL
11.
Annu Rev Nutr ; 44(1): 179-204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635875

ABSTRACT

Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.


Subject(s)
Lipoproteins, VLDL , Triglycerides , Animals , Humans , Apolipoproteins B/metabolism , Atherosclerosis/metabolism , Chylomicrons/metabolism , Hypertriglyceridemia/metabolism , Lipoproteins/metabolism , Lipoproteins, VLDL/metabolism , Triglycerides/metabolism
12.
Biochem Mol Biol Educ ; 52(1): 127-128, 2024.
Article in English | MEDLINE | ID: mdl-37905739

ABSTRACT

The poem Ode on the Odyssey of lipoproteins describes the structure, functions and metabolism of lipoproteins namely Chylomicrons, LDL, VLDL and HDL. This poem is a triolet with eight lines in each stanza. Odyssey is the travel experience of an adventurous journey when someone travels far and wide. This poem describes the transport adventures of Lipids when they travel in the form of lipoproteins. The poetic form of describing the metabolism of lipoproteins was intended to kindle the interest of the learners and to gain an imaginary experience in the metabolism of lipoproteins.


Subject(s)
Lipoproteins, HDL , Lipoproteins, LDL , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Chylomicrons/metabolism
13.
Arterioscler Thromb Vasc Biol ; 44(1): 192-201, 2024 01.
Article in English | MEDLINE | ID: mdl-37970717

ABSTRACT

BACKGROUND: The gut hormone GLP-2 (glucagon-like peptide-2) plays important roles in lipid handling in the intestine. During postabsorptive stage, it releases preformed chylomicrons stored in the intestine, the underlying mechanisms of which are not well understood. Previous studies implicate the involvement of neural pathways in GLP-2's actions on lipid absorption in the intestine, but the role of such mechanisms in releasing postabsorptive lipid storage has not been established. METHODS: Here, in mesenteric lymph duct cannulated rats, we directly tested whether gut-brain neural communication mediates GLP-2's effects on postabsorptive lipid mobilization in the intestine. We performed total subdiaphragmatic vagotomy to disrupt the gut-brain neural communication and analyzed lipid output 5 hours after a lipid load in response to intraperitoneal GLP-2 or saline. RESULTS: Peripheral GLP-2 administration led to increased lymph lipid output and activation of proopiomelanocortin neurons in the arcuate nucleus of hypothalamus. Disruption of gut-brain neural communication via vagotomy blunted GLP-2's effects on promoting lipid release in the intestine. CONCLUSIONS: These results, for the first time, demonstrate a novel mechanism in which postabsorptive mobilization of intestinal lipid storage by GLP-2 enlists a gut-brain neural pathway.


Subject(s)
Chylomicrons , Glucagon-Like Peptide 2 , Rats , Animals , Glucagon-Like Peptide 2/pharmacology , Chylomicrons/metabolism , Brain/metabolism , Neural Pathways/metabolism , Intestines
14.
Mol Metab ; 79: 101847, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042368

ABSTRACT

OBJECTIVE: Lipoprotein assembly and secretion in the small intestine are critical for dietary fat absorption. Surfeit locus protein 4 (SURF4) serves as a cargo receptor, facilitating the cellular transport of multiple proteins and mediating hepatic lipid secretion in vivo. However, its involvement in intestinal lipid secretion is not fully understood. In this study, we investigated the role of SURF4 in intestinal lipid absorption. METHODS: We generated intestine-specific Surf4 knockout mice and characterized the phenotypes. Additionally, we investigated the underlying mechanisms of SURF4 in intestinal lipid secretion using proteomics and cellular models. RESULTS: We unveiled that SURF4 is indispensable for apolipoprotein transport and lipoprotein secretion. Intestine-specific Surf4 knockout mice exhibited ectopic lipid deposition in the small intestine and hypolipidemia. Deletion of SURF4 impeded the transport of apolipoprotein A1 (ApoA1), proline-rich acidic protein 1 (PRAP1), and apolipoprotein B48 (ApoB48) and hindered the assembly and secretion of chylomicrons and high-density lipoproteins. CONCLUSIONS: SURF4 emerges as a pivotal regulator of intestinal lipid absorption via mediating the secretion of ApoA1, PRAP1 and ApoB48.


Subject(s)
Intestines , Lipoproteins , Mice , Animals , Apolipoprotein B-48/metabolism , Lipoproteins/metabolism , Chylomicrons/metabolism , Mice, Knockout , Membrane Proteins/genetics , Membrane Proteins/metabolism
15.
Nature ; 625(7994): 385-392, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123683

ABSTRACT

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Subject(s)
Dietary Fats , Enterocytes , Lipid Metabolism , Mitochondria , Animals , Mice , Aspartate-tRNA Ligase/metabolism , Chylomicrons/metabolism , Dietary Fats/metabolism , Electron Transport Complex II/metabolism , Endoplasmic Reticulum/metabolism , Enterocytes/metabolism , Enterocytes/pathology , Epithelial Cells/metabolism , Golgi Apparatus/metabolism , Intestines , Lipid Droplets/metabolism , Mitochondria/metabolism , Mitochondria/pathology
16.
Int J Pharm ; 648: 123574, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37935311

ABSTRACT

Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.


Subject(s)
Anti-HIV Agents , HIV Infections , Rats , Animals , Lamivudine , Tissue Distribution , Lymph Nodes/metabolism , HIV Infections/drug therapy , Chylomicrons/metabolism , Chylomicrons/therapeutic use , Anti-HIV Agents/pharmacokinetics
17.
J Lipid Res ; 64(9): 100423, 2023 09.
Article in English | MEDLINE | ID: mdl-37558128

ABSTRACT

Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.


Subject(s)
Diet, High-Fat , Embryonic Development , Monomeric GTP-Binding Proteins , Animals , Female , Humans , Male , Mice , Cholesterol/metabolism , Chylomicrons/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism/genetics , Liver/metabolism , Monomeric GTP-Binding Proteins/genetics
18.
Circ Res ; 133(4): 333-349, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37462027

ABSTRACT

BACKGROUND: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS: We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS: By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS: Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.


Subject(s)
Lymphatic Vessels , Monomeric GTP-Binding Proteins , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chylomicrons/metabolism , Lymphatic Vessels/metabolism , Monomeric GTP-Binding Proteins/metabolism , Capillary Permeability
19.
Arterioscler Thromb Vasc Biol ; 43(4): 562-580, 2023 04.
Article in English | MEDLINE | ID: mdl-36756879

ABSTRACT

BACKGROUND: Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS: We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS: Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS: Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.


Subject(s)
Atherosclerosis , Intestinal Mucosa , Humans , Male , Animals , Mice , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption/physiology , Dietary Fats , Chylomicrons/metabolism , Lipid Metabolism/genetics , Triglycerides/metabolism , Atherosclerosis/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
20.
Mol Metab ; 70: 101693, 2023 04.
Article in English | MEDLINE | ID: mdl-36796587

ABSTRACT

OBJECTIVE: Genome-wide association studies (GWAS) have identified genetic variants in SEC16 homolog B (SEC16B) locus to be associated with obesity and body mass index (BMI) in various populations. SEC16B encodes a scaffold protein located at endoplasmic reticulum (ER) exit sites that is implicated to participate in the trafficking of COPII vesicles in mammalian cells. However, the function of SEC16B in vivo, especially in lipid metabolism, has not been investigated. METHODS: We generated Sec16b intestinal knockout (IKO) mice and assessed the impact of its deficiency on high-fat diet (HFD) induced obesity and lipid absorption in both male and female mice. We examined lipid absorption in vivo by acute oil challenge and fasting/HFD refeeding. Biochemical analyses and imaging studies were performed to understand the underlying mechanisms. RESULTS: Our results showed that Sec16b intestinal knockout (IKO) mice, especially female mice, were protected from HFD-induced obesity. Loss of Sec16b in intestine dramatically reduced postprandial serum triglyceride output upon intragastric lipid load or during overnight fasting and HFD refeeding. Further studies showed that intestinal Sec16b deficiency impaired apoB lipidation and chylomicron secretion. CONCLUSIONS: Our studies demonstrated that intestinal SEC16B is required for dietary lipid absorption in mice. These results revealed that SEC16B plays important roles in chylomicron metabolism, which may shed light on the association between variants in SEC16B and obesity in human.


Subject(s)
Chylomicrons , DNA-Binding Proteins , Genome-Wide Association Study , Animals , Female , Humans , Male , Mice , Chylomicrons/metabolism , Dietary Fats , Intestines , Mice, Knockout , Obesity/genetics , Obesity/metabolism , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL