Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 218
1.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Article En | MEDLINE | ID: mdl-38677292

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Citrobacter rodentium , Enterobacteriaceae Infections , Glycolysis , Immunity, Innate , Lymphocytes , Mice, Knockout , Animals , Mice , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Hexokinase/metabolism , Hexokinase/genetics , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukin-17/metabolism , Adaptation, Physiological/immunology
2.
Nat Commun ; 15(1): 3554, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688934

Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.


Citrobacter rodentium , Dendritic Cells , Proto-Oncogene Proteins c-bcl-6 , Th17 Cells , Animals , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Citrobacter rodentium/immunology , Mice, Inbred C57BL , Mice, Knockout , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , Gene Deletion , Spleen/immunology , Spleen/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
3.
Nature ; 629(8012): 669-678, 2024 May.
Article En | MEDLINE | ID: mdl-38600382

Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.


Citrobacter rodentium , Colon , Epithelial Cells , Intestinal Mucosa , T-Lymphocytes , Animals , Female , Male , Mice , Citrobacter rodentium/immunology , Colon/cytology , Colon/immunology , Colon/microbiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Interleukin-22/immunology , Interleukin-22/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/cytology , Mice, Inbred C3H , Mice, Inbred C57BL , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Infect Immun ; 92(5): e0009924, 2024 May 07.
Article En | MEDLINE | ID: mdl-38557196

The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.


Citrobacter rodentium , Enterobacteriaceae Infections , Interleukin-22 , Animals , Mice , Citrobacter rodentium/immunology , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Interleukin-22/genetics , Interleukin-22/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/immunology
5.
Nature ; 609(7927): 582-589, 2022 09.
Article En | MEDLINE | ID: mdl-36071157

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Gastrointestinal Microbiome , Intestine, Large , Symbiosis , Trypsin , Administration, Oral , Animals , Bacterial Secretion Systems , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , COVID-19/complications , Citrobacter rodentium/immunology , Diarrhea/complications , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Immunoglobulin A/metabolism , Intestine, Large/metabolism , Intestine, Large/microbiology , Mice , Murine hepatitis virus/metabolism , Murine hepatitis virus/pathogenicity , Proteolysis , SARS-CoV-2/pathogenicity , Trypsin/metabolism , Virus Internalization
6.
Science ; 375(6583): 859-863, 2022 02 25.
Article En | MEDLINE | ID: mdl-35201883

Group 3 innate lymphoid cells (ILC3s) are innate immune effectors that contribute to host defense. Whether ILC3 functions are stably modified after pathogen encounter is unknown. Here, we assess the impact of a time-restricted enterobacterial challenge to long-term ILC3 activation in mice. We found that intestinal ILC3s persist for months in an activated state after exposure to Citrobacter rodentium. Upon rechallenge, these "trained" ILC3s proliferate, display enhanced interleukin-22 (IL-22) responses, and have a superior capacity to control infection compared with naïve ILC3s. Metabolic changes occur in C. rodentium-exposed ILC3s, but only trained ILC3s have an enhanced proliferative capacity that contributes to increased IL-22 production. Accordingly, a limited encounter with a pathogen can promote durable phenotypic and functional changes in intestinal ILC3s that contribute to long-term mucosal defense.


Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Lymphocyte Activation , Lymphocytes/immunology , Adaptive Immunity , Animals , Cell Proliferation , Female , Immunity, Innate , Immunologic Memory , Interleukins/metabolism , Intestines/immunology , Listeria monocytogenes , Listeriosis/immunology , Lymphocytes/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Oxygen Consumption , RNA-Seq , Reinfection/immunology , Interleukin-22
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article En | MEDLINE | ID: mdl-34625492

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , Interleukins/analysis , Lymphoid Tissue/cytology , Lymphoid Tissue/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR/biosynthesis , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Tretinoin/metabolism , Vasoactive Intestinal Peptide/genetics , Interleukin-22
8.
Immunohorizons ; 5(10): 870-883, 2021 10 26.
Article En | MEDLINE | ID: mdl-34702763

Citrobacter rodentium is a murine pathogenic bacterium that adheres to intestinal epithelial cells, resulting in loss of microvilli and pedestal formation, and alters multiple cellular processes, including actin dynamics. Translocated intimin receptor (Tir), one of its virulence factors, functions as receptor for intimin, a bacterial adhesin, thereby mediating bacterial adhesion to epithelial cells. Although robust immune responses are induced to eliminate pathogenic bacteria in the host, they are suppressed against harmless commensal bacteria. The mechanism(s) underlying such a differentiation remains unclear. This study sought to determine the roles of intimate adhesion in the induction of specific immune responses upon C. rodentium infection. To this end, microbiota-depleted mice were infected with the Tir-F strain expressing full-length Tir or mutant strains expressing the C-terminal truncated Tir that is defective in intimin binding and host cell actin polymerization. There were no differences in the colonization kinetics and Abs responses against C. rodentium LPS among the strains, whereas Abs against the virulence factors were only produced on Tir-F infection. Although there were no differences in the virulence factors mRNA expression levels, colonic hyperplasia, and bacterial translocation to the systemic organs irrespective of the strain, adhesion to colonic epithelial cells was reduced in the mutant strain-infected mice. Furthermore, transcriptomic analysis indicated that robust inflammatory and immune responses were only induced in the Tir-F-infected group and were suppressed in the mutant-infected groups. Taken together, these findings suggest that Tir-mediated intimate adhesion induces inflammatory and immune responses, resulting in the induction of virulence factor-specific Abs.


Bacterial Adhesion/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Intestinal Mucosa/pathology , Virulence Factors/metabolism , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion/genetics , Cell Line, Tumor , Citrobacter rodentium/genetics , Citrobacter rodentium/pathogenicity , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Female , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mutation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Specific Pathogen-Free Organisms
9.
Front Immunol ; 12: 712632, 2021.
Article En | MEDLINE | ID: mdl-34335629

Lymphotoxin beta receptor (LTßR) is a promising therapeutic target in autoimmune and infectious diseases as well as cancer. Mice with genetic inactivation of LTßR display multiple defects in development and organization of lymphoid organs, mucosal immune responses, IgA production and an autoimmune phenotype. As these defects are imprinted in embryogenesis and neonate stages, the impact of LTßR signaling in adulthood remains unclear. Here, to overcome developmental defects, we generated mice with inducible ubiquitous genetic inactivation of LTßR in adult mice (iLTßRΔ/Δ mice) and redefined the role of LTßR signaling in organization of lymphoid organs, immune response to mucosal bacterial pathogen, IgA production and autoimmunity. In spleen, postnatal LTßR signaling is required for development of B cell follicles, follicular dendritic cells (FDCs), recruitment of neutrophils and maintenance of the marginal zone. Lymph nodes of iLTßRΔ/Δ mice were reduced in size, lacked FDCs, and had disorganized subcapsular sinus macrophages. Peyer`s patches were smaller in size and numbers, and displayed reduced FDCs. The number of isolated lymphoid follicles in small intestine and colon were also reduced. In contrast to LTßR-/- mice, iLTßRΔ/Δ mice displayed normal thymus structure and did not develop signs of systemic inflammation and autoimmunity. Further, our results suggest that LTßR signaling in adulthood is required for homeostasis of neutrophils, NK, and iNKT cells, but is dispensable for the maintenance of polyclonal IgA production. However, iLTßRΔ/Δ mice exhibited an increased sensitivity to C. rodentium infection and failed to develop pathogen-specific IgA responses. Collectively, our study uncovers new insights of LTßR signaling in adulthood for the maintenance of lymphoid organs, neutrophils, NK and iNKT cells, and IgA production in response to mucosal bacterial pathogen.


Aging/immunology , Lymphoid Tissue/immunology , Lymphotoxin beta Receptor/physiology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/immunology , Autoimmunity , Cell Adhesion Molecules/metabolism , Chemokines/metabolism , Citrobacter rodentium/immunology , Crosses, Genetic , Gene Expression Regulation, Developmental , Homeostasis/immunology , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Inflammation , Killer Cells, Natural/immunology , Lymphoid Tissue/cytology , Lymphotoxin beta Receptor/biosynthesis , Lymphotoxin beta Receptor/deficiency , Lymphotoxin beta Receptor/genetics , Mice , Mice, Inbred MRL lpr , Mice, Transgenic , Neutrophils/immunology , Sequence Deletion , Specific Pathogen-Free Organisms , Splenomegaly/immunology
10.
JCI Insight ; 6(14)2021 07 22.
Article En | MEDLINE | ID: mdl-34111031

TNFRSF13B encodes the transmembrane activator and CAML interactor (TACI) receptor, which drives plasma cell differentiation. Although TNFRSF13B supports host defense, dominant-negative TNFRSF13B alleles are common in humans and other species and only rarely associate with disease. We reasoned that the high frequency of disruptive TNFRSF13B alleles reflects balancing selection, the loss of function conferring advantage in some settings. Testing that concept, we investigated how a common human dominant-negative variant, TNFRSF13B A181E, imparts resistance to enteric pathogens. Mice engineered to express mono- or biallelic A144E variants of tnrsf13B, corresponding to A181E, exhibited a striking resistance to pathogenicity and transmission of Citrobacter rodentium, a murine pathogen that models enterohemorrhagic Escherichia coli, and resistance was principally owed to natural IgA deficiency in the intestine. In WT mice with gut IgA and in mutant mice reconstituted with enteric IgA obtained from WT mice, IgA induces LEE expression of encoded virulence genes, which confer pathogenicity and transmission. Taken together, our results show that C. rodentium and most likely other enteric organisms appropriated binding of otherwise protective antibodies to signal induction of the virulence program. Additionally, the high prevalence of TNFRSF13B dominant-negative variants reflects balancing selection.


Citrobacter rodentium/immunology , Colitis/immunology , Enterobacteriaceae Infections/immunology , Immunoglobulin A/immunology , Transmembrane Activator and CAML Interactor Protein/genetics , Alleles , Animals , B-Lymphocytes , Colitis/microbiology , Disease Models, Animal , Disease Resistance/genetics , Enterobacteriaceae Infections/microbiology , Female , Humans , Immunoglobulin A/metabolism , Loss of Function Mutation , Lymphocyte Activation/genetics , Male , Polymorphism, Single Nucleotide/immunology , Transmembrane Activator and CAML Interactor Protein/metabolism
11.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article En | MEDLINE | ID: mdl-33483420

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


Colitis/immunology , Defensins/genetics , Enterobacteriaceae Infections/immunology , Paneth Cells/immunology , RNA Helicases/genetics , Wnt Signaling Pathway , Animals , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Defensins/immunology , Dextran Sulfate/administration & dosage , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Gastrointestinal Microbiome/immunology , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/immunology , Paneth Cells/microbiology , Protein Isoforms/genetics , Protein Isoforms/immunology , RNA Helicases/immunology
12.
Nat Immunol ; 22(2): 216-228, 2021 02.
Article En | MEDLINE | ID: mdl-33462454

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.


Bacteria/pathogenicity , Bacterial Infections/microbiology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/parasitology , Colon/microbiology , Colon/parasitology , Gastrointestinal Microbiome , Heligmosomatoidea/pathogenicity , Intestinal Diseases, Parasitic/parasitology , Animals , Bacteria/immunology , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colon/immunology , Colon/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Heligmosomatoidea/immunology , Host-Pathogen Interactions , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Nematospiroides dubius/immunology , Nematospiroides dubius/pathogenicity , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Phenotype , Salmonella enterica/immunology , Salmonella enterica/pathogenicity , Single-Cell Analysis , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptome
13.
Nature ; 590(7844): 151-156, 2021 02.
Article En | MEDLINE | ID: mdl-33442055

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Abdominal Pain/immunology , Abdominal Pain/pathology , Allergens/immunology , Food Hypersensitivity/immunology , Food/adverse effects , Intestines/immunology , Irritable Bowel Syndrome/immunology , Abdominal Pain/etiology , Abdominal Pain/microbiology , Adult , Animals , Citrobacter rodentium/immunology , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/pathology , Enterobacteriaceae Infections/complications , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Female , Food Hypersensitivity/complications , Food Hypersensitivity/microbiology , Food Hypersensitivity/pathology , Glutens/immunology , Humans , Immunoglobulin E/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiology , Intestines/pathology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/pathology , Male , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Middle Aged , Milk/immunology , Ovalbumin/immunology , Quality of Life , Receptors, Histamine H1/metabolism , Soybean Proteins/immunology , Triticum/immunology
14.
J Immunol ; 206(4): 766-775, 2021 02 15.
Article En | MEDLINE | ID: mdl-33431657

Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.


Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunoglobulin A, Secretory/immunology , Intestinal Mucosa/immunology , Oxidoreductases/immunology , Receptors, Interleukin-17/immunology , Signal Transduction/immunology , Animals , Disease Models, Animal , Enterobacteriaceae Infections/genetics , Humans , Hydrogen Peroxide/immunology , Immunoglobulin A, Secretory/genetics , Mice , Mice, Knockout , Oxidoreductases/genetics , Receptors, Interleukin-17/genetics , Signal Transduction/genetics
15.
J Clin Invest ; 131(1)2021 01 04.
Article En | MEDLINE | ID: mdl-33141762

As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium could also oxidize long-chain fatty acids, and that luminally delivered acylcarnitines in bile could be consumed via apical absorption by the intestinal epithelium, resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium-induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.


Carnitine/analogs & derivatives , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Liver/immunology , Mitochondria/immunology , Animals , Caco-2 Cells , Carnitine/immunology , Enterobacteriaceae Infections/pathology , Female , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Mitochondria/pathology
16.
Eur J Immunol ; 51(3): 620-625, 2021 03.
Article En | MEDLINE | ID: mdl-33078848

Dendritic cells (DCs) are first in line to sense invading microbes and to deliver signals to other immune cells. Plasmacytoid DCs (pDC) produce high amounts of type I interferons (IFNs) but also regulate immune responses. Using the Clec4C (BDCA2)-diphtheria toxin receptor mouse model allowing conditional pDC depletion, we identified an essential role for pDCs in regulating intestinal inflammation locally in the gut. In pDC-depleted mice, Citrobacter rodentium infection led to enhanced activation of conventional DCs and induction of IFN-γ-producing Th1-cells in colon-draining lymph nodes, while induction of Foxp3+ /CD25+ Treg and IL-17-producing Th17 cells was impaired. Concomitantly, F4/80+ macrophages accumulated into the colon lamina propria in excess, and levels of Il-1ß and Tnf transcripts increased and Foxp3+ Treg were fewer. Our results indicate that pDCs control inflammation in the gut during C. rodentium infection and that they have an important immune regulatory role in colon-draining lymph nodes.


Citrobacter rodentium/immunology , Colitis/immunology , Colon/immunology , Dendritic Cells/immunology , Immunity/immunology , Lymph Nodes/immunology , Animals , Enterobacteriaceae Infections/immunology , Female , Forkhead Transcription Factors/immunology , Heparin-binding EGF-like Growth Factor/immunology , Inflammation/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology
17.
Nihon Saikingaku Zasshi ; 75(2): 185-194, 2020.
Article Ja | MEDLINE | ID: mdl-33361654

Countless numbers of bacteria inhabit the intestinal tract. One of the important functions of gut microbiota is the "colonization resistance" against infection by pathogenic microorganisms. However, detailed mechanism of the colonization resistance of intestinal bacteria is still largely unknown. We tried to identify molecular and cellular mechanism of it and found that antigen presentation by dendritic cells is required for the induction of intestinal segmented filamentous bacteria (SFB)-induced T helper 17 (Th17) cells that contribute to the protection against infection by Citrobacter rodentium. We further identified that gut Th17 cells selectively recognize antigens derived from SFB. We also revealed that SFB induce α1,2-fucose, one of carbohydrate chains, expressed on the intestinal epithelial cells mediated by group 3 innate lymphoid cells. Epithelial α1,2-fucose protected against infection by pathogenic bacterium Salmonella typhimurium. Furthermore, it was found that intestinal bacteria inhibit colonization of the pathogenic fungus Candida albicans as well as pathogenic bacteria. From these studies, detailed mechanism of "colonization resistance" against pathogenic microorganisms by intestinal bacteria has been clarified.


Candida albicans/pathogenicity , Citrobacter rodentium/pathogenicity , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions/immunology , Immune System/immunology , Intestinal Mucosa/microbiology , Salmonella typhimurium/pathogenicity , Th17 Cells/immunology , Animals , Antigen Presentation , Antigens, Bacterial/immunology , Bacterial Adhesion/immunology , Candida albicans/immunology , Citrobacter rodentium/immunology , Dendritic Cells/immunology , Fucose/metabolism , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Salmonella typhimurium/immunology
18.
STAR Protoc ; 1(3): 100218, 2020 12 18.
Article En | MEDLINE | ID: mdl-33377111

Citrobacter rodentium is an extracellular enteric bacterial pathogen that induces both innate and adaptive immunity in mice, its natural host. Here, we detail the step-by-step procedure to evaluate the immune responses in a mouse model of C. rodentium infection. We describe the methods to establish infection, isolate group 3 innate lymphoid cells from lamina propria lymphocytes, and analyze their response. We also assess the response of T follicular helper cells and germinal center B cells. For complete details on the use and execution of this protocol, please refer to Guo et al. (2015), Kennedy and Hartland, (2018), and Wang et al. (2020).


Cell Separation/methods , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Adaptive Immunity/immunology , Animals , B-Lymphocytes/immunology , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colitis/immunology , Colon/immunology , Gastrointestinal Microbiome , Germinal Center/immunology , Immunity, Innate/immunology , Intestinal Mucosa/immunology , Lymphocytes/cytology , Mice
19.
Sci Immunol ; 5(53)2020 11 27.
Article En | MEDLINE | ID: mdl-33246946

Inflammatory caspase-dependent cytosolic lipopolysaccharide (LPS) sensing is a critical arm of host defense against bacteria. How pathogens overcome this pathway to establish infections is largely unknown. Enterohemorrhagic Escherichia coli (EHEC) is a clinically important human pathogen causing hemorrhagic colitis and hemolytic uremic syndrome. We found that a bacteriophage-encoded virulence factor of EHEC, Shiga toxin (Stx), suppresses caspase-11-mediated activation of the cytosolic LPS sensing pathway. Stx was essential and sufficient to inhibit pyroptosis and interleukin-1 (IL-1) responses elicited specifically by cytosolic LPS. The catalytic activity of Stx was necessary for suppression of inflammasome responses. Stx impairment of inflammasome responses to cytosolic LPS occurs at the level of gasdermin D activation. Stx also suppresses inflammasome responses in vivo after LPS challenge and bacterial infection. Overall, this study assigns a previously undescribed inflammasome-subversive function to a well-known bacterial toxin, Stx, and reveals a new phage protein-based pathogen blockade of cytosolic immune surveillance.


Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/immunology , Inflammasomes/immunology , Shiga Toxin 1/metabolism , Shiga Toxin 2/metabolism , Animals , Bacteriophages/immunology , Bacteriophages/metabolism , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Chlorocebus aethiops , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Disease Models, Animal , Enterohemorrhagic Escherichia coli/immunology , Enterohemorrhagic Escherichia coli/virology , Escherichia coli Infections/microbiology , Female , Humans , Immunologic Surveillance , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/immunology , Male , Mice , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Shiga Toxin 1/immunology , Shiga Toxin 2/immunology , Vero Cells , Viral Proteins/immunology , Viral Proteins/metabolism , Virulence Factors/immunology , Virulence Factors/metabolism
20.
Proc Natl Acad Sci U S A ; 117(44): 27540-27548, 2020 11 03.
Article En | MEDLINE | ID: mdl-33087566

Enteropathogenic bacterial infections are a global health issue associated with high mortality, particularly in developing countries. Efficient host protection against enteropathogenic bacterial infection is characterized by coordinated responses between immune and nonimmune cells. In response to infection in mice, innate immune cells are activated to produce interleukin (IL)-23 and IL-22, which promote antimicrobial peptide (AMP) production and bacterial clearance. IL-36 cytokines are proinflammatory IL-1 superfamily members, yet their role in enteropathogenic bacterial infection remains poorly defined. Using the enteric mouse pathogen, C.rodentium, we demonstrate that signaling via IL-36 receptor (IL-36R) orchestrates a crucial innate-adaptive immune link to control bacterial infection. IL-36R-deficient mice (Il1rl2-/- ) exhibited significant impairment in expression of IL-22 and AMPs, increased intestinal damage, and failed to contain C. rodentium compared to controls. These defects were associated with failure to induce IL-23 and IL-6, two key IL-22 inducers in the early and late phases of infection, respectively. Treatment of Il1rl2-/- mice with IL-23 during the early phase of C. rodentium infection rescued IL-22 production from group 3 innate lymphoid cells (ILCs), whereas IL-6 administration during the late phase rescued IL-22-mediated production from CD4+ T cell, and both treatments protected Il1rl2-/- mice from uncontained infection. Furthermore, IL-36R-mediated IL-22 production by CD4+ T cells was dependent upon NFκB-p65 and IL-6 expression in dendritic cells (DCs), as well as aryl hydrocarbon receptor (AhR) expression by CD4+ T cells. Collectively, these data demonstrate that the IL-36 signaling pathway integrates innate and adaptive immunity leading to host defense against enteropathogenic bacterial infection.


Adaptive Immunity , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunity, Innate , Receptors, Interleukin-1/metabolism , Animals , Citrobacter rodentium/pathogenicity , Disease Models, Animal , Enterobacteriaceae Infections/microbiology , Interleukin-1/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Receptors, Interleukin-1/genetics , Signal Transduction/genetics , Signal Transduction/immunology
...