Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 890
Filter
1.
Food Res Int ; 190: 114587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945567

ABSTRACT

The effect of 90, 180 and 270 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), trisodium citrate (TSC) and sodium hexametaphosphate (SHMP) on the solubilisation of proteins and minerals and the rheological and textural properties of processed cheese (PC) prepared from Gouda cheese ripened for 30-150 d at 8°C was studied. The solubilisation of individual caseins and Ca and the maximum loss tangent during temperature sweeps of PC made from Gouda cheese increased, while hardness of PC decreased with ripening duration of the Gouda cheese. Levels of soluble Ca in PC increased with increasing concentration of TSC and SHMP, but decreased with increasing concentration of DSP. The solubilisation of casein and Ca due to ripening of Gouda cheese used for manufacturing PC could explain the changes in texture and loss tangent of PC. The results suggest that DSP, TSC or SHMP in PC formulation can form insoluble Ca-phosphate, soluble Ca-citrate or insoluble casein-Ca-HMP complexes, respectively, that influence casein solubilisation differently and together with levels of residual intact casein determine the functional attributes of PC.


Subject(s)
Caseins , Cheese , Food Handling , Rheology , Solubility , Cheese/analysis , Food Handling/methods , Caseins/chemistry , Citrates/chemistry , Calcium/analysis , Calcium/chemistry , Phosphates/analysis , Phosphates/chemistry , Hardness , Time Factors , Calcium Phosphates/chemistry , Calcium Phosphates/analysis
2.
ACS Appl Bio Mater ; 7(6): 3777-3785, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38754861

ABSTRACT

Oral devices, such as foil-type devices, show great potential for the delivery of poorly permeable macromolecules by enabling unidirectional release of the loaded pharmaceutical composition in close proximity to the epithelium in the small intestine or colon. However, one of the primary concerns associated with the use of foil-type devices so far has been the utilization of nonbiodegradable elastomers in the fabrication of the devices. Therefore, research into biodegradable substitute materials with similar characteristics enables drug delivery in a sustainable and environmentally friendly manner. In this study, a biodegradable elastomer, polyoctanediol citrate (POC), was synthesized via a one-pot reaction, with subsequent purification and microscale pattern replication via casting. The microstructure geometry was designed to enable fabrication of foil-type devices with the selected elastomer, which has a high intrinsic surface free energy. The final elastomer was demonstrated to have an elastic modulus ranging up to 2.2 ± 0.1 MPa, with strain at failure up to 110.1 ± 1.5%. Devices were loaded with acetaminophen and enterically coated, demonstrating 100% release at 2.5 h, following dissolution for 1 h in 0.1 M hydrochloric acid and 1.5 h in pH 6.8 phosphate-buffered saline. The elastomer demonstrated promising properties based on mechanical testing, surface free energy evaluation, and degradation studies.


Subject(s)
Biocompatible Materials , Elastomers , Materials Testing , Particle Size , Elastomers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Drug Delivery Systems , Humans , Acetaminophen/chemistry , Acetaminophen/administration & dosage , Administration, Oral , Citrates/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/chemical synthesis , Polymers/chemistry
3.
Langmuir ; 40(21): 11011-11022, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739267

ABSTRACT

Surfactant-free microemulsions (SFMEs) exhibited remarkable advantages and potential, attributed to their similarity to traditional surfactant-based microemulsions and the absence of surfactants. Herein, a novel SFME was developed utilizing cosmetically approved materials, such as short-chain alcohol as an amphi-solvent, triethyl citrate (TEC) as the nonpolar phase, and water as the polar phase. 1,2-Pentanediol (PtDO)/TEC/water combination can form the largest monophasic zone, accounting for ∼74% of the total phase diagram area, due to an optimal hydrophilic (water)-lipophilic (TEC) balance. Comparable to surfactant-based microemulsion, PtDO/TEC/water SFME can also be categorized into three types: water-in-oil, discontinuous, and oil-in-water. As TEC or water is increased, or PtDO is decreased, the nanoaggregates in PtDO/TEC/water SFME grow from <5 nm to tens of nanometers. The addition of α-arbutin (ABN) does not disrupt PtDO/TEC/water SFME, but rather enhances its formation, resulting in a larger monophasic area and consistent size (2.8-3.8 nm) through participating in interface assembly. Furthermore, ABN-loaded PtDO/TEC/water SFME exhibits remarkable resistance to dilution, exceptional stability, and minimal irritation. Notably, PtDO/TEC/water SFME significantly boosts ABN's solubility in water by 2 times, its percutaneous penetration rate by 3-4 times, and enables a slow-release DPPH• radical scavenging effect. This SFME serves as a safe and cosmetically suitable nanoplatform for the delivery of bioactive substances.


Subject(s)
Arbutin , Emulsions , Water , Emulsions/chemistry , Water/chemistry , Arbutin/chemistry , Arbutin/pharmacokinetics , Animals , Surface-Active Agents/chemistry , Skin Absorption/drug effects , Administration, Cutaneous , Cosmetics/chemistry , Citrates/chemistry
4.
Int J Biol Macromol ; 268(Pt 1): 131603, 2024 May.
Article in English | MEDLINE | ID: mdl-38626835

ABSTRACT

The thermoplastic starch with glycerol is easy to retrograde and sensitive to hygroscopicity. In this study, branched 1,4-butanediol citrate oligomers with different molecular weights (P1, P2, and P3) are synthesized, and then mixed with glycerol (G) as the co-plasticizers to prepare thermoplastic starch (CS/PG). The results show that the molecular weight and branching degree of the branched 1,4-butanediol citrate oligomers increase as reaction time prolongs. Compared with glycerol plasticized starch, the thermoplastic starch films with branched 1,4-butanediol citrate oligomers/glycerol (10 wt%/20 wt%) have a better toughness, transmittance, and aging resistance, and have a lower crystallinity, hygroscopicity, and thermal stability. The toughness, transmittance, and aging resistance of CS/PG films are positively correlated with the molecular weight of the branched 1,4-butanediol citrate oligomers. These are due to the fact that the branched 1,4-butanediol citrate oligomer with a high molecular weight could form a stronger hydrogen bond and the more stable cross-linked structure with starch chains than that with a lower molecular weight. The elongation at break of CS/P3G film stored for 3 and 30 d are 98.0 % and 88.1 %, respectively. The mixture of branched butanediol citrate oligomers and glycerol, especially P3/G, has a potential application in the preparation of thermoplastic starch.


Subject(s)
Butylene Glycols , Glycerol , Molecular Weight , Plasticizers , Starch , Starch/chemistry , Glycerol/chemistry , Butylene Glycols/chemistry , Plasticizers/chemistry , Temperature , Citrates/chemistry , Plastics/chemistry
5.
Int J Pharm ; 657: 124121, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38621617

ABSTRACT

In-situ forming poly(lactic-co-glycolic acid) (PLGA) implants offer a great potential for controlled drug delivery for a variety of applications, e.g. periodontitis treatment. The polymer is dissolved in a water-miscible solvent. The drug is dissolved or dispersed in this solution. Upon contact with aqueous body fluids, the solvent diffuses into the surrounding tissue and water penetrates into the formulation. Consequently, PLGA precipitates, trapping the drug. Often, N-methyl-2-pyrrolidine (NMP) is used as a water-miscible solvent. However, parenteral administration of NMP raises toxicity concerns. The aim of this study was to identify less toxic alternative solvent systems for in-situ forming PLGA implants. Various blends of polyethylene glycol 400 (PEG 400), triethyl citrate (TEC) and ethanol were used to prepare liquid formulations containing PLGA, ibuprofen (as an anti-inflammatory drug) and/or chlorhexidine dihydrochloride (as an antiseptic agent). Implant formation and drug release kinetics were monitored upon exposure to phosphate buffer pH 6.8 at 37 °C. Furthermore, the syringeability of the liquids, antimicrobial activity of the implants, and dynamic changes in the latter's wet mass and pH of the release medium were studied. Importantly, 85:10:5 and 60:30:10 PEG 400:TEC:ethanol blends provided good syringeability and allowed for rapid implant formation. The latter controlled ibuprofen and chlorhexidine release over several weeks and assured efficient antimicrobial activity. Interestingly, fundamental differences were observed concerning the underlying release mechanisms of the two drugs: Ibuprofen was dissolved in the solvent mixtures and partially leached out together with the solvents during implant formation, resulting in relatively pronounced burst effects. In contrast, chlorhexidine dihydrochloride was dispersed in the liquids in the form of tiny particles, which were effectively trapped by precipitating PLGA during implant formation, leading to initial lag-phases for drug release.


Subject(s)
Chlorhexidine , Drug Implants , Drug Liberation , Ibuprofen , Polyethylene Glycols , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Solvents , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Solvents/chemistry , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Polyethylene Glycols/chemistry , Drug Implants/chemistry , Polyglycolic Acid/chemistry , Chlorhexidine/chemistry , Chlorhexidine/administration & dosage , Lactic Acid/chemistry , Citrates/chemistry , Ethanol/chemistry
6.
Eur J Clin Pharmacol ; 80(7): 1079-1087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546840

ABSTRACT

PURPOSE: To investigate the physicochemical compatibility of caffeine citrate and caffeine base injections with 43 secondary intravenous (IV) drugs used in Neonatal Intensive Care Unit (NICU) settings. METHODS: Caffeine citrate (20 mg/mL or 10 mg/mL) or caffeine base injection (10 mg/mL) were mixed in a volume ratio of 1:1 with the secondary drug solution to simulate Y-site co-administration procedures in NICUs. Physical compatibility was evaluated based on visual observation for 2 h, against a black and white background and under polarised light, for changes in colour, precipitation, haze and evolution of gas. Chemical compatibility was determined from caffeine concentration measurements, using a validated high-performance liquid chromatography assay. RESULTS: Six of the 43 secondary drugs tested (aciclovir, amphotericin (liposomal), furosemide, hydrocortisone, ibuprofen and ibuprofen lysine) were physically incompatible with caffeine citrate undiluted injection (20 mg/mL), at their high-end, clinically relevant concentrations for NICU settings. However, when tested at lower concentrations, hydrocortisone (1 mg/mL) was physicochemically compatible, whereas furosemide (0.2 mg/mL) was physically incompatible with caffeine citrate. The six drugs which showed physical incompatibility with caffeine citrate 20 mg/mL injection were also physically incompatible with caffeine citrate 10 mg/mL solution. All 43 secondary drugs tested were physicochemically compatible with caffeine base injection. CONCLUSIONS: Most secondary test drugs, except aciclovir, amphotericin (liposomal), furosemide, hydrocortisone, ibuprofen and ibuprofen lysine, were physicochemically compatible with caffeine citrate injection. Caffeine base injection was physicochemically compatible with all 43 test drugs tested.


Subject(s)
Caffeine , Citrates , Drug Incompatibility , Caffeine/chemistry , Caffeine/administration & dosage , Humans , Citrates/chemistry , Citrates/administration & dosage , Infant, Newborn , Intensive Care, Neonatal , Intensive Care Units, Neonatal , Acyclovir/administration & dosage , Acyclovir/chemistry
7.
ACS Appl Mater Interfaces ; 16(5): 6356-6366, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38262045

ABSTRACT

Biodegradable electronic devices have gained significant traction in modern medical applications. These devices are generally desired to have a long enough working lifetime for stable operation and allow for active control over their degradation rates after usage. However, current biodegradable materials used as encapsulations or substrates for these devices are challenging to meet the two requirements due to the constraints of inadequate water resistance, poor mechanical properties, and passive degradation characteristics. Herein, we develop a novel biodegradable elastomer named POC-SS-Res by introducing disulfide linkage and resveratrol (Res) into poly(1,8-octanediol-co-citrate) (POC). Compared to POC, POC-SS-Res exhibits good water resistance and excellent mechanical properties in PBS, providing effective protection for devices. At the same time, POC-SS-Res offers the unique advantage of an active-controllable degradation rate, and its degradation products express low biotoxicity. Good biocompatibility of POC-SS-Res is also demonstrated. Bioelectronic components encapsulated with POC-SS-Res have an obvious prolongation of working lifetime in PBS compared to that encapsulated with POC, and its degradation rate can be actively controlled by the addition of glutathione (GSH).


Subject(s)
Biocompatible Materials , Polymers , Polymers/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Elastomers/chemistry , Citrates/chemistry
8.
Macromol Rapid Commun ; 45(2): e2300452, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37838916

ABSTRACT

Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.


Subject(s)
Anti-Infective Agents , Citric Acid , Propylene Glycols , Citric Acid/chemistry , Citrates/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Tissue Engineering , Propylene Glycol , Anti-Infective Agents/pharmacology
9.
Biometals ; 37(2): 461-475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110781

ABSTRACT

Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.


Subject(s)
Ferric Compounds , Iron , Iron/chemistry , Ferric Compounds/chemistry , Citric Acid/chemistry , Citrates/chemistry
10.
Biomacromolecules ; 24(9): 4123-4137, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37584644

ABSTRACT

Citrate-based polymers are commonly used to create biodegradable implants. In an era of personalized medicine, it is highly desired that the degradation rates of citrate-based implants can be artificially regulated as required during clinical applications. Unfortunately, current citrate-based polymers only undergo passive degradation, which follows a specific degradation profile. This presents a considerable challenge for the use of citrate-based implants. To address this, a novel citrate-based polyester elastomer (POCSS) with artificially regulatable degradation rate is developed by incorporating disulfide bonds (S-S) into the backbone chains of the crosslinking network of poly(octamethylene citrate) (POC). This POCSS exhibits excellent and tunable mechanical properties, notable antibacterial properties, good biocompatibility, and low biotoxicity of its degradation products. The degradation rate of the POCSS can be regulated by breaking the S-S in its crosslinking network using glutathione (GSH). After a period of subcutaneous implantation of POCSS scaffolds in mice, the degradation rate eventually increased by 2.46 times through the subcutaneous administration of GSH. Notably, we observed no significant adverse effects on its surrounding tissues, the balance of the physiological environment, major organs, and the health status of the mice during degradation.


Subject(s)
Elastomers , Polyesters , Mice , Animals , Elastomers/chemistry , Polyesters/chemistry , Citric Acid , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Polymers/chemistry , Citrates/chemistry
11.
Bioconjug Chem ; 33(8): 1505-1514, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35852911

ABSTRACT

Sodium citrate-stabilized gold nanoparticles (AuNPs) are destabilized when dispersed in cell culture media (CCMs). This may promote their aggregation and subsequent sedimentation, or under the proper conditions, their interaction with dispersed proteins can lead to the formation of a NP-stabilizing protein corona. CCMs are ionic solutions that contain growth substances which are typically supplemented, in addition to serum, with different substances such as dyes, antioxidants, and antibiotics. In this study, the impact of phenol red, penicillin-streptomycin, l-glutamine, and ß-mercaptoethanol on the formation of the NP-protein corona in CCMs was investigated. Similar protein coronas were obtained except in the presence of antibiotics. Under these conditions, the protein corona took more time to be formed, and its density and composition were altered, as indicated by UV-vis spectroscopy, Z potential, dynamic light scattering, and liquid chromatography-mass spectrometry analyses. As a consequence of these modifications, a significantly different AuNP cellular uptake was measured, showing that NP uptake increased as did the NP aggregate formation. AuNP uptake studies performed in the presence of clathrin- and caveolin-mediated endocytosis inhibitors showed that neither clathrin receptors nor lipid rafts were significantly involved in the internalization mechanism. These results suggest that in these conditions, NP aggregation is the main mechanism responsible for their cellular uptake.


Subject(s)
Metal Nanoparticles , Protein Corona , Anti-Bacterial Agents , Cell Culture Techniques , Citrates/chemistry , Citric Acid , Clathrin , Gold/chemistry , Metal Nanoparticles/chemistry , Protein Corona/metabolism
12.
Photochem Photobiol Sci ; 21(6): 983-996, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35199321

ABSTRACT

Iron (Fe) is an essential cofactor for all livings. Although Fe membrane transport mechanisms often utilize FeII, uncoordinated or deliberated ferrous ions can initiate Fenton reactions. FeIII citrate complexes are among the most important complexed forms of FeIII especially in plants that, indeed, can undergo photoreduction. Since leaves as photosynthetic organs of higher plants are generally exposed to illumination in daytime, photoreaction of ferric species may have biological relevance in iron metabolism, the relevance of which is poorly understood. In present work FeIII citrate transformation during the photodegradation in solution and after foliar application on leaves was studied by Mössbauer analysis directly. To obtain irradiation time dependence of the speciation of iron in solutions, four model solutions of different pH values (1.5, 3.3, 5.5, and 7.0) with Fe to citrate molar ratio 1:1.1 were exposed to light. Highly acidic conditions led to a complete reduction of Fe together with the formation of FeII citrate and hexaaqua complexes in equal concentration. At higher pH, the only product of the photodegradation was FeII citrate, which was later reoxidized and polymerized, resulting in the formation of polynuclear stable ferric compound. To test biological relevance, leaves of cabbage were treated with FeIII citrate solution. X-ray fluorescence imaging indicated the accumulation of Fe in the treated leaf parts. Mössbauer analysis revealed the presence of several ferric species incorporated into the biological structure. The Fe speciation observed should be considered in biological systems where FeIII citrate has a ubiquitous role in Fe acquisition and homeostasis.


Subject(s)
Ferric Compounds , Iron , Citrates/chemistry , Citric Acid , Ferric Compounds/chemistry , Iron/chemistry , Photolysis , Plants/metabolism
13.
Adv Healthc Mater ; 11(4): e2101590, 2022 02.
Article in English | MEDLINE | ID: mdl-34797950

ABSTRACT

A proper pH microenvironment is crucial to mobilizing regeneration function of biomaterials. Neutralizing the acidity in bone defects with alkaline substances is a promising strategy to create favorable environments for cell proliferation and bone repair. In this study, to neutralize the acidity and reduce the inflammation caused by the rapid release of citric acid, a novel citrate-based biodegradable elastomeric poly(citric acid-1,8-octanediol-1,4-bis(2-hydroxyethyl)piperazine (BHEp)) (POPC) is synthesized with the introduction of the alkaline fragment BHEp, and then POPC/ß-tricalcium phosphate (ß-TCP) porous scaffolds are fabricated by 3D printing technique. The results reveal that the alkaline fragment BHEp effectively corrects the acid environment and improves the biocompatibility, cells affinity and promoted cell adhesion, and proliferation of POPC. Furthermore, the improved pH of POPC15/ß-TCP (PTCP15) enhances the adhesion and the proliferation of rabbit bone marrow mesenchymal stem cells, and the expression of osteogenesis-related genes. Moreover, PTCP15 scaffolds relieve inflammatory response and switch RAW 264.7 toward a prohealing extreme. The rat femoral defect model further demonstrates good biocompatibility and enhanced bone regeneration of PTCP15. In conclusion, the results offer a promising approach for biodegradable polymers to address the degradation acidity issue. Meanwhile, a positive regulation strategy is provided for biopolymer to enhance cell proliferation, osteogenic differentiation, and bone repair.


Subject(s)
Biocompatible Materials , Osteogenesis , Animals , Biocompatible Materials/pharmacology , Bone Regeneration , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation , Citrates/chemistry , Citric Acid , Printing, Three-Dimensional , Rabbits , Rats , Tissue Scaffolds/chemistry
14.
Phys Chem Chem Phys ; 24(3): 1630-1637, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34951613

ABSTRACT

The nature of the nanoparticle-protein corona is emerging as a key aspect in determining the impact of nanomaterials on proteins and in general on the biological response. We previously demonstrated that citrate-stabilized gold nanoparticles (Cit-AuNPs) interact with ß2-microglobulin (ß2m) preserving the protein native structure. Moreover, Cit-AuNPs are able to hinder in vitro fibrillogenesis of a ß2m pathologic variant, namely D76N, by reducing the oligomeric association of the protein in solution. Here, we clarify the characteristics of the interaction between ß2m and Cit-AuNPs by means of different techniques, i.e. surface enhanced Raman spectroscopy, NMR and quartz crystal microbalance with dissipation monitoring. All the results obtained clearly show that by simply changing the ionic strength of the medium it is possible to switch from a labile and transient nature of the protein-NP adduct featuring the so-called soft corona, to a more "hard" interaction with a layer of proteins having a longer residence time on the NP surface. This confirms that the interaction between ß2m and Cit-AuNPs is dominated by electrostatic forces which can be tuned by modifying the ionic strength.


Subject(s)
Metal Nanoparticles/chemistry , Protein Corona/chemistry , beta 2-Microglobulin/chemistry , Citrates/chemistry , Gold/chemistry , Mutation , Osmolar Concentration , Static Electricity , beta 2-Microglobulin/genetics
15.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884506

ABSTRACT

Due to their potent antibacterial properties, silver nanoparticles (AgNPs) are widely used in industry and medicine. However, they can cross the brain-blood barrier, posing a risk to the brain and its functions. In our previous study, we demonstrated that oral administration of bovine serum albumin (BSA)-coated AgNPs caused an impairment in spatial memory in a dose-independent manner. In this study, we evaluated the effects of AgNPs coating material on cognition, spatial memory functioning, and neurotransmitter levels in rat hippocampus. AgNPs coated with BSA (AgNPs(BSA)), polyethylene glycol (AgNPs(PEG)), or citrate (AgNPs(Cit)) or silver ions (Ag+) were orally administered at a dose of 0.5 mg/kg b.w. to male Wistar rats for a period of 28 days, while the control (Ctrl) rats received 0.2 mL of water. The acquisition and maintenance of spatial memory related to place avoidance were assessed using the active allothetic place avoidance task, in which rats from AgNPs(BSA), AgNPs(PEG), and Ag+ groups performed worse than the Ctrl rats. In the retrieval test assessing long-term memory, only rats from AgNPs(Cit) and Ctrl groups showed memory maintenance. The analysis of neurotransmitter levels indicated that the ratio between serotonin and dopamine concentration was disturbed in the AgNPs(BSA) rats. Furthermore, treatment with AgNPs or Ag+ resulted in the induction of peripheral inflammation, which was reflected by the alterations in the levels of serum inflammatory mediators. In conclusion, depending on the coating material used for their stabilization, AgNPs induced changes in memory functioning and concentration of neurotransmitters.


Subject(s)
Cognition Disorders/pathology , Hippocampus/pathology , Metal Nanoparticles/toxicity , Polyethylene Glycols/toxicity , Serum Albumin, Bovine/toxicity , Silver/chemistry , Animals , Citrates/chemistry , Citrates/toxicity , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Cytokines/metabolism , Hippocampus/drug effects , Male , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Rats , Rats, Wistar , Serum Albumin, Bovine/chemistry
16.
J Mater Chem B ; 9(44): 9191-9203, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34698324

ABSTRACT

Traditional shape memory polymers (SMPs) could avoid large volume trauma during implantation; however, for bone repair, scaffolds with high porosity and biomineralization are essential to promote bone regeneration. A novel porous composite scaffold with high biomineralization activity was developed by sequential gas foaming and a freeze-drying method. The results showed that the cross-linked block structure of the polymer matrix presented excellent shape memory properties, and osteogenesis was promoted by citrate functionalized amorphous calcium phosphate (CCACP). CCACP improved the mechanical strength of the scaffold, and the synergistic effect of CCACP and PEG promotes hydrophilicity and further promoted cell adhesion. Bending experiments indicated that the shape-memory effect of the scaffolds could be varied by varying the CCACP content. In addition, hydroxyapatite deposition was sped up as CCACP accelerated the mineralization of the scaffolds. Moreover, the result of the CCK-8 assessment suggested that composite scaffolds exhibited high biocompatibility, and the cells extended out abundant filopodia to adhere onto the scaffolds. In rat bone defect models, the obtained scaffolds promoted new bone formation compared to the control group. The developed composite scaffolds show potential for minimally invasive bone repair application.


Subject(s)
Bone Regeneration/drug effects , Calcium Phosphates/chemistry , Citrates/chemistry , Osteogenesis/drug effects , Smart Materials/chemistry , Tissue Scaffolds/chemistry , Animals , Butylene Glycols/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Polyethylene Glycols/chemistry , Polymers/chemistry , Porosity , Prostheses and Implants , Rats, Sprague-Dawley , Wettability
17.
ACS Appl Mater Interfaces ; 13(39): 46233-46246, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34547889

ABSTRACT

While the antibacterial effect of silver nanoparticles (AgNPs) on environmentally beneficial microbes has drawn considerable attention, the stability and microbial toxicity of AgNPs in a system where nitrate reduction is the dominant terminal electron-accepting process remain understudied. Here, we explore the impact of citrate-coated AgNPs (cit-AgNPs) on the growth and metabolism of two metal-sensitive and one nonsensitive bacterial strains under denitrifying conditions. Dose-response analysis revealed that in contrast to the bacteriostatic effect exhibited at 1 ppm, 5 ppm cit-AgNPs were bactericidal to the metal-sensitive strains. It was observed that the growth of the cells initiated Ag(I) formation, and the supplement of chloride (2.7 mM) to the cultures substantially mitigated the bactericidal capacity of cit-AgNPs, indicating that AgNP dissolution to ionic Ag(I) played a key role in AgNP toxicity. Abiotic experiments confirmed that nitrite, not nitrate, had the capacity to oxidize cit-AgNPs. Transcriptomic analysis revealed that (i) the gene encoding for membrane stress was upregulated proportionally to cit-AgNP concentrations; (ii) cit-AgNPs and Ag(I) at higher levels upregulated genes involved in oxidative stress and iron-sulfur clusters, whereas expressions of the genes responsible for electron transport, ATP synthesis, and denitrification were substantially repressed; (iii) the addition of chloride significantly altered the level of transcriptional profiles of all of the genes. These results not only provide evidence of abiotic AgNP oxidation by metabolic intermediate nitrogen species but also suggest that AgNPs and Ag(I) may induce differential toxicity modes to prokaryotes. Our findings reinforce the importance of evaluating the potential ecological toxicity and risks associated with the transformation of nanomaterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Citrates/chemistry , Cupriavidus/drug effects , Denitrification/drug effects , Drug Stability , Gene Expression Regulation, Bacterial/drug effects , Oxidative Stress/drug effects , Pseudomonas stutzeri/drug effects , Silver/chemistry , Transcriptome/drug effects , Up-Regulation/drug effects
18.
J Mater Chem B ; 9(39): 8202-8210, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34590109

ABSTRACT

Citrate-based mussel-inspired whitlockite composite adhesives (CMWAs) were developed and administered to the bone-tendon interface in anterior cruciate ligament (ACL) reconstruction. CMWAs could improve the initial bone-tendon bonding strength, promote the bony inward growth from the bone tunnel and enhance the chondrogenesis and osteogenesis of the bone-tendon interface, thus augmenting bone-to-tendon healing.


Subject(s)
Biocompatible Materials/chemistry , Bivalvia/chemistry , Calcium Phosphates/chemistry , Citrates/chemistry , Adhesives , Animals , Anterior Cruciate Ligament Reconstruction , Bone Marrow Cells , Bone and Bones , Mesenchymal Stem Cells , Molecular Structure , Osteogenesis , Rats , Stress, Mechanical , Tendons
19.
Molecules ; 26(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361717

ABSTRACT

The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Chitin/chemistry , Citrates/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Anti-Bacterial Agents/pharmacology , Elastic Modulus , Escherichia coli/drug effects , Escherichia coli/growth & development , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Nanoparticles/ultrastructure , Rheology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Tensile Strength , Viscosity
20.
Transfusion ; 61 Suppl 1: S80-S89, 2021 07.
Article in English | MEDLINE | ID: mdl-34269444

ABSTRACT

BACKGROUND: Collection of non-leukoreduced citrate-phosphate-dextrose-adenine (CPDA-1) whole blood is performed in walking blood banks. Blood collected under field conditions may have increased risk of bacterial contamination. This study was conducted to examine the effects of WBC reduction and storage temperature on growth of Escherichia coli (ATCC® 25922™) in CPDA-1 whole blood. METHODS: CPDA-1 whole blood of 450 ml from 10 group O donors was inoculated with E. coli. Two hours after inoculation, the test bags were leukoreduced with a platelet-sparing filter. The control bags remained unfiltered. Each whole blood bag was then split into three smaller bags for further storage at 2-6°C, 20-24°C, or 33-37°C. Bacterial growth was quantified immediately, 2 and 3 h after inoculation, on days 1, 3, 7, and 14 for all storage temperatures, and on days 21 and 35 for storage at 2-6°C. RESULTS: Whole blood was inoculated with a median of 19.5 (range 12.0-32.0) colony-forming units per ml (CFU/ml) E. coli. After leukoreduction, a median of 3.3 CFU/ml (range 0.0-33.3) E. coli remained. In the control arm, the WBCs phagocytized E. coli within 24 h at 20-24°C and 33-37°C in 9 of 10 bags. During storage at 2-6°C, a slow self-sterilization occurred over time with and without leukoreduction. CONCLUSIONS: Storage at 20-24°C and 33-37°C for up to 24 h before leukoreduction reduces the risk of E. coli-contamination in CPDA-1 whole blood. Subsequent storage at 2-6°C will further reduce the growth of E. coli.


Subject(s)
Blood Preservation , Blood Safety , Escherichia coli Infections/microbiology , Escherichia coli/growth & development , Leukocyte Reduction Procedures , Adenine/chemistry , Blood Preservation/methods , Citrates/chemistry , Escherichia coli/isolation & purification , Glucose/chemistry , Humans , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...