Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
1.
Nat Commun ; 15(1): 7325, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183190

ABSTRACT

Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.


Subject(s)
Dinoflagellida , Ecosystem , Seawater , Atlantic Ocean , Dinoflagellida/metabolism , Dinoflagellida/genetics , Ciliophora/genetics , Ciliophora/metabolism , Transcriptome , Stramenopiles/genetics , Stramenopiles/metabolism , Carbon Cycle , Nitrogen/metabolism , Proteomics/methods
2.
Environ Microbiol Rep ; 16(4): e13298, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961629

ABSTRACT

Ciliate protozoa are an integral part of the rumen microbial community involved in a variety of metabolic processes. These processes are thought to be in part the outcome of interactions with their associated prokaryotic community. For example, methane production is enhanced through interspecies hydrogen transfer between protozoa and archaea. We hypothesize that ciliate protozoa are host to a stable prokaryotic community dictated by specific functions they carry. Here, we modify the microbial community by varying the forage-to-concentrate ratios and show that, despite major changes in the prokaryotic community, several taxa remain stably associated with ciliate protozoa. By quantifying genes belonging to various known reduction pathways in the rumen, we find that the bacterial community associated with protozoa is enriched in genes belonging to hydrogen utilization pathways and that these genes correspond to the same taxonomic affiliations seen enriched in protozoa. Our results show that ciliate protozoa in the rumen may serve as a hub for various hydrogenotrophic functions and a better understanding of the processes driven by different protozoa may unveil the potential role of ciliates in shaping rumen metabolism.


Subject(s)
Bacteria , Ciliophora , Hydrogen , Rumen , Rumen/microbiology , Rumen/parasitology , Animals , Hydrogen/metabolism , Ciliophora/genetics , Ciliophora/metabolism , Ciliophora/classification , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Microbiota
3.
Harmful Algae ; 137: 102666, 2024 08.
Article in English | MEDLINE | ID: mdl-39003026

ABSTRACT

Dinophysis, a mixotrophic dinoflagellate that is known to prey on the ciliate Mesodinium rubrum, and retain its chloroplasts, is responsible for diarrhetic shellfish poisoning (DSP) in humans and has been identified on all U.S. coasts. Monocultures of Dinophysis have been used to investigate the growth of Dinophysis species in response to variations in environmental conditions, however, little is known about the roles of system stability (turbulence) and mixotrophy in the growth and toxicity of Dinophysis species in the U.S.. To begin to address this gap in knowledge, culturing experiments were conducted with three species (four strains) of Dinophysis, that included predator-prey co-incubation (Dinophysis spp.+ M. rubrum) and prey-only (M. rubrum) flasks. Cultures were investigated for effects of low or high turbulence on Dinophysis spp. growth, feeding, and amounts of intra- and extracellular toxins: okadaic acid and derivatives (diarrhetic shellfish toxins, DSTs) and pectenotoxins (PTXs). Turbulence did not have a measurable effect on the rates of ingestion of M. rubrum prey by Dinophysis spp. for any of the four strains, however, effects on growth and particulate and dissolved toxins were observed. High turbulence (ε = 10-2 m2s-3) significantly slowed growth of both D. acuminata and D. ovum relative to still controls, but significantly stimulated growth of the D. caudata strain. Increasing turbulence also resulted in significantly higher intracellular toxin content in D. acuminata cultures (DSTs and PTXs), but significantly reduced intracellular toxin content (PTXs) in those of D. caudata. An increase in turbulence appeared to promote toxin leakage, as D. ovum had significantly more extracellular DSTs found in the medium under high turbulence when compared to the still control. Overall, significant responses to turbulence were observed, whereby the three strains from the "Dinophysis acuminata complex" displayed a stress response to turbulence, i.e., decreasing growth, increasing intracellular toxin content and/or increasing toxin leakage, while the D. caudata strain had an opposite response, appearing stimulated by, or more tolerant of, high turbulence.


Subject(s)
Dinoflagellida , Marine Toxins , Okadaic Acid , Dinoflagellida/physiology , Dinoflagellida/growth & development , Marine Toxins/metabolism , Okadaic Acid/metabolism , Ciliophora/physiology , Ciliophora/metabolism
4.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823099

ABSTRACT

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Subject(s)
Biodegradation, Environmental , Cadmium , Ciliophora , Metallothionein , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Ciliophora/drug effects , Ciliophora/metabolism , Metallothionein/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
5.
Biochem Biophys Res Commun ; 716: 149971, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697009

ABSTRACT

α,α-trehalose is a well-known sugar that plays a key role in establishing tolerance to environmental stresses in many organisms, except unicellular eukaryotes. However, almost nothing is known about α,ß-trehalose, including their synthesis, function, and even presence in living organisms. In this study, we identified α,ß-trehalose in the resting cyst, a dormancy cell form characterized by extreme tolerance to environmental stresses, of the ciliated protist Colpoda cucullus, using high-performance liquid chromatography (HPLC), and a proton nuclear magnetic resonance (1H NMR). Gene expression analysis revealed that the expression of trehalose-6-phosphate synthase (TPS), glycosyltransferase (GT), alpha-amylase (AMY), and trehalose transporter 1 (TRET1), were up-regulated in encystment, while the expression of α-glucosidase 2 (AG2) and trehalase (TREH) was up-regulated in excystment. These results suggest that α,ß-trehalose is synthesized during encystment process, while and contributes to extreme tolerances to environmental stressors, stored carbohydrates, and energy reserve during resting cyst and/or during excystment.


Subject(s)
Ciliophora , Trehalose , Ciliophora/metabolism , Ciliophora/genetics , Trehalose/metabolism , Trehalose/analogs & derivatives , Stress, Physiological , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
6.
ISME J ; 17(7): 1128-1140, 2023 07.
Article in English | MEDLINE | ID: mdl-37169869

ABSTRACT

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Subject(s)
Ciliophora , Rumen , Animals , Cattle , Rumen/microbiology , Proteomics , Ciliophora/genetics , Ciliophora/metabolism , Ruminants/metabolism , Starch/metabolism , Methane/metabolism
7.
Appl Environ Microbiol ; 89(3): e0181922, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36877040

ABSTRACT

The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria: all play significant roles in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, a bioavailable form. In soil, S. meliloti is often found in biofilms and travels slowly along the roots, leaving developing root hairs at the growing root tips uninfected. Soil protists are an important component of the rhizosphere system, able to travel quickly along roots and water films, who prey on soil bacteria and have been known to egest undigested phagosomes. We show that a soil protist, Colpoda sp., can transport S. meliloti down Medicago truncatula roots. Using model soil microcosms, we directly observed fluorescently labeled S. meliloti along M. truncatula roots and tracked the displacement of the fluorescence signal over time. Two weeks after co-inoculation, this signal extended 52 mm farther down plant roots when Colpoda sp. was also present versus treatments that contained bacteria but not protists. Direct counts also showed protists are required for viable bacteria to reach the deeper sections of our microcosms. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. IMPORTANCE Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through selective feeding, and consumption of plant pathogens. Here, we provide data in support of an additional mechanism: protists act as transport vehicles for bacteria in soil. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria originating from a seed-associated inoculum. By co-inoculating Medicago truncatula roots with both S. meliloti, a nitrogen-fixing legume symbiont, and Colpoda sp., a ciliated protist, we show substantial and statistically significant transport with depth and breadth of bacteria-associated fluorescence as well as transport of viable bacteria. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.


Subject(s)
Bacteria , Ciliophora , Medicago truncatula , Plant Roots , Rhizosphere , Bacteria/metabolism , Medicago truncatula/microbiology , Medicago truncatula/parasitology , Plant Roots/microbiology , Plant Roots/parasitology , Sinorhizobium meliloti/physiology , Soil/parasitology , Symbiosis , Ciliophora/metabolism
8.
J Eukaryot Microbiol ; 69(5): e12887, 2022 09.
Article in English | MEDLINE | ID: mdl-35014102

ABSTRACT

Ciliates are a rich source of molecules synthesized to socialize, compete ecologically, and interact with prey and predators. Their isolation from laboratory cultures is often straightforward, permitting the study of their mechanisms of action and their assessment for applied research. This review focuses on three classes of these bioactive molecules: (i) water-borne, cysteine-rich proteins that are used as signaling pheromones in self/nonself recognition phenomena; (ii) cell membrane-associated lipophilic terpenoids that are used in interspecies competitions for habitat colonization; (iii) cortical granule-associated molecules of various chemical nature that primarily serve offence/defense functions.


Subject(s)
Ciliophora , Cell Communication , Ciliophora/metabolism , Ecosystem , Pheromones , Signal Transduction
9.
ISME J ; 16(4): 1187-1197, 2022 04.
Article in English | MEDLINE | ID: mdl-34887549

ABSTRACT

Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.


Subject(s)
Ciliophora , Rumen , Animals , Bacteria/genetics , Bacteria/metabolism , Ciliophora/metabolism , Ecosystem , Methane/metabolism , Rumen/microbiology
10.
Microb Biotechnol ; 15(6): 1729-1743, 2022 06.
Article in English | MEDLINE | ID: mdl-34964273

ABSTRACT

Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community's structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.


Subject(s)
Ciliophora , Microbiota , Animals , Bacteria/genetics , Bacteria/metabolism , Cattle , Ciliophora/metabolism , Fatty Acids, Volatile/metabolism , Gases/metabolism , Methane/metabolism , Rumen/microbiology , Xylans/metabolism
11.
Phys Biol ; 18(4)2021 06 14.
Article in English | MEDLINE | ID: mdl-33853054

ABSTRACT

Recent experiments and thermodynamic arguments suggest that mitochondrial temperatures are higher than those of the cytoplasm. A "hot mitochondrion" calls for a closer examination of the energy balance that endows it with these claimed elevated temperatures. As a first step in this effort, we present here a semi-quantitative bookkeeping whereby, in one stroke, a formula is proposed that yields the rate of heat production in a typical mitochondrion and a formula for estimating the number of "active" ATP synthase molecules per mitochondrion. The number of active ATP synthase molecules is the equivalent number of ATP synthases operating at 100% capacity to maintain the rate of mitochondrial heat generation. Scaling laws are shown to determine the number of active ATP synthase molecules in a mitochondrion and mitochondrial rate of heat production, whereby both appear to scale with cell volume. Four heterotrophic protozoan cell types are considered in this study. The studied cells, selected to cover a wide range of sizes (volumes) fromca.100µm3to 1 millionµm3, are estimated to exhibit a power per mitochondrion ranging fromca.1 pW to 0.03 pW. In these cells, the corresponding number of active ATP synthases per mitochondrion ranges from 5000 to just about a hundred. The absolute total number of ATP synthase molecules per mitochondrion, regardless of their activity status, can be up to two orders of magnitudes higher.


Subject(s)
Amoeba/metabolism , Ciliophora/metabolism , Energy Metabolism , Euglena/metabolism , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Ochromonas/metabolism
12.
Nature ; 591(7850): 445-450, 2021 03.
Article in English | MEDLINE | ID: mdl-33658719

ABSTRACT

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Ciliophora/metabolism , Denitrification , Energy Metabolism , Host Microbial Interactions , Symbiosis , Adenosine Triphosphate/metabolism , Bacteria/genetics , Biological Evolution , Cell Respiration , Ciliophora/chemistry , Ciliophora/cytology , Citric Acid Cycle/genetics , Electron Transport/genetics , Genome, Bacterial/genetics , Host Microbial Interactions/genetics , Mitochondria , Nitrates/metabolism , Oxygen/metabolism , Phylogeny
13.
FEMS Microbiol Lett ; 368(5)2021 04 08.
Article in English | MEDLINE | ID: mdl-33677557

ABSTRACT

Dormant (resting) cyst formation (encystment) in unicellular eukaryotes is the process of a large-scale digestion of vegetative cell structures and reconstruction into the dormant form, which is performed by cell signaling pathways accompanied by up- or down-regulation of protein expression, and by posttranslational modification such as phosphorylation. In this review, the author describes the morphogenetic events during encystment of Colpoda and the early molecular events in the Ca2+/calmodulin-triggered signaling pathways for encystment, based mainly on our research results of the past 10 years; especially, the author discusses the role of c-AMP dependently phosphorylated proteins (ribosomal P0 protein, ribosomal S5 protein, Rieske iron-sulfur protein, actin and histone H4) and encystment-dependently upregulated (EF-1α-HSP60, actin-related protein) and downregulated proteins (ATP synthase ß-chain). In addition, the roles of AMPK, a key molecule in the signaling pathways leading to Colpoda encystment, and differentially expressed genes and proteins during encystment of other ciliates are discussed.


Subject(s)
Ciliophora/metabolism , Cysts/metabolism , Protozoan Proteins/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Calcium/metabolism , Calmodulin/metabolism , Cyclic AMP/metabolism , Cysts/parasitology , Phosphorylation
14.
Genomics ; 113(3): 1416-1427, 2021 05.
Article in English | MEDLINE | ID: mdl-33722656

ABSTRACT

Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.


Subject(s)
Ciliophora , Rumen , Anaerobiosis , Animals , Carbohydrate Metabolism , Ciliophora/genetics , Ciliophora/metabolism , Rumen/metabolism , Sequence Analysis, DNA
15.
Sci Rep ; 11(1): 2865, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536497

ABSTRACT

The genus Stentor is a relatively well-known ciliate owing to its lucid trumpet shape. Stentor pyriformis represents a green, short, and fat Stentor, but it is a little-known species. We investigated 124 ponds and wetlands in Japan and confirmed the presence of S. pyriformis at 23 locations. All these ponds were noticeably oligotrophic. With the improvement of oligotrophic culture conditions, we succeeded in long-term cultivation of three strains of S. pyriformis. The cytoplasm of S. piriformis contains a large number of 1-3 µm refractive granules that turn brown by Lugol's staining. The granules also show a typical Maltese-cross pattern by polarization microscopy, strongly suggesting that the granules are made of amylopectin-rich starch. By analyzing the algal rDNA, it was found that all S. pyriformis symbionts investigated in this study were Chlorella variabilis. This species is known as the symbiont of Paramecium bursaria and is physiologically specialized for endosymbiosis. Genetic discrepancies between C. variabilis of S. pyriformis and P. bursaria may indicate that algal sharing was an old incident. Having symbiotic algae and storing carbohydrate granules in the cytoplasm is considered a powerful strategy for this ciliate to withstand oligotrophic and cold winter environments in highland bogs.


Subject(s)
Adaptation, Physiological , Chlorella/physiology , Ciliophora/growth & development , Ciliophora/metabolism , Ciliophora/microbiology , Cytoplasm/metabolism , Japan , Ponds/microbiology , Starch/metabolism , Symbiosis/physiology , Wetlands
16.
Curr Biol ; 31(1): 66-76.e6, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33125869

ABSTRACT

DNA replication is a ubiquitous and conserved cellular process. However, regulation of DNA replication is only understood in a small fraction of organisms that poorly represent the diversity of genetic systems in nature. Here we used computational and experimental approaches to examine the function and evolution of one such system, the replication band (RB) in spirotrich ciliates, which is a localized, motile hub that traverses the macronucleus while replicating DNA. We show that the RB can take unique forms in different species, from polar bands to a "replication envelope," where replication initiates at the nuclear periphery before advancing inward. Furthermore, we identify genes involved in cellular transport, including calcium transporters and cytoskeletal regulators, that are associated with the RB and may be involved in its function and translocation. These findings highlight the evolution and diversity of DNA replication systems and provide insights into the regulation of nuclear organization and processes.


Subject(s)
Biological Evolution , Ciliophora/genetics , DNA Replication , DNA/metabolism , Macronucleus/genetics , Calcium/metabolism , Ciliophora/cytology , Ciliophora/metabolism , Cytoskeleton/metabolism , Macronucleus/metabolism , Phylogeny
17.
Mol Immunol ; 129: 12-20, 2021 01.
Article in English | MEDLINE | ID: mdl-33254075

ABSTRACT

Cryptocaryon irritans is an obligate parasitic ciliate protozoan that can infect various commercially important mariculture teleosts and cause high lethality and economic loss, especially Larimichthys crocea. Current methods of controlling or preventing this parasite with chemicals or antibiotics are widely considered to be environmentally harmful. The antiparasitic activity of some antimicrobial peptides (AMPs) attracted extensive attention of scholars. In the study, a novel piscidin 5-like type 4 (termed Lc-P5L4) excavated from comparative transcriptome of C. irritans - immuned L. crocea was identified and characterized. Sequence analysis shows the full-length cDNA of Lc-P5L4 is 539 bp containing an open reading frame (ORF) of 198 bp which encodes a peptide of 65 amino acid residues. The genome consists of three exons and two introns which exist in its ORF, and all the exon-intron boundaries are in accordance with classical GT-AG rule (GT/intron/AG). Multiple alignments indicate the signal peptides share highly conserved identity, while mature peptides are more diverse. Phylogenetic analysis displays Lc-P5L4 clusters together with other members of piscidin 5-like family. Next, quantitative Real-time PCR (qRT-PCR) detection found C. irritans infection could upregulate Lc-P5L4 expression level in all tested tissues significantly, it appeared earliest upregulation in the theronts infection stage in the head kidney; the expression contents reached to maximum level in the intestine, gill and muscle during trophonts falling off stage; while it was just upregulated during secondary bacterial infection stage in the liver and spleen. The data showed Lc-P5L4 upregulation time points were in accordance with different infection stages. With recombinant Lc-P5L4 (rLc-P5L4) obtained through Escherichia coli system, in vitro assay showed rLc-P5L4 could cause cilia deactivation, cell bodiesclumping and sticking to each other, then cell membrane rupture and contents leakage. The data illustrated Lc-P5L4 played critical roles in the immune defense against C. irritans infection, and provided another proof that piscidins exhibit multiple anti- C. irritans features.


Subject(s)
Antiparasitic Agents/metabolism , Ciliophora/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Perciformes/genetics , Perciformes/metabolism , Amino Acids/genetics , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/parasitology , Ciliophora Infections/genetics , Ciliophora Infections/metabolism , Ciliophora Infections/parasitology , DNA, Complementary/genetics , Exons/genetics , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Diseases/parasitology , Genome/genetics , Introns/genetics , Liver/metabolism , Liver/parasitology , Open Reading Frames/genetics , Perciformes/parasitology , Phylogeny , Spleen/metabolism , Spleen/parasitology , Transcriptome/genetics , Up-Regulation/genetics
18.
Mol Biol Cell ; 31(22): 2415-2420, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33054639

ABSTRACT

Place a drop of pond water under the microscope, and you will likely find an ocean of extraordinary and diverse single-celled organisms called ciliates. This remarkable group of single-celled organisms wield microtubules, active systems, electrical signaling, and chemical sensors to build intricate geometrical structures and perform complex behaviors that can appear indistinguishable from those of macroscopic animals. Advances in computer vision and machine learning are making it possible to completely digitize and track the dynamics of complex ciliates and mine these data for the hidden structure, patterns, and motifs that are responsible for their behaviors. By deconstructing the diversity of ciliate behaviors in the natural world, themes for organizing and controlling matter at the microscale are beginning to take hold, suggesting new modular approaches for the design of autonomous molecular machines that emulate nature's finest examples.


Subject(s)
Ciliophora/physiology , Robotics/trends , Animals , Ciliophora/metabolism , Humans , Models, Molecular , Robotics/methods , Systems Biology/methods , Systems Biology/trends
19.
Genome Biol Evol ; 12(9): 1616-1622, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32870974

ABSTRACT

Schmidingerella arcuata is an ecologically important tintinnid ciliate that has long served as a model species in plankton trophic ecology. We present a partial micronuclear genome and macronuclear transcriptome resource for S. arcuata, acquired using single-cell techniques, and we report on pilot analyses including functional annotation and genome architecture. Our analysis shows major fragmentation, elimination, and scrambling in the micronuclear genome of S. arcuata. This work introduces a new nonmodel genome resource for the study of ciliate ecology and genomic biology and provides a detailed functional counterpart to ecological research on S. arcuata.


Subject(s)
Ciliophora/genetics , Genome, Protozoan , Transcriptome , Ciliophora/metabolism , Genomic Structural Variation
20.
PLoS One ; 15(8): e0238167, 2020.
Article in English | MEDLINE | ID: mdl-32857792

ABSTRACT

The ciliated protozoan Cryptocaryon irritans infects a wide range of marine fish and causes the highly lethal white spot disease. This parasite possesses three morphologically and physiologically distinct life stages: an infectious theront, a parasitic trophont, and an asexually reproductive tomont. In the past few years, several attempts have been made to help elucidate how C. irritans transforms from one stage to another using transcriptomic or proteomic approaches. However, there has been no research studying changes in transcription profiles between different time points of a single C. irritans life stage-the development of this parasite. Here we use RNA-seq and compare gene expression profiles of theront cells collected by 1 and 10 hrs after they emerged from tomonts. It has been shown that infectivity of theront cells declines 6-8 hours post-emergence, and we used this characteristic as a physiological marker to confirm the aging of theront cells. We identified a total of 41 upregulated and 90 downregulated genes that were differentially expressed between young and aging theront cells. Using Blast2Go to further analyze functions of these genes, we show that genes related to energy production are downregulated, but quite surprisingly many genes involved in transcription/translation processes are upregulated. We also show that expression of all nine detectable agglutination/immobilization antigen genes, with great sequence divergence, is invariably downregulated. Functions of other differentially expressed genes and indications are also discussed in our study.


Subject(s)
Aging/metabolism , Ciliophora/metabolism , Ciliophora/pathogenicity , Animals , Ciliophora/genetics , Ciliophora/growth & development , Ciliophora Infections/veterinary , Fish Diseases/parasitology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Perciformes , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL