Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Theranostics ; 12(1): 362-378, 2022.
Article in English | MEDLINE | ID: mdl-34987650

ABSTRACT

Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.


Subject(s)
Brain Neoplasms , Circulating Tumor DNA/metabolism , Glioblastoma , Liquid Biopsy/methods , Sonication/methods , Animals , Blood-Brain Barrier , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Swine
2.
Cancer Res ; 82(3): 349-358, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34815256

ABSTRACT

Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non-small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/metabolism , Immunotherapy/methods , Humans
3.
Oncology (Williston Park) ; 35(10): 654-660, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34677922

ABSTRACT

Metastatic colorectal cancer (mCRC) is the second most common cause of cancer-related death worldwide. In the mid-1980s, the median overall survival (OS) for patients with mCRC ranged from 10 to 12 months from the time of initial diagnosis. In more recent studies, this median has more than doubled and is commonly reported at more than 25 to 30 months. These improvements are due, in large part, to the introduction of multiple novel agents during the last 3 decades. Despite these improvements, however, nearly all patients treated with palliative chemotherapy will eventually develop resistance and ultimately succumb to progression of metastatic disease. Understanding the mechanisms by which malignant cells evade treatment could unlock novel therapeutic strategies that overcome resistance and improve survival. In this review, we will discuss some of the drivers of therapeutic resistance in patients with mCRC and present some novel strategies to overcome resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Circulating Tumor DNA/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/physiology , Cell-Free Nucleic Acids/metabolism , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Targeted Therapy , Neoplasm Metastasis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/antagonists & inhibitors
4.
EBioMedicine ; 72: 103625, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34656931

ABSTRACT

BACKGROUND: Intrinsic resistance to androgen receptor signalling inhibitors (ARSI) occurs in 20-30% of men with metastatic castration-resistant prostate cancer (mCRPC). Ceramide metabolism may have a role in ARSI resistance. Our study's aim is to investigate the association of the ceramide-sphingosine-1-phosphate (ceramide-S1P) signalling axis with ARSI resistance in mCRPC. METHODS: Lipidomic analysis (∼700 lipids) was performed on plasma collected from 132 men with mCRPC, before commencing enzalutamide or abiraterone. AR gene aberrations in 77 of these men were identified by deep sequencing of circulating tumour DNA. Associations between circulating lipids, radiological progression-free survival (rPFS) and overall survival (OS) were examined by Cox regression. Inhibition of ceramide-S1P signalling with sphingosine kinase (SPHK) inhibitors (PF-543 and ABC294640) on enzalutamide efficacy was investigated with in vitro assays, and transcriptomic and lipidomic analyses of prostate cancer (PC) cell lines (LNCaP, C42B, 22Rv1). FINDINGS: Men with elevated circulating ceramide levels had shorter rPFS (HR=2·3, 95% CI=1·5-3·6, p = 0·0004) and shorter OS (HR=2·3, 95% CI=1·4-36, p = 0·0005). The combined presence of an AR aberration with elevated ceramide levels conferred a worse prognosis than the presence of only one or none of these characteristics (median rPFS time = 3·9 vs 8·3 vs 17·7 months; median OS time = 8·9 vs 19·8 vs 34·4 months). SPHK inhibitors enhanced enzalutamide efficacy in PC cell lines. Transcriptomic and lipidomic analyses indicated that enzalutamide combined with SPHK inhibition enhanced PC cell death by SREBP-induced lipotoxicity. INTERPRETATION: Ceramide-S1P signalling promotes ARSI resistance, which can be reversed with SPHK inhibitors. FUNDING: None.


Subject(s)
Benzamides/therapeutic use , Ceramides/metabolism , Lysophospholipids/metabolism , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Sphingosine/analogs & derivatives , Aged , Aged, 80 and over , Androstenes/therapeutic use , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Circulating Tumor DNA/metabolism , Drug Resistance, Neoplasm/drug effects , Humans , Male , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Sphingosine/metabolism
5.
J Extracell Vesicles ; 10(12): e12142, 2021 10.
Article in English | MEDLINE | ID: mdl-34595842

ABSTRACT

Up to now, the field of liquid biopsies has focused on circulating tumour DNA and cells, though extracellular vesicles (EVs) have been of increasing interest in recent years. Thus, reported sources of tumour-derived nucleic acids include leukocytes, platelets and apoptotic bodies (AB), as well as large (LEV) and small (SEV) EVs. Despite these competing claims, there has yet to be a standardized comparison of the tumour-derived DNA associated with different components of blood. To address this issue, we collected twenty-three blood samples from seventeen patients with pancreatic cancers of known mutant KRAS G12 genotype, and divided them into two groups based on the time of patient survival following sampling. After collecting red and white blood cells, we subjected 1 ml aliquots of platelet rich plasma to differential centrifugation in order to separate the platelets, ABs, LEVs, SEVs and soluble proteins (SP) present. We then confirmed the enrichment of specific blood components in each differential centrifugation fraction using electron microscopy, Western blotting, nanoparticle tracking analysis and bead-based multiplex flow cytometry assays. By targeting wild type and tumour-specific mutant KRAS alleles using digital PCR, we found that the levels of mutant KRAS DNA were highest in association with LEVs and SEVs early, and with SEVs and SP late in disease progression. Importantly, we established that SEVs were the most enriched in tumour-derived DNA throughout disease progression, and verified this association using size exclusion chromatography. This work provides important direction for the rapidly expanding field of liquid biopsies by supporting an increased focus on EVs as a source of tumour-derived DNA.


Subject(s)
Circulating Tumor DNA/metabolism , DNA/metabolism , Extracellular Vesicles/metabolism , Liquid Biopsy/methods , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Pancreatic Neoplasms
6.
PLoS One ; 16(9): e0256979, 2021.
Article in English | MEDLINE | ID: mdl-34478472

ABSTRACT

PURPOSES: Although clinical and radiological examinations can be used to diagnose oral cancer, and surgical pathology remains the gold standard, these conventional methods have limitations. We evaluated the feasibility of longitudinal next-generation sequencing-based liquid biopsy for oral squamous cell carcinoma surveillance. MATERIALS AND METHODS: Eleven patients were enrolled, and plasma and saliva were collected before, and 1, 3, and 6 months after surgery. Tumor-specific mutations were selected using paired, whole-exome analyses of tumor tissues and whole blood. Genes frequently mutated in head and neck cancer were identified using the Cancer Genome Atlas (TCGA) and Catalogue of Somatic Mutations in Cancer (COSMIC) databases to design targeted deep sequencing panels. RESULTS: In five of the six patients with recurrent cancer, circulating tumor DNA (ctDNA) was detected earlier with liquid biopsy than with conventional monitoring techniques. Moreover, patients without recurrence exhibited decreased ctDNA allele frequency post-treatment. CONCLUSIONS: Longitudinal liquid biopsy of plasma and saliva may be feasible for detecting somatic mutations associated with oral squamous cell carcinomas. It might be attributable to determine early tumor recurrence through genetic analysis of ctDNA.


Subject(s)
Carcinoma, Squamous Cell , Circulating Tumor DNA/metabolism , Liquid Biopsy/methods , Mouth Neoplasms , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mouth Neoplasms/diagnosis , Mouth Neoplasms/metabolism , Neoplasm Recurrence, Local , Saliva/metabolism
7.
Mol Cancer Ther ; 20(12): 2568-2576, 2021 12.
Article in English | MEDLINE | ID: mdl-34552011

ABSTRACT

The majority of patients diagnosed with advanced gastrointestinal stromal tumors (GISTs) are successfully treated with a combination of surgery and tyrosine kinase inhibitors (TKIs). However, it remains challenging to monitor treatment efficacy and identify relapse early. Here, we utilized a sequencing strategy based on molecular barcodes and developed a GIST-specific panel to monitor tumor-specific and TKI resistance mutations in cell-free DNA and applied the approach to patients undergoing surgical treatment. Thirty-two patients with GISTs were included, and 161 blood plasma samples were collected and analyzed at routine visits before and after surgery and at the beginning, during, and after surgery. Patients were included regardless of their risk category. Our GIST-specific sequencing approach allowed detection of tumor-specific mutations and TKI resistance mutations with mutant allele frequency < 0.1%. Circulating tumor DNA (ctDNA) was detected in at least one timepoint in nine of 32 patients, ranging from 0.04% to 93% in mutant allele frequency. High-risk patients were more often ctDNA positive than other risk groups (P < 0.05). Patients with detectable ctDNA also displayed higher tumor cell proliferation rates (P < 0.01) and larger tumor sizes (P < 0.01). All patients who were ctDNA positive during surgery became negative after surgery. Finally, in two patients who progressed on TKI treatment, we detected multiple resistance mutations. Our data show that ctDNA may become a clinically useful biomarker in monitoring treatment efficacy in patients with high-risk GISTs and can assist in treatment decision making.


Subject(s)
Circulating Tumor DNA/metabolism , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/surgery , Protein Kinase Inhibitors/therapeutic use , Aged , Female , Humans , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology
8.
Nat Commun ; 12(1): 5060, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417454

ABSTRACT

Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.


Subject(s)
Circulating Tumor DNA/metabolism , DNA Fragmentation , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Apoptosis , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Diagnosis, Differential , Early Detection of Cancer , Female , Genome, Human , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Models, Biological , Neoplasm Metastasis , Neoplasm Staging , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Young Adult
9.
Nat Commun ; 12(1): 5137, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446728

ABSTRACT

Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Circulating Tumor DNA/genetics , Neoplasms/drug therapy , Neoplasms/genetics , BRCA2 Protein/genetics , BRCA2 Protein/immunology , Circulating Tumor DNA/metabolism , DNA Copy Number Variations , Drug Resistance, Neoplasm , Group II Phospholipases A2/genetics , Group II Phospholipases A2/immunology , Humans , Neoplasms/immunology , Prospective Studies , Tumor Burden , Tumor Escape/drug effects , Exome Sequencing
10.
Theranostics ; 11(14): 7018-7028, 2021.
Article in English | MEDLINE | ID: mdl-34093868

ABSTRACT

Rationale: Hepatectomy and adjuvant chemotherapy after resection of colorectal liver metastases (CRLM) may improve survival, however, patients which may benefit cannot currently be identified. Postoperative circulating tumor DNA (ctDNA) analysis can detect minimal residual disease (MRD) and predict the prognosis and efficacy of adjuvant chemotherapy. Our study aims to determine the impact of serial ctDNA analysis to predict the outcome among patients undergoing resection of CRLM. Methods: Between May 2018 and October 2019, 91 CRLM patients were prospectively enrolled. Whole exome sequencing was performed in 50 primary and 48 metastatic liver tissues. Targeted sequencing of 451 cancer relevant genes was performed in 50 baseline plasma to determine plasma-tissue concordance. We prospectively investigated changes in the amount and constitution of ctDNA in 271 serial plasma samples taken at different time points (baseline, pre-operation, post-operation, post-operative adjuvant chemotherapy (post-ACT) and recurrence) during the treatment of CRLM. Results: Detected molecular alterations were highly consistent among baseline ctDNA, primary and liver metastases tissue. Patients with a higher variant allele frequency (VAF) level at baseline ctDNA represent a higher tumor burden, and decreased ctDNA during pre-operative chemotherapy predicted better tumor response. Patients with detectable post-operative and post-ACT ctDNA were associated with significantly shorter recurrence-free survival (RFS). ROC analysis showed that post-ACT ctDNA status was superior to post-operative ctDNA status in predicting RFS with an AUROC of 0.79. A significant difference in overall recurrence rate was observed in patients with detectable vs undetectable levels of ctDNA after resection of CRLM (79.4% vs 41.7%) and after completion of adjuvant chemotherapy (77.3% vs 40.7%). During adjuvant chemotherapy, patients with decreased ctDNA VAF after adjuvant chemotherapy had a recurrence rate of 63.6%, compared to 92.3% in patients with increased ctDNA VAF. Conclusions: We envision that dynamic ctDNA analysis, especially in a post-ACT setting, might be used to not only reflect MRD but also to determine rational personalized adjuvant therapy after the resection of CRLM.


Subject(s)
Chemotherapy, Adjuvant , Circulating Tumor DNA/blood , Colorectal Neoplasms/blood , Liver Neoplasms/blood , Neoplasm Recurrence, Local/blood , Alleles , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Circulating Tumor DNA/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Correlation of Data , Female , Gene Expression Regulation, Neoplastic/genetics , Hepatectomy , Humans , Kaplan-Meier Estimate , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm, Residual , Prognosis , ROC Curve , Exome Sequencing
12.
Eur J Cancer ; 153: 86-95, 2021 08.
Article in English | MEDLINE | ID: mdl-34153718

ABSTRACT

Upfront KRAS and NRAS gene testing ('RAS') is the standard of care for metastatic colorectal cancer (mCRC), to guide first-line treatment. The presence of RAS mutation (MT) is a negative predictor for the efficacy of anti-EGFR antibodies and the use of cetuximab and panitumumab is restricted to RAS wild-type (WT) mCRC. Conversion from RAS WT to RAS MT mCRC after treatment with anti-EGFR antibodies is a known and well-described acquired resistance mechanism. The by far less frequent 'NeoRAS wild-type' phenomenon (reversion from RAS MT to RAS WT) has recently drawn attention. The proposed effect of chemotherapy on RAS status in mCRC patients is not fully understood. Because of the intriguing biological consequence of a RAS MT to RAS WT reversion, subsequent treatment of NeoRAS WT patients with anti-EGFR antibodies is increasingly being discussed. Here, we report three clinical cases of NeoRAS WT mCRC patients, which received standard-of-care regimens for RAS MT mCRC. Anti-EGFR antibodies were used in two out of three patients after progression of the disease. One of the patients had a long-term response. In line with our observations, NeoRAS WT phenomenon occurs in clinical practice. Retesting of RAS status during treatment should be discussed in patients with unusual long-term clinical courses of RAS MT mCRC to optimise treatment strategy and to evaluate the use of anti-EGFR antibodies.


Subject(s)
Circulating Tumor DNA/metabolism , Colorectal Neoplasms/genetics , ras Proteins/genetics , Colorectal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Neoplasm Metastasis
13.
J Clin Oncol ; 39(23): 2605-2616, 2021 08 10.
Article in English | MEDLINE | ID: mdl-33909455

ABSTRACT

PURPOSE: Patients with Diffuse Large B-cell Lymphoma (DLBCL) in need of immediate therapy are largely under-represented in clinical trials. The diagnosis-to-treatment interval (DTI) has recently been described as a metric to quantify such patient selection bias, with short DTI being associated with adverse risk factors and inferior outcomes. Here, we characterized the relationships between DTI, circulating tumor DNA (ctDNA), conventional risk factors, and clinical outcomes, with the goal of defining objective disease metrics contributing to selection bias. PATIENTS AND METHODS: We evaluated pretreatment ctDNA levels in 267 patients with DLBCL treated across multiple centers in Europe and the United States using Cancer Personalized Profiling by Deep Sequencing. Pretreatment ctDNA levels were correlated with DTI, total metabolic tumor volumes (TMTVs), the International Prognostic Index (IPI), and outcome. RESULTS: Short DTI was associated with advanced-stage disease (P < .001) and higher IPI (P < .001). We also found an inverse correlation between DTI and TMTV (RS = -0.37; P < .001). Similarly, pretreatment ctDNA levels were significantly associated with stage, IPI, and TMTV (all P < .001), demonstrating that both DTI and ctDNA reflect disease burden. Notably, patients with shorter DTI had higher pretreatment ctDNA levels (P < .001). Pretreatment ctDNA levels predicted short DTI independent of the IPI (P < .001). Although each risk factor was significantly associated with event-free survival in univariable analysis, ctDNA level was prognostic of event-free survival independent of DTI and IPI in multivariable Cox regression (ctDNA: hazard ratio, 1.5; 95% CI [1.2 to 2.0]; IPI: 1.1 [0.9 to 1.3]; -DTI: 1.1 [1.0 to 1.2]). CONCLUSION: Short DTI largely reflects baseline tumor burden, which can be objectively measured using pretreatment ctDNA levels. Pretreatment ctDNA levels therefore have utility for quantifying and guarding against selection biases in prospective DLBCL clinical trials.


Subject(s)
Circulating Tumor DNA/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Prognosis , Young Adult
14.
Nat Commun ; 12(1): 2229, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850132

ABSTRACT

Profiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor disease progression. Here, we develop a quantitative method, exploiting local tissue-specific cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at promoters and first exon-intron junctions is strongly associated with differential transcriptional activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to blood-specific regulatory regions could predict ctDNA levels across both colorectal and breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we demonstrate how the approach could enable quantitative low-cost tracking of ctDNA dynamics and disease progression.


Subject(s)
Cell-Free Nucleic Acids/metabolism , Circulating Tumor DNA/metabolism , DNA Fragmentation , Tumor Burden/physiology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Genomics , Humans , Mutation
15.
Genes (Basel) ; 12(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33673461

ABSTRACT

The minimally-or non-invasive detection of circulating tumor-derived components in biofluids, such as blood, liquid biopsy is a revolutionary approach with significant potential for the management of cancer. Genomic and transcriptomic alterations can be accurately detected through liquid biopsies, which provide a more comprehensive characterization of the heterogeneous tumor profile than tissue biopsies alone. Liquid biopsies could assist diagnosis, prognosis, and treatment selection, and hold great potential to complement current surveilling strategies to monitor disease evolution and treatment response in real-time. In particular, these are able to detect minimal residual disease, to predict progression, and to identify mechanisms of resistance, allowing to re-orient treatment strategies in a timelier manner. In this review we gathered current knowledge regarding the role and potential of liquid biopsies for the diagnosis and follow-up of cancer patients. The presented findings emphasize the strengths of liquid biopsies, revealing their chance of improving the diagnosis and monitoring of several tumor types in the near future. However, despite growing evidence supporting their value as a management tool in oncology, some limitations still need to be overcome for their implementation in the routine clinical setting.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Circulating Tumor DNA/genetics , Circulating Tumor DNA/metabolism , Humans , Liquid Biopsy , Neoplasm, Residual , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism
16.
Pancreatology ; 21(2): 363-378, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33451936

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer-related mortality within the next decade, with limited effective treatment options and a dismal long-term prognosis for patients. Genomic profiling has not yet manifested clinical benefits for diagnosis, treatment or prognosis in PDAC, due to the lack of available tissues for sequencing and the confounding effects of low tumour cellularity in many biopsy specimens. Increasing focus is now turning to the use of minimally invasive liquid biopsies to enhance the characterisation of actionable PDAC tumour genomes. Circulating tumour DNA (ctDNA) is the most comprehensively studied liquid biopsy analyte in blood and can provide insight into the molecular profile and biological characteristics of individual PDAC tumours, in real-time and in advance of traditional imaging modalities. This can pave the way for identification of new therapeutic targets, novel risk variants and markers of tumour response, to supplement diagnostic screening and provide enhanced scrutiny in treatment stratification. In the roadmap towards the application of precision medicine for clinical management in PDAC, ctDNA analyses may serve a leading role in streamlining candidate biomarkers for clinical integration. In this review, we highlight recent developments in the use of ctDNA-based liquid biopsies for PDAC and provide new insights into the technical, analytical and biological challenges that must be overcome for this potential to be realised.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Circulating Tumor DNA/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Humans , Transcriptome
17.
Eur J Cancer ; 143: 147-157, 2021 01.
Article in English | MEDLINE | ID: mdl-33307492

ABSTRACT

BACKGROUND: Liquid biopsy provides real-time data about prognosis and actionable mutations in metastatic breast cancer (MBC). The aim of this study was to explore the combination of circulating tumour DNA (ctDNA) analysis and circulating tumour cells (CTCs) enumeration in estimating target organs more susceptible to MBC involvement. METHODS: This retrospective study analysed 88 MBC patients characterised for both CTCs and ctDNA at baseline. CTCs were isolated through the CellSearch kit, while ctDNA was analysed using the Guardant360 NGS-based assay. Sites of disease were collected on the basis of imaging. Associations were explored both through uni- and multivariate logistic regression and Fisher's exact test and the random forest machine learning algorithm. RESULTS: After multivariate logistic regression, ESR1 mutation was the only significant factor associated with liver metastases (OR 8.10), while PIK3CA was associated with lung localisations (OR 3.74). CTC enumeration was independently associated with bone metastases (OR 10.41) and TP53 was associated with lymph node localisations (OR 2.98). The metastatic behaviour was further investigated through a random forest machine learning algorithm. Bone involvement was described by CTC enumeration and alterations in ESR1, GATA3, KIT, CDK4 and ERBB2, while subtype, CTC enumeration, inflammatory BC diagnosis, ESR1 and KIT aberrations described liver metastases. PIK3CA, MET, AR, CTC enumeration and TP53 were associated with lung organotropism. The model, moreover, showed that AR, CCNE1, ESR1, MYC and CTC enumeration were the main drivers in HR positive MBC metastatic pattern. CONCLUSIONS: These results indicate that ctDNA and CTCs enumeration could provide useful insights regarding MBC organotropism, suggesting a possible role for future monitoring strategies that dynamically focus on high-risk organs defined by tumourbiology.


Subject(s)
Breast Neoplasms/diagnosis , Circulating Tumor DNA/metabolism , Liquid Biopsy/methods , Neoplastic Cells, Circulating/metabolism , Precision Medicine/methods , Tropism/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Machine Learning , Middle Aged , Neoplasm Metastasis , Retrospective Studies
18.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33316060

ABSTRACT

The cell-free DNA (cfDNA) methylation profile in liquid biopsy has been utilized to diagnose early-stage disease and estimate therapy response. However, typical clinical procedures are capable of purifying only very small amounts of cfDNA. Whole-genome bisulfite sequencing (WGBS) is the gold standard for measuring DNA methylation; however, WGBS using small amounts of fragmented DNA introduces a critical challenge for data analysis, namely a low-mapping ratio. The resulting low sequencing depth and low coverage of CpG sites genome-wide is a bottleneck for the clinical application of cfDNA-based WGBS assays. We developed LiBis (Low-input Bisulfite Sequencing), a novel method for low-input WGBS data alignment. By dynamically clipping initially unmapped reads and remapping clipped fragments, we judiciously rescued those reads and uniquely aligned them to the genome. By substantially increasing the mapping ratio by up to 88%, LiBis dramatically improved the number of informative CpGs and the precision in quantifying the methylation status of individual CpG sites. LiBis significantly improved the cost efficiency of low-input WGBS experiments by dynamically removing contamination introduced by random priming. The high sensitivity and cost effectiveness afforded by LiBis for low-input samples will allow the discovery of genetic and epigenetic features suitable for downstream analysis and biomarker identification using liquid biopsy.


Subject(s)
Circulating Tumor DNA , CpG Islands , DNA Methylation , Neoplasms , Circulating Tumor DNA/genetics , Circulating Tumor DNA/metabolism , Genome-Wide Association Study , Humans , Liquid Biopsy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Sequence Analysis, DNA , Sulfites
19.
Biomark Med ; 14(14): 1393-1404, 2020 10.
Article in English | MEDLINE | ID: mdl-33073579

ABSTRACT

Head and neck cancer (HNC) is the sixth leading cause of cancer death worldwide. Due to the low early diagnosis rate of HNC, local recurrence and high distant metastasis rate are the main reasons for treatment failure. Therefore, it is important to establish a method of diagnosis and monitoring, which is convenient, safe, reproducible, sensitive and specific. Compared with tissue biopsy, liquid biopsy is an emerging biopsy technique, which has the advantages of re-sampling, noninvasive and cost-effectiveness, and has shown good diagnostic and prognostic value in studies for various types of malignant solid tumors. This review introduces liquid biopsy, its research progress and prospects in HNC including early diagnosis, staging, grading, prognosis assessment and disease surveillance.


Subject(s)
Biomarkers, Tumor/metabolism , Cell-Free Nucleic Acids/metabolism , Circulating Tumor DNA/metabolism , Extracellular Vesicles/pathology , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/metabolism , Neoplastic Cells, Circulating/pathology , Humans , Liquid Biopsy
20.
Cancer Epidemiol Biomarkers Prev ; 29(12): 2702-2709, 2020 12.
Article in English | MEDLINE | ID: mdl-32958500

ABSTRACT

BACKGROUND: Most recurrences of early-stage colorectal cancer detected with current surveillance measures are widespread and incurable. Circulating tumor DNA (ctDNA) may facilitate earlier diagnosis of recurrent colorectal cancer and improve cancer-related outcomes. METHODS: Plasma from patients undergoing standard surveillance after definitive treatment for stage II/III colorectal cancer was assayed with COLVERA and carcinoembryonic antigen (CEA) at a single time point. Results were correlated with radiographic imaging. Assay performance, including sensitivity and specificity for recurrence, were compared. Impact of potentially confounding variables was also explored. RESULTS: 322 patients were included in the final analysis, and 27 recurrences were documented over a median follow-up period of 15 months. Sensitivity for recurrence was 63% [confidence interval (CI), 42.4-80.6] and 48% (CI, 28.7-68.1) for COLVERA and CEA (≥5 ng/mL), respectively (P = 0.046), while specificity was 91.5% (CI, 87.7-94.4) and 96.3% (CI, 93.4-98.1), respectively (P = 0.016). Smoking and age were independent predictors of CEA but not COLVERA positivity. CONCLUSIONS: COLVERA was more sensitive but less specific than CEA in detecting recurrent colorectal cancer. Short median follow-up may have been responsible for apparent false positives in COLVERA. Studies with serial sampling and longer follow-up are needed to assess whether earlier detection of colorectal cancer recurrence translates into clinical benefit. IMPACT: This prospective study showed that COLVERA (a two-gene ctDNA assay) was more sensitive for detection of recurrence in a cohort of patients undergoing surveillance after definitive therapy for stages II and III colorectal cancer.


Subject(s)
Circulating Tumor DNA/metabolism , Ikaros Transcription Factor/metabolism , Transaminases/metabolism , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging
SELECTION OF CITATIONS
SEARCH DETAIL