Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.122
1.
Helicobacter ; 29(3): e13084, 2024.
Article En | MEDLINE | ID: mdl-38717034

BACKGROUND: Recently, a simple tailored therapy based on clarithromycin resistance has been implemented as Helicobacter pylori (H. pylori) eradication therapy. Nonetheless, despite the tailored therapy and frequent adverse events, studies on treatment period are lacking. This study aimed to compare the H. pylori eradication rates of 7-day and 14-day tailored therapy regimens according to clarithromycin resistance. MATERIALS AND METHODS: This multicenter, prospective, randomized, noninferiority trial enrolled H. pylori-positive patients who were randomly assigned to 7-day and 14-day regimen groups, depending on the presence or absence of clarithromycin resistance by 23S rRNA gene point mutations. Standard triple therapy (STT) (20 mg rabeprazole, 1 g amoxicillin, and 500 mg clarithromycin twice daily) or bismuth quadruple therapy (BQT) (20 mg rabeprazole twice daily, 500 mg metronidazole thrice daily, 120 mg bismuth four times daily, and 500 mg tetracycline four times daily) was assigned by clarithromycin resistance. Eradication rates and adverse events were evaluated. RESULTS: A total of 314 and 278 patients were included in the intention-to-treat (ITT) and per-protocol (PP) analyses, respectively; however, 31 patients were lost to follow-up, whereas five patients violated the protocol. Both the 7-day and 14-day regimens showed similar eradication rates in the ITT (7-day vs. 14-day: 78.3% vs. 78.3%, p > 0.99) and PP (87.9% vs. 89.1%, p = 0.851) analyses. Non-inferiority was confirmed (p < 0.025). A subgroup analysis according to clarithromycin resistance (clarithromycin resistance rate: 28.7%) revealed no significant difference in eradication rates between the 7-day and 14-day STT (90.0% vs. 90.1%, p > 0.99) and BQT (82.5% vs. 86.5%, p = 0.757). Furthermore, adverse events did not significantly differ between the two groups. CONCLUSIONS: The 7-day triple and quadruple therapy according to clarithromycin resistance showed similar eradication rates, as compared to the 14-day therapy.


Anti-Bacterial Agents , Clarithromycin , Drug Resistance, Bacterial , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Clarithromycin/therapeutic use , Clarithromycin/pharmacology , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Male , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Middle Aged , Adult , Prospective Studies , Drug Therapy, Combination , Aged , Treatment Outcome , Rabeprazole/therapeutic use , Rabeprazole/administration & dosage , Bismuth/therapeutic use , Bismuth/administration & dosage , RNA, Ribosomal, 23S/genetics
2.
Sci Rep ; 14(1): 12066, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802465

Heterogeneity of Helicobacter pylori communities contributes to its pathogenicity and diverse clinical outcomes. We conducted drug-susceptibility tests using four antibiotics, clarithromycin (CLR), amoxicillin (AMX), metronidazole and sitafloxacin, to examine H. pylori population diversity. We also analyzed genes associated with resistance to CLR and AMX. We examined multiple isolates from 42 Japanese patients, including 28 patients in whom primary eradication with CLR and AMX had failed, and 14 treatment-naïve patients. We identified some patients with coexistence of drug resistant- and sensitive-isolates (drug-heteroR/S-patients). More than 60% of patients were drug-heteroR/S to all four drugs, indicating extensive heterogeneity. For the four drugs except AMX, the rates of drug-heteroR/S-patients were higher in treatment-naïve patients than in primary eradication-failure patients. In primary eradication-failure patients, isolates multi-resistant to all four drugs existed among other isolates. In primary eradication-failure drug-heteroR/S-patients, CLR- and AMX-resistant isolates were preferentially distributed to the corpus and antrum with different minimum inhibitory concentrations, respectively. We found two mutations in PBP1A, G591K and A480V, and analyzed these in recombinants to directly demonstrate their association with AMX resistance. Assessment of multiple isolates from different stomach regions will improve accurate assessment of H. pylori colonization status in the stomach.


Amoxicillin , Anti-Bacterial Agents , Drug Resistance, Bacterial , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Mutation , Humans , Helicobacter pylori/genetics , Helicobacter pylori/drug effects , Helicobacter pylori/isolation & purification , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Male , Female , Metronidazole/pharmacology , Stomach/microbiology , Clarithromycin/pharmacology , Middle Aged , Aged , Adult , Bacterial Proteins/genetics , Penicillin-Binding Proteins/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use
3.
Sci Rep ; 14(1): 8986, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637591

Potassium-competitive acid blockers (P-CABs) provide potent acid inhibition, yet studies on P-CAB-based quadruple therapy for H. pylori eradication are limited. We theorized that integrating bismuth subsalicylate into a quadruple therapy regimen could enhance eradication rates. However, data on the efficacy of vonoprazan bismuth quadruple therapy are notably scarce. Therefore, the aim of this study was to evaluate the efficacy of vonoprazan-based bismuth quadruple therapy in areas with high clarithromycin and levofloxacin resistance. This was a prospective, single-center, randomized trial conducted to compare the efficacy of 7-day and 14-day vonoprazan-based bismuth quadruple therapy for H. pylori eradication between June 1, 2021, and March 31, 2022. Qualified patients were randomly assigned to the 7-day or 14-day regimen (1:1 ratio by computer-generated randomized list as follows: 51 patients for the 7-day regimen and 50 patients for the 14-day regimen). The regimens consisted of vonoprazan (20 mg) twice daily, bismuth subsalicylate (1024 mg) twice daily, metronidazole (400 mg) three times daily, and tetracycline (500 mg) four times daily. CYP3A4/5 genotyping and antibiotic susceptibility tests were also performed. Successful eradication was defined as 13negative C-UBTs 4 weeks after treatment. The primary endpoint was to compare the efficacy of 7-day and 14-day regimens as first-line treatments, which were assessed by intention-to-treat (ITT) and per-protocol (PP) analyses. The secondary endpoints included adverse effects. A total of 337 dyspeptic patients who underwent gastroscopy were included; 105 patients (31.1%) were diagnosed with H. pylori infection, and 101 patients were randomly assigned to each regimen. No dropouts were detected. The antibiotic resistance rate was 33.3% for clarithromycin, 29.4% for metronidazole, and 27.7% for levofloxacin. The CYP3A4 genotype was associated with 100% rapid metabolism. The H. pylori eradication rates for the 7-day and 14-day regimens were 84.4%, 95% CI 74.3-94.2 and 94%, 95% CI 87.4-100, respectively (RR difference 0.25, 95% CI 0.03-0.53, p value = 0.11). Interestingly, the 14-day regimen led to 100% eradication in the clarithromycin-resistant group. Among the patients in the 7-day regimen group, only two exhibited resistance to clarithromycin; unfortunately, neither of them achieved a cure from H. pylori infection. The incidence of adverse events was similar in both treatment groups, occurring in 29.4% (15/51) and 28% (14/50) of patients in the 7-day and 14-day regimens, respectively. No serious adverse reactions were reported. In conclusion, 14 days of vonoprazan-based bismuth quadruple therapy is highly effective for H. pylori eradication in areas with high levels of dual clarithromycin and levofloxacin resistance.


Helicobacter Infections , Helicobacter pylori , Organometallic Compounds , Pyrroles , Salicylates , Sulfonamides , Humans , Clarithromycin/pharmacology , Bismuth/therapeutic use , Bismuth/adverse effects , Levofloxacin/adverse effects , Metronidazole/adverse effects , Prospective Studies , Cytochrome P-450 CYP3A , Anti-Bacterial Agents/adverse effects , Helicobacter Infections/genetics , Drug Therapy, Combination , Treatment Outcome
4.
Helicobacter ; 29(2): e13060, 2024.
Article En | MEDLINE | ID: mdl-38581134

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Anti-Infective Agents , Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Metronidazole/pharmacology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Levofloxacin/pharmacology , Ecuador , Anti-Bacterial Agents/pharmacology , Amoxicillin/pharmacology , Tetracycline/therapeutic use , Tetracycline/pharmacology , Drug Therapy, Combination
5.
PLoS Negl Trop Dis ; 18(4): e0011867, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573915

BACKGROUND: Buruli ulcer (BU) is a skin neglected tropical disease (NTD) caused by Mycobacterium ulcerans. WHO-recommended treatment requires 8-weeks of daily rifampicin (RIF) and clarithromycin (CLA) with wound care. Treatment compliance may be challenging due to socioeconomic determinants. Previous minimum Inhibitory Concentration and checkerboard assays showed that amoxicillin/clavulanate (AMX/CLV) combined with RIF+CLA were synergistic against M. ulcerans. However, in vitro time kill assays (TKA) are a better approach to understand the antimicrobial activity of a drug over time. Colony forming units (CFU) enumeration is the in vitro reference method to measure bacterial load, although this is a time-consuming method due to the slow growth of M. ulcerans. The aim of this study was to assess the in vitro activity of RIF, CLA and AMX/CLV combinations against M. ulcerans clinical isolates by TKA, while comparing four methodologies: CFU enumeration, luminescence by relative light unit (RLU) and optical density (at 600 nm) measurements, and 16S rRNA/IS2404 genes quantification. METHODOLOGY/PRINCIPAL FINDINGS: TKA of RIF, CLA and AMX/CLV alone and in combination were performed against different M. ulcerans clinical isolates. Bacterial loads were quantified with different methodologies after 1, 3, 7, 10, 14, 21 and 28 days of treatment. RIF+AMX/CLV and the triple RIF+CLA+AMX/CLV combinations were bactericidal and more effective in vitro than the currently used RIF+CLA combination to treat BU. All methodologies except IS2404 quantitative PCR provided similar results with a good correlation with CFU enumeration. Measuring luminescence (RLU) was the most cost-effective methodology to quantify M. ulcerans bacterial loads in in vitro TKA. CONCLUSIONS/SIGNIFICANCE: Our study suggests that alternative and faster TKA methodologies can be used in BU research instead of the cumbersome CFU quantification method. These results provide an in vitro microbiological support to of the BLMs4BU clinical trial (NCT05169554, PACTR202209521256638) to shorten BU treatment.


Buruli Ulcer , Mycobacterium ulcerans , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Rifampin/pharmacology , Rifampin/therapeutic use , Mycobacterium ulcerans/genetics , RNA, Ribosomal, 16S , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Buruli Ulcer/drug therapy , Buruli Ulcer/microbiology , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Amoxicillin-Potassium Clavulanate Combination/therapeutic use
6.
Helicobacter ; 29(2): e13074, 2024.
Article En | MEDLINE | ID: mdl-38615332

BACKGROUND: Helicobacter pylori is considered a true human pathogen for which rising drug resistance constitutes a drastic concern globally. The present study aimed to reconstruct a genome-scale metabolic model (GSMM) to decipher the metabolic capability of H. pylori strains in response to clarithromycin and rifampicin along with identification of novel drug targets. MATERIALS AND METHODS: The iIT341 model of H. pylori was updated based on genome annotation data, and biochemical knowledge from literature and databases. Context-specific models were generated by integrating the transcriptomic data of clarithromycin and rifampicin resistance into the model. Flux balance analysis was employed for identifying essential genes in each strain, which were further prioritized upon being nonhomologs to humans, virulence factor analysis, druggability, and broad-spectrum analysis. Additionally, metabolic differences between sensitive and resistant strains were also investigated based on flux variability analysis and pathway enrichment analysis of transcriptomic data. RESULTS: The reconstructed GSMM was named as HpM485 model. Pathway enrichment and flux variability analyses demonstrated reduced activity in the ribosomal pathway in both clarithromycin- and rifampicin-resistant strains. Also, a significant decrease was detected in the activity of metabolic pathways of clarithromycin-resistant strain. Moreover, 23 and 16 essential genes were exclusively detected in clarithromycin- and rifampicin-resistant strains, respectively. Based on prioritization analysis, cyclopropane fatty acid synthase and phosphoenolpyruvate synthase were identified as putative drug targets in clarithromycin- and rifampicin-resistant strains, respectively. CONCLUSIONS: We present a robust and reliable metabolic model of H. pylori. This model can predict novel drug targets to combat drug resistance and explore the metabolic capability of H. pylori in various conditions.


Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Clarithromycin/pharmacology , Rifampin/pharmacology , Helicobacter Infections/drug therapy , Databases, Factual
7.
Rev Esp Quimioter ; 37(3): 266-269, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602224

OBJECTIVE: Mycobacterium avium complex (MAC) and Mycobacterium abscessus are a group of nontuberculous mycobacteria (NTM) that have been described as human pathogens. Their ability to develop biofilms in tissues and medical devices is one of the most important pathogenicity factors, with important implications in diagnosis and treatment. Macrolides are usually considered one of the bases of this treatment. METHODS: Here we have studied the biofilm prevention concentration (BPC) of 16 strains (n=16) with clarithromycin to avoid the biofilm development by these NTM. RESULTS: In this study, all M. abscessus strains have similar BPC, while MAC strains showed different values. For MAC the concentrations ranged between 1-16 mg/L, while for M. abscessus the concentration was 32 mg/L for all strains except one that was 64 mg/L. CONCLUSIONS: These results open the possibility of using macrolides for the prevention of biofilm development in patients with a risk of developing NTM disease.


Anti-Bacterial Agents , Biofilms , Clarithromycin , Microbial Sensitivity Tests , Nontuberculous Mycobacteria , Clarithromycin/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Nontuberculous Mycobacteria/drug effects , Humans , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/prevention & control , Mycobacterium avium Complex/drug effects , Mycobacterium abscessus/drug effects
8.
Aquat Toxicol ; 271: 106918, 2024 Jun.
Article En | MEDLINE | ID: mdl-38598945

Antibiotics are commonly found in the aquatic environment, which can affect microbial community compositions and activities, and even have potential adverse impacts on human and ecosystem health. The current understanding of the effects of antibiotics on microalgae growth and algal dissolved organic matter (DOM) remains indistinct. To understand the toxic effects of antibiotics on the microalgae, Microcystis aeruginosa was exposed to clarithromycin (CLA) in this study. Cell density determination, chlorophyll content determination, and organic spectrum analysis were conducted to show the effect of CLA exposure on the growth, photosynthetic activity, and organic metabolic processes of Microcystis aeruginosa. The findings revealed that the physiological status of algae could be significantly influenced by CLA exposure in aquatic environments. Specifically, exposure to 1 µg/L CLA stimulated the growth and photosynthetic activity of algal cells. Conversely, CLA above 10 µg/L led to the inhibition of algal cell growth and photosynthesis. Notably, the inhibitory effects intensified with the increasing concentration of CLA. The molecular weight of DOM produced by Microcystis aeruginosa increased when exposed to CLA. Under the exposure of 60 µg/L CLA, a large number of algal cells ruptured and died, and the intracellular organic matter was released into the algal liquid. This resulted in an increase in high molecular weight substances and soluble microbial-like products in the DOM. Exposure to 1 and 10 µg/L CLA stimulated Microcystis aeruginosa to produce more humic acid-like substances, which may be a defense mechanism against CLA. The results were useful for assessing the effects of antibiotic pollution on the stability of the microalgae population and endogenous DOM characteristics in aquatic ecosystems.


Clarithromycin , Microcystis , Photosynthesis , Water Pollutants, Chemical , Microcystis/drug effects , Microcystis/growth & development , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Clarithromycin/toxicity , Clarithromycin/pharmacology , Microalgae/drug effects , Chlorophyll/metabolism , Anti-Bacterial Agents/toxicity
9.
Article En | MEDLINE | ID: mdl-38643813

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Anti-Bacterial Agents , Chlorella , Photosynthesis , Water Pollutants, Chemical , Chlorella/drug effects , Chlorella/metabolism , Photosynthesis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Water Pollutants, Chemical/toxicity , Tetracycline/pharmacology , Tetracycline/toxicity , Clarithromycin/pharmacology , Enrofloxacin/pharmacology , Enrofloxacin/toxicity , Sulfamethazine/toxicity , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Light , Chlorophyll/metabolism
10.
Microbiol Spectr ; 12(6): e0418023, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38666793

The high-consequence pathogen Bacillus anthracis causes human anthrax and often results in lethal infections without the rapid administration of effective antimicrobial treatment. Antimicrobial resistance profiling is therefore critical to inform post-exposure prophylaxis and treatment decisions, especially during emergencies such as outbreaks or where intentional release is suspected. Whole-genome sequencing using a rapid long-read sequencer can uncover antimicrobial resistance patterns if genetic markers of resistance are known. To identify genomic markers associated with antimicrobial resistance, we isolated B. anthracis derived from the avirulent Sterne strain with elevated minimal inhibitory concentrations to clarithromycin. Mutants were characterized both phenotypically through broth microdilution susceptibility testing and observations during culturing, as well as genotypically with whole-genome sequencing. We identified two different in-frame insertions in the L22 ribosomal protein-encoding gene rplV, which were subsequently confirmed to be involved in clarithromycin resistance through the reversion of the mutant gene to the parent (drug-susceptible) sequence. Detection of the rplV insertions was possible with rapid long-read sequencing, with a time-to-answer within 3 h. The mutations associated with clarithromycin resistance described here will be used in conjunction with known genetic markers of resistance for other antimicrobials to strengthen the prediction of antimicrobial resistance in B. anthracis.IMPORTANCEThe disease anthrax, caused by the pathogen Bacillus anthracis, is extremely deadly if not treated quickly and appropriately. Clarithromycin is an antibiotic recommended for the treatment and post-exposure prophylaxis of anthrax by the Centers for Disease Control and Prevention; however, little is known about the ability of B. anthracis to develop resistance to clarithromycin or the mechanism of that resistance. The characterization of clarithromycin-resistant isolates presented here provides valuable information for researchers and clinicians in the event of a release of the resistant strain. Additionally, knowledge of the genetic basis of resistance provides a foundation for susceptibility prediction through rapid genome sequencing to inform timely treatment decisions.


Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Clarithromycin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/drug effects , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anthrax/microbiology , Humans , Mutation , Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Genome, Bacterial/genetics
11.
Microbiol Spectr ; 12(6): e0021824, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38687080

The latest guidelines include azithromycin as a preferred regimen for treating Mycobacterium avium complex (MAC) pulmonary disease. However, serially collected susceptibility data on clinical MAC isolates are limited, and no breakpoints have been determined. We investigated the minimum inhibitory concentrations (MICs) of azithromycin and clarithromycin for all MAC strains isolated in 2021 from a single center in Japan, excluding duplicates. The MICs were determined using a panel based on the microbroth dilution method, according to the latest Clinical and Laboratory Standards Institute recommendations. The MICs were determined for 318 MAC strains. Although there was a significant positive correlation between the MICs of azithromycin and clarithromycin, the MICs of azithromycin tended to be higher than those of clarithromycin. Among the cases in which the strains were isolated, 18 patients initiated treatment, including azithromycin treatment, after sample collection. Some patients infected with stains with relatively high azithromycin MICs achieved a microbiological cure with azithromycin-containing regimens. This study revealed a higher MIC distribution for azithromycin than clarithromycin, raising questions about the current practice of estimating azithromycin susceptibility based on the clarithromycin susceptibility test result. However, this was a single-center study that included only a limited number of cases treated with azithromycin. Therefore, further multicenter studies that include a greater number of cases treated with azithromycin are warranted to verify the distribution of azithromycin MICs and examine the correlation between azithromycin MICs and treatment effectiveness.IMPORTANCEThe macrolides serve as key drugs in the treatment of pulmonary Mycobacterium avium complex infection, and the administration of macrolide should be guided by susceptibility test results. Azithromycin is recommended as a preferred choice among macrolides, surpassing clarithromycin; however, drug susceptibility testing is often not conducted, and clarithromycin susceptibility is used as a surrogate. This study represents the first investigation into the minimum inhibitory concentration of azithromycin on a scale of several hundred clinical isolates, revealing an overall tendency for higher minimum inhibitory concentrations compared with clarithromycin. The results raise questions about the appropriateness of using clarithromycin susceptibility test outcomes for determining the administration of azithromycin. This study highlights the need for future discussions on the clinical breakpoints of azithromycin, based on large-scale clinical research correlating azithromycin susceptibility with treatment outcomes.


Anti-Bacterial Agents , Azithromycin , Clarithromycin , Microbial Sensitivity Tests , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Azithromycin/pharmacology , Azithromycin/therapeutic use , Humans , Japan , Mycobacterium avium Complex/drug effects , Mycobacterium avium Complex/isolation & purification , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Female , Male , Aged , Middle Aged , Aged, 80 and over , Adult
12.
PLoS One ; 19(3): e0298434, 2024.
Article En | MEDLINE | ID: mdl-38446753

In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.


Anti-Infective Agents , Helicobacter pylori , Clarithromycin/pharmacology , Virulence , Metabolic Reprogramming
13.
Eur J Gastroenterol Hepatol ; 36(5): 545-553, 2024 May 01.
Article En | MEDLINE | ID: mdl-38477847

OBJECTIVE: Helicobacter pylori (Hp) eradication therapy is crucial for preventing the development of gastritis, peptic ulcers, and gastric cancer. An increase in resistance against antibiotics used in the eradication of Hp is remarkable. This meta-analysis aims to examine the resistance rates of Hp strains isolated in Turkey over the last 20 years against clarithromycin (CLR), metronidazole (MTZ), levofloxacin (LVX), tetracycline (TET), and amoxicillin (AMX) antibiotics. BASIC METHODS: Literature search was carried out in electronic databases, by searching articles published in Turkish and English with the keywords ' helicobacter pylori ' or 'Hp' and 'antibiotic resistance' and 'Turkey'. That meta-analysis was carried out using random-effect model. First, the 20-year period data between 2002 and 2021 in Turkey were planned to be analyzed. As a second stage, the period between 2002 and 2011 was classified as Group 1, and the period between 2012 and 2021 as Group 2 for analysis, with the objective of revealing the 10-year temporal variation in antibiotic resistance rates. MAIN RESULTS: In gastric biopsy specimens, 34 data from 29 studies were included in the analysis. Between 2002-2021, CLR resistance rate was 30.9% (95% CI: 25.9-36.2) in 2615 Hp strains. Specifically, in Group 1, the CLR resistance rate was 31% in 1912 strains, and in Group 2, it was 30.7% in 703 strains. The MTZ resistance rate was found to be 31.9% (95% CI: 19.8-45.4) in 789 strains, with rates of 21.5% in Group 1 and 46.6% in Group 2. The overall LVX resistance rate was 25.6%, with rates of 26.9% in Group 1 and 24.8% in Group 2. The 20-year TET resistance rate was 0.8%, with 1.50% in Group 1 and 0.2% in Group 2. The overall AMX resistance rate was 2.9%, 3.8% between 2002-2011, and 1.4% between 2012-2021. PRINCIPAL CONCLUSION: Hp strains in Turkey exhibit high resistance rates due to frequent use of CLR, MTZ, and LVX antibiotics. However, a significant decrease has been observed in TET and AMX resistance to Hp in the last 10 years. Considering the CLR resistance rate surpasses 20%, we suggest reconsidering the use of conventional triple drug therapy as a first-line treatment. Instead, we recommend bismuth-containing quadruple therapy or sequential therapies (without bismuth) for first-line treatment, given the lower rates of TET and AMX resistance. Regimens containing a combination of AMX, CLR, and MTZ should be given priority in second-line therapy. Finally, in centers offering culture and antibiogram opportunities, regulating the Hp eradication treatment based on the antibiogram results is obviously more appropriate.


Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/epidemiology , Bismuth/pharmacology , Bismuth/therapeutic use , Turkey/epidemiology , Anti-Bacterial Agents , Amoxicillin/therapeutic use , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Metronidazole/therapeutic use , Tetracycline/therapeutic use , Drug Resistance, Microbial , Levofloxacin/therapeutic use , Gastritis/drug therapy
14.
Biomaterials ; 308: 122540, 2024 Jul.
Article En | MEDLINE | ID: mdl-38537343

Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients' poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.


Anti-Bacterial Agents , Bismuth , Clarithromycin , Helicobacter Infections , Helicobacter pylori , Liposomes , Helicobacter pylori/drug effects , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Animals , Bismuth/chemistry , Bismuth/therapeutic use , Bismuth/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Liposomes/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Humans , Mice , Hydrogen Peroxide/metabolism , Male
15.
Helicobacter ; 29(2): e13062, 2024.
Article En | MEDLINE | ID: mdl-38459683

BACKGROUND: Clarithromycin (CAM) resistance is a major contributor to the failure to eradicate Helicobacter pylori (H. pylori). The mixed-infection ratio of CAM-susceptible and CAM-resistant H. pylori strains differs among individuals. Pyrosequencing analysis can be used to quantify gene mutations at position each 2142 and 2143 of the H. pylori 23S rRNA gene in intragastric fluid samples. Herein, we aimed to clarify the impact of the rate of mixed infection with CAM-susceptible and CAM-resistant H. pylori strains on the success rate of CAM-containing eradication therapy. MATERIALS AND METHODS: Sixty-four H. pylori-positive participants who received CAM-based eradication therapy, also comprising vonoprazan and amoxicillin, were enrolled in this prospective cohort study. Biopsy and intragastric fluid samples were collected during esophagogastroduodenoscopy. H. pylori culture and CAM-susceptibility tests were performed on the biopsy samples, and real-time PCR and pyrosequencing analyses were performed on the intragastric fluid samples. The mutation rates and eradication success rates were compared. RESULTS: The overall CAM-based eradication success rate was 84% (54/64): 62% (13/21) for CAM-resistant strains, and 95% (39/41) for CAM-sensitive strains. When the mutation rate of the 23S rRNA gene was 20% or lower for both positions (2142 and 2143), the eradication success rate was 90% or more. However, when the mutation rate was 20% or higher, the eradication success rate was lower (60%). CONCLUSIONS: The mutation rate of the CAM-resistance gene was related to the success of eradication therapy, as determined via pyrosequencing analysis.


Coinfection , Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Helicobacter pylori/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Helicobacter Infections/drug therapy , Prospective Studies , Coinfection/drug therapy , Drug Resistance, Bacterial , RNA, Ribosomal, 23S/genetics
17.
Environ Sci Technol ; 58(9): 4070-4082, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38390827

Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 µg/L upon single exposure but it reduced to 6.90 µg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.


Microcystis , Microcystis/metabolism , Clarithromycin/metabolism , Clarithromycin/pharmacology , Photosynthesis , Anti-Bacterial Agents/toxicity , Oxidative Stress , Energy Metabolism
18.
J Dig Dis ; 25(1): 36-43, 2024 Jan.
Article En | MEDLINE | ID: mdl-38323705

OBJECTIVES: We aimed to explore the efficacy and safety of tailored therapy guided by genotypic resistance in the first-line treatment of Helicobacter pylori (H. pylori) infection in treatment-naive patients. METHODS: Gastric mucosal specimens were taken during gastroscopy, and main mutations of clarithromycin- and levofloxacin-resistant genes were detected by polymerase chain reaction (PCR). Sensitive antibiotics were selected individually for treating H. pylori infection with tailored bismuth-containing quadruple therapy (BQT) consisting of esomeprazole 20 mg twice daily, bismuth potassium citrate 220 mg twice daily, amoxicillin 1 g twice daily, and clarithromycin 500 mg twice daily, or levofloxacin 500 mg once daily, or metronidazole 400 mg four times daily. Safety and patient compliance were assessed 1-3 days after eradication. Treatment outcome was evaluated by urea breath test 4-8 weeks after eradication. RESULTS: One hundred and thirty-two treatment-naive patients with H. pylori infection were included. PCR results suggested resistance rates of 47.7% and 34.9% for clarithromycin and levofloxacin, respectively, and a dual resistance rate of 18.2%. Eradication rates of tailored BQT were 87.1% and 95.8% by intention-to-treat (ITT) analysis and per-protocol (PP) analysis, respectively. There was no statistically significant difference in the efficacy of 7-day clarithromycin-containing, 7-day levofloxacin-containing, and 14-day full-dose metronidazole-containing BQT (ITT analysis: P = 0.488; PP analysis: P = 0.833). The incidence of adverse events was 19.7%, and patient compliance was 97.7%. CONCLUSION: Tailored BQT guided by genotypic resistance can achieve satisfactory efficacy, safety, and patient compliance in the first-line treatment of H. pylori infection.


Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Levofloxacin/adverse effects , Helicobacter pylori/genetics , Bismuth/therapeutic use , Metronidazole/therapeutic use , Drug Therapy, Combination , Anti-Bacterial Agents/adverse effects , Amoxicillin/therapeutic use , Treatment Outcome , Polymerase Chain Reaction
19.
J Microbiol Methods ; 219: 106894, 2024 04.
Article En | MEDLINE | ID: mdl-38325717

The multidrug resistance of nontuberculous mycobacteria (NTM) poses a significant therapeutic challenge. Rapid and reliable drug susceptibility testing is urgently needed for evidence-based treatment decision, especially for macrolides. This study evaluated the utility of nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (NMTMS) in detecting clarithromycin resistance. Sixty-four clinical isolates were identified to species by NMTMS, and mutations associated with clarithromycin resistance were detected. Twenty-three M. abscessus (MAB) isolates and 30 M. intracellulare isolates (including M. intracellulare alone and M. intracellulare in combination with other SGM species) were included for analysis. The predictive sensitivity of NMTMS in detecting clarithromycin resistance was 82.35% (95% CI, 56.57% to 96.20%), with an AUC of 0.89 (95% CI, 0.77 to 0.96) in all MAB and M. intracellulare (n = 53), and up to 93.33% (95% CI, 68.05% to 99.83%) in MAB alone (n = 23). The assay provides a rapid, high-throughput, and highly sensitive tool for detecting clarithromycin resistance in NTM, especially in MAB. Optimization of the panel is necessary to enhance diagnostic accuracy.


Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Humans , Nontuberculous Mycobacteria , Clarithromycin/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Microbial Sensitivity Tests
20.
World J Gastroenterol ; 30(2): 184-195, 2024 Jan 14.
Article En | MEDLINE | ID: mdl-38312120

BACKGROUND: Resistance to clarithromycin (CLA) and levofloxacin (LFX) of Helicobacter pylori (H. pylori) is increasing in severity, and successful eradication is essential. Presently, the eradication success rate has greatly declined, leaving a large number of patients with previous treatment histories. AIM: To investigate secondary resistance rates, explore risk factors for antibiotic resistance, and assess the efficacy of susceptibility-guided therapy. METHODS: We recruited 154 subjects positive for Urea Breath Test who attended The First Affiliated Hospital of China Medical University between July 2022 and April 2023. Participants underwent a string test after an overnight fast. The gastric juice was obtained and transferred to vials containing storage solution. Subsequently, DNA extraction and the specific DNA amplification were performed using quantitative polymerase chain reaction (qPCR). Demographic information was also analyzed as part of the study. Based on these results, the participants were administered susceptibility-guided treatment. Efficacy was compared with that of the empiric treatment group. RESULTS: A total of 132 individuals tested positive for the H. pylori ureA gene by qPCR technique. CLA resistance rate reached a high level of 82.6% (n = 109), LFX resistance rate was 69.7% (n = 92) and dual resistance was 62.1% (n = 82). Gastric symptoms [odds ratio (OR) = 2.782; 95% confidence interval (95%CI): 1.076-7.194; P = 0.035] and rural residence (OR = 5.152; 95%CI: 1.407-18.861; P = 0.013) were independent risk factors for secondary resistance to CLA and LFX, respectively. A total of 102 and 100 individuals received susceptibility-guided therapies and empiric treatment, respectively. The antibiotic susceptibility-guided treatment and empiric treatment groups achieved successful eradication rates of 75.5% (77/102) and 59.0% (59/411) by the intention-to-treat (ITT) analysis and 90.6% (77/85) and 70.2% (59/84) by the per-protocol (PP) analysis, respectively. The eradication rates of these two treatment strategies were significantly different in both ITT (P = 0.001) and PP (P = 0.012) analyses. CONCLUSION: H. pylori presented high secondary resistance rates to CLA and LFX. For patients with previous treatment failures, treatments should be guided by antibiotic susceptibility tests or regional antibiotic resistance profile.


Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Levofloxacin/therapeutic use , Helicobacter pylori/genetics , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Drug Therapy, Combination , Anti-Bacterial Agents/therapeutic use , Urea , DNA , Treatment Outcome , Amoxicillin/therapeutic use , Drug Resistance, Bacterial
...