Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.509
Filter
1.
Commun Biol ; 7(1): 947, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103440

ABSTRACT

Clostridium septicum infections are highly predictive of certain malignancies in human patients. To initiate infections, C. septicum spores must first germinate and regain vegetative growth. Yet, what triggers the germination of C. septicum spores is still unknown. Here, we observe that C. septicum germinates in response to specific bile salts. Putative bile salt recognition genes are identified in C. septicum based on their similarity in sequence and organization to bile salt-responsive csp genes in Clostridioides difficile. Inactivating two of these csp orthologs (cspC-82 and cspC-1718) results in mutant spores that no longer germinate in the presence of their respective cognate bile salts. Additionally, inactivating the putative cspBA or sleC genes in C. septicum abrogates the germination response to all bile salt germinants, suggesting that both act at a convergent point downstream of cspC-82 and cspC-1718. Molecular dynamics simulations show that both CspC-82 and CspC-1718 bear a strong structural congruence with C. difficile's CspC. The existence of functional bile salt germination sensors in C. septicum may be relevant to the association between infection and malignancy.


Subject(s)
Bacterial Proteins , Bile Acids and Salts , Clostridioides difficile , Clostridium septicum , Spores, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bile Acids and Salts/metabolism , Spores, Bacterial/genetics , Clostridioides difficile/genetics , Clostridium septicum/genetics , Molecular Dynamics Simulation , Gene Expression Regulation, Bacterial , Clostridium Infections/microbiology , Carrier Proteins
2.
Gut Microbes ; 16(1): 2390133, 2024.
Article in English | MEDLINE | ID: mdl-39132815

ABSTRACT

Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Bacteroides thetaiotaomicron , Biofilms , Clostridioides difficile , Symbiosis , Vancomycin , Biofilms/drug effects , Biofilms/growth & development , Clostridioides difficile/drug effects , Clostridioides difficile/physiology , Clostridioides difficile/genetics , Humans , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Caco-2 Cells , Bacteroides thetaiotaomicron/drug effects , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/physiology , Bacteroides thetaiotaomicron/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Enterotoxins/metabolism , Enterotoxins/genetics , Bacterial Adhesion/drug effects
3.
Commun Biol ; 7(1): 839, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987278

ABSTRACT

Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Spores, Bacterial , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Animals , Chlorocebus aethiops , Vero Cells , Enterotoxins/metabolism , Enterotoxins/genetics
4.
BMC Infect Dis ; 24(1): 687, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987677

ABSTRACT

INTRODUCTION: Clostridioides difficile infection (CDI) is the most common cause of antibiotic-associated diarrhoea. Fidaxomicin and fecal microbiota transplantation (FMT) are effective, but expensive therapies to treat recurrent CDI (reCDI). Our objective was to develop a prediction model for reCDI based on the gut microbiota composition and clinical characteristics, to identify patients who could benefit from early treatment with fidaxomicin or FMT. METHODS: Multicentre, prospective, observational study in adult patients diagnosed with a primary episode of CDI. Fecal samples and clinical data were collected prior to, and after 5 days of CDI treatment. Follow-up duration was 8 weeks. Microbiota composition was analysed by IS-pro, a bacterial profiling technique based on phylum- and species-specific differences in the 16-23 S interspace regions of ribosomal DNA. Bayesian additive regression trees (BART) and adaptive group-regularized logistic ridge regression (AGRR) were used to construct prediction models for reCDI. RESULTS: 209 patients were included, of which 25% developed reCDI. Variables related to microbiota composition provided better prediction of reCDI and were preferentially selected over clinical factors in joint prediction models. Bacteroidetes abundance and diversity after start of CDI treatment, and the increase in Proteobacteria diversity relative to baseline, were the most robust predictors of reCDI. The sensitivity and specificity of a BART model including these factors were 95% and 78%, but these dropped to 67% and 62% in out-of-sample prediction. CONCLUSION: Early microbiota response to CDI treatment is a better predictor of reCDI than clinical prognostic factors, but not yet sufficient enough to predict reCDI in daily practice.


Subject(s)
Clostridium Infections , Feces , Gastrointestinal Microbiome , Humans , Clostridium Infections/microbiology , Clostridium Infections/therapy , Male , Prospective Studies , Female , Feces/microbiology , Middle Aged , Aged , Clostridioides difficile/genetics , Fecal Microbiota Transplantation , Adult , Recurrence , Anti-Bacterial Agents/therapeutic use , Aged, 80 and over , Fidaxomicin/therapeutic use
5.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39051872

ABSTRACT

Clostridioides difficile has significant clinical importance as a leading cause of healthcare-associated infections, with symptoms ranging from mild diarrhoea to severe colitis, and possible life-threatening complications. C. difficile ribotype (RT) 002, mainly associated with MLST sequence type (ST) 8, is one of the most common RTs found in humans. This study aimed at investigating the genetic characteristics of 537 C. difficile genomes of ST8/RT002. To this end, we sequenced 298 C. difficile strains representing a new European genome collection, with strains from Germany, Denmark, France and Portugal. These sequences were analysed against a global dataset consisting of 1,437 ST8 genomes available through Enterobase. Our results showed close genetic relatedness among the studied ST8 genomes, a diverse array of antimicrobial resistance (AMR) genes and the presence of multiple mobile elements. Notably, the pangenome analysis revealed an open genomic structure. ST8 shows relatively low overall variation. Thus, clonal isolates were found across different One Health sectors (humans, animals, environment and food), time periods, and geographical locations, suggesting the lineage's stability and a universal environmental source. Importantly, this stability did not hinder the acquisition of AMR genes, emphasizing the adaptability of this bacterium to different selective pressures. Although only 2.4 % (41/1,735) of the studied genomes originated from non-human sources, such as animals, food, or the environment, we identified 9 cross-sectoral core genome multilocus sequence typing (cgMLST) clusters. Our study highlights the importance of ST8 as a prominent lineage of C. difficile with critical implications in the context of One Health. In addition, these findings strongly support the need for continued surveillance and investigation of non-human samples to gain a more comprehensive understanding of the epidemiology of C. difficile.


Subject(s)
Clostridioides difficile , Clostridium Infections , Genome, Bacterial , Ribotyping , Clostridioides difficile/genetics , Clostridioides difficile/classification , Humans , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Multilocus Sequence Typing , Phylogeny , Animals , Europe , Denmark , Whole Genome Sequencing , Genomics , Drug Resistance, Bacterial/genetics
6.
Microbiology (Reading) ; 170(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39028551

ABSTRACT

The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sublethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.


Subject(s)
Bacterial Proteins , Biofilms , Clostridioides difficile , Gene Expression Regulation, Bacterial , Signal Transduction , Spores, Bacterial , Stress, Physiological , Biofilms/growth & development , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Clostridioides difficile/physiology , Clostridioides difficile/growth & development , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Ligases/genetics , Ligases/metabolism , Gene Deletion , Oxidative Stress
7.
J Bacteriol ; 206(7): e0017524, 2024 07 25.
Article in English | MEDLINE | ID: mdl-38953644

ABSTRACT

Clostridioides difficile causes a serious diarrheal disease and is a common healthcare-associated bacterial pathogen. Although it has a major impact on human health, the mechanistic details of C. difficile intestinal colonization remain undefined. C. difficile is highly sensitive to oxygen and requires anaerobic conditions for in vitro growth. However, the mammalian gut is not devoid of oxygen, and C. difficile tolerates moderate oxidative stress in vivo. The C. difficile genome encodes several antioxidant proteins, including a predicted superoxide reductase (SOR) that is upregulated upon exposure to antimicrobial peptides. The goal of this study was to establish SOR enzymatic activity and assess its role in protecting C. difficile against oxygen exposure. Insertional inactivation of sor rendered C. difficile more sensitive to superoxide, indicating that SOR contributes to antioxidant defense. Heterologous C. difficile sor expression in Escherichia coli conferred protection against superoxide-dependent growth inhibition, and the corresponding cell lysates showed superoxide scavenging activity. Finally, a C. difficile SOR mutant exhibited global proteome changes under oxygen stress when compared to the parent strain. Collectively, our data establish the enzymatic activity of C. difficile SOR, confirm its role in protection against oxidative stress, and demonstrate SOR's broader impacts on the C. difficile vegetative cell proteome.IMPORTANCEClostridioides difficile is an important pathogen strongly associated with healthcare settings and capable of causing severe diarrheal disease. While considered a strict anaerobe in vitro, C. difficile has been shown to tolerate low levels of oxygen in the mammalian host. Among other well-characterized antioxidant proteins, the C. difficile genome encodes a predicted superoxide reductase (SOR), an understudied component of antioxidant defense in pathogens. The significance of the research reported herein is the characterization of SOR's enzymatic activity, including confirmation of its role in protecting C. difficile against oxidative stress. This furthers our understanding of C. difficile pathogenesis and presents a potential new avenue for targeted therapies.


Subject(s)
Clostridioides difficile , Oxidative Stress , Oxygen , Superoxides , Clostridioides difficile/genetics , Clostridioides difficile/enzymology , Clostridioides difficile/metabolism , Oxygen/metabolism , Superoxides/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Gene Expression Regulation, Bacterial
8.
Microbiol Spectr ; 12(7): e0394723, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864670

ABSTRACT

Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea. IMPORTANCE: Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Cross Infection , Diarrhea , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Humans , Clostridioides difficile/genetics , Clostridioides difficile/classification , Clostridioides difficile/isolation & purification , Diarrhea/microbiology , Diarrhea/epidemiology , Mexico/epidemiology , Child , Bacterial Toxins/genetics , Adult , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Bacterial Proteins/genetics , Enterotoxins/genetics , Male , Child, Preschool , Female , Prevalence , Adolescent , Whole Genome Sequencing , Phenotype , Genome, Bacterial/genetics , Infant , Middle Aged , Genomics
9.
Vet Microbiol ; 295: 110162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941767

ABSTRACT

Postweaning diarrhea (PWD) is a multifactorial disease caused by different aetiological agents, like viruses or bacteria and where the role of the microbiota remains unclear. The aim of this study was to assess differences between healthy and diarrheic weaned pigs concerning the prevalence of pathogens and changes in the intestinal microbiota. Eighteen farms with PWD were selected and 277 fecal samples were collected (152 diarrheic vs 125 healthy). Presence of Rotavirus A (RVA), B (RVB), C (RVC) and Porcine Epidemic Diarrhea Virus (PEDV), virulence factors of Escherichia coli and Clostridioides difficile were analyzed by PCR. Finally, the microbiota composition was also study by 16 S rRNA sequencing on 148 samples (102 diarrheic vs 46 healthy). RVA (53.95 % vs 36 %, p=0.04) and RVB (49.67 % vs 28.8 %, p<0.001) were more frequent in diarrheic animals. Furthermore, RVA viral load was higher in diseased animals. VT2 toxin was significantly associated with diarrhea, whereas other virulence factors were not. Presence of C. difficile and PEDV was almost negligible. Regarding microbiota changes, Fusobacteriota phylum was more frequent in diarrheic samples and Ruminococcaceae family in healthy penmates. During the first week postweaning, Enterobacteriace and Campylobacteria were enriched in animals presenting diarrhea. Furthermore, Lactobacillus was detected in those individuals with no RVA infection. In conclusion, RVA seems to play a primary role in PWD. Classic E. coli virulence factors were not associated with diarrhea, indicating the need for revising their implication in disease. Moreover, Lactobacillus was found frequently in animals negative for RVA, suggesting some protective effect.


Subject(s)
Diarrhea , Feces , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/virology , Swine Diseases/microbiology , Swine Diseases/virology , Feces/microbiology , Feces/virology , Rotavirus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Clostridioides difficile/isolation & purification , Clostridioides difficile/genetics , Virulence Factors/genetics , RNA, Ribosomal, 16S/genetics , Escherichia coli/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
10.
Microbiol Res ; 286: 127811, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909416

ABSTRACT

Clostridioides difficile infection (CDI) caused by toxigenic C. difficile is the leading cause of antimicrobial and healthcare-associated diarrhea. The pathogenicity of C. difficile relies on the synergistic effect of multiple virulence factors, including spores, flagella, type IV pili (T4P), toxins, and biofilm. Spores enable survival and transmission of C. difficile, while adhesion factors such as flagella and T4P allow C. difficile to colonize and persist in the host intestine. Subsequently, C. difficile produces the toxins TcdA and TcdB, causing pseudomembranous colitis and other C. difficile-associated diseases; adhesion factors bind to the extracellular matrix to form biofilm, allowing C. difficile to evade drug and immune system attack and cause recurrent infection. Cyclic diguanylate (c-di-GMP) is a near-ubiquitous second messenger that extensively regulates morphology, the expression of virulence factors, and multiple physiological processes in C. difficile. In this review, we summarize current knowledge of how c-di-GMP differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in C. difficile. We highlight that C. difficile spore formation and expression of toxin and flagella genes are inhibited at high intracellular levels of c-di-GMP, while T4P biosynthesis, cell aggregation, and biofilm formation are induced. Recent studies have enhanced our understanding of the c-di-GMP signaling networks in C. difficile and provided insights for the development of c-di-GMP-dependent strategies against CDI.


Subject(s)
Bacterial Proteins , Biofilms , Clostridioides difficile , Clostridium Infections , Cyclic GMP , Gene Expression Regulation, Bacterial , Phenotype , Virulence Factors , Clostridioides difficile/pathogenicity , Clostridioides difficile/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Biofilms/growth & development , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium Infections/microbiology , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Spores, Bacterial/genetics , Flagella/genetics , Virulence , Enterotoxins/genetics , Enterotoxins/metabolism , Animals
11.
Mol Microbiol ; 122(2): 213-229, 2024 08.
Article in English | MEDLINE | ID: mdl-38922761

ABSTRACT

In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.


Subject(s)
Bacterial Proteins , Clostridioides difficile , N-Acetylmuramoyl-L-alanine Amidase , Peptidoglycan , Spores, Bacterial , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Clostridioides difficile/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism , Gene Expression Regulation, Bacterial , Sigma Factor/metabolism , Sigma Factor/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/enzymology , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
12.
J Bacteriol ; 206(7): e0009624, 2024 07 25.
Article in English | MEDLINE | ID: mdl-38888328

ABSTRACT

Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE: Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Humans , Gene Expression Regulation, Bacterial , Amino Acid Sequence , Animals
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 998-1003, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862459

ABSTRACT

OBJECTIVE: To investigate the characteristics of Clostridioides difficile infection (CDI) in patients hospitalized for diarrhea and analyze the risk factors for CDI. METHODS: Stool samples were collected from 306 patients with diarrhea hospitalized in 3 university hospitals in a mid-south city of China from October to December, 2020. C. difficile was isolated by anaerobic culture, and qRT-PCR was used to detect the expressions of toxin A (tcdA) and B (tcdB) genes and the binary toxin genes (cdtA and cdtB). Multilocus sequence typing (MLST) was performed for the isolated strains without contaminating strains as confirmed by 16S rDNA sequencing. Etest strips were used to determine the drug resistance profiles of the isolated strains, and the risk factors of CDI in the patients were analyzed. RESULTS: CDI was detected in 25 (8.17%) out of the 306 patients. All the patients tested positive for tcdA and tcdB but negative for the binary toxin genes. Seven noncontaminated C. difficile strains with 5 ST types were isolated, including 3 ST54 strains and one strain of ST129, ST98, ST53, and ST631 types each, all belonging to clade 1 and sensitive to metronidazole and vancomycin. Hospitalization within the past 6 months (OR= 3.675; 95% CI: 1.405-9.612), use of PPIs (OR=7.107; 95% CI: 2.575-19.613), antibiotics for ≥1 week (OR=7.306; 95% CI: 2.274-23.472), non-steroidal anti-inflammatory drugs (OR=4.754; 95% CI: 1.504-15.031) in the past month, and gastrointestinal disorders (OR=5.050; 95% CI: 1.826-13.968) were all risk factors for CDI in the patients hospitalized for diarrhea. CONCLUSION: The CDI rate remains low in the hospitalized patients with diarrhea in the investigated hospitals, but early precaution measures are recommended when exposure to the risk factors is reported to reduce the risk of CDI in the hospitalized patients.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diarrhea , Hospitals, University , Multilocus Sequence Typing , Humans , Diarrhea/microbiology , Diarrhea/epidemiology , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Risk Factors , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , China/epidemiology , Bacterial Toxins/genetics , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Hospitalization , Bacterial Proteins/genetics , Enterotoxins/genetics , Male , Female , Middle Aged
14.
mSphere ; 9(6): e0008124, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38837404

ABSTRACT

In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides difficile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter the viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and the predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight flexibility in metabolism that may influence pathogenesis. IMPORTANCE: Clostridioides difficile results in upward of 250,000 infections and 12,000 deaths annually in the United States. Community-acquired infections continue to rise, and recurrent disease is common, emphasizing a vital need to understand C. difficile pathogenesis. C. difficile undoubtedly interacts with colonic mucus, but the extent to which the pathogen can independently respond to and take advantage of this niche has not been explored extensively. Moreover, the metabolic complexity of C. difficile remains poorly understood but likely impacts its capacity to grow and persist in the host. Here, we demonstrate that C. difficile uses native colonic mucus for growth, indicating C. difficile possesses mechanisms to exploit the mucosal niche. Furthermore, mucus induces metabolic shifts and biofilm formation in C. difficile, which has potential ramifications for intestinal colonization. Overall, our work is crucial to better understand the dynamics of C. difficile-mucus interactions in the context of the human gut.


Subject(s)
Biofilms , Clostridioides difficile , Gene Expression Regulation, Bacterial , Mucus , Clostridioides difficile/genetics , Clostridioides difficile/physiology , Clostridioides difficile/metabolism , Biofilms/growth & development , Humans , Mucus/microbiology , Mucus/metabolism , Epithelial Cells/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Clostridium Infections/microbiology
15.
Microb Biotechnol ; 17(6): e14478, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850267

ABSTRACT

Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the 'hypervirulent' (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALDI-TOF mass spectrometry (MALDI-TOF MS) combined with machine learning (ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, TcdB with or without CDT) and Hv strains. In total, 201 CD strains were analysed, comprising 151 toxigenic (24 ToxA+B+CDT+, 22 ToxA+B+CDT+ Hv+ and 105 ToxA+B+CDT-) and 50 non-toxigenic (ToxA-B-) strains. The DL-based classifier exhibited a 0.95 negative predictive value for excluding ToxA-B- strains, showcasing accuracy in identifying this strain category. Sensitivity in correctly identifying ToxA+B+CDT- strains ranged from 0.68 to 0.91. Additionally, all classifiers consistently demonstrated high specificity (>0.96) in detecting ToxA+B+CDT+ strains. The classifiers' performances for Hv strain detection were linked to high specificity (≥0.96). This study highlights MALDI-TOF MS enhanced by ML techniques as a rapid and cost-effective tool for identifying CD strain virulence factors. Our results brought a proof-of-concept concerning the ability of MALDI-TOF MS coupled with ML techniques to detect virulence factor and potentially improve the outbreak's management.


Subject(s)
Clostridioides difficile , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , Clostridioides difficile/genetics , Clostridioides difficile/classification , Clostridioides difficile/chemistry , Clostridioides difficile/pathogenicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Virulence Factors/genetics , Virulence Factors/analysis , Humans , Clostridium Infections/microbiology , Clostridium Infections/diagnosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Machine Learning , Deep Learning , Sensitivity and Specificity , Enterotoxins/analysis , Enterotoxins/genetics
16.
Braz J Infect Dis ; 28(3): 103767, 2024.
Article in English | MEDLINE | ID: mdl-38843868

ABSTRACT

BACKGROUND: C. difficile has been increasingly reported as a cause of gastrointestinal disease in children, ranging from mild self-limiting diarrhea to severe conditions such as pseudomembranous colitis and toxic megacolon. Only two pediatric research groups reported the presence of C. difficile infection in Brazilian children, but no previous research has examined C. difficile infection among children in northeastern Brazil. This prospective cross-sectional study investigated the molecular epidemiology and antimicrobial resistance of C. difficile strains isolated from children and adolescents with diarrhea referred to a tertiary pediatric hospital in Brazil while exploring the associated risk factors. RESULTS: Toxin positivity or C. difficile isolation was found in 30.4 % (17/56) samples. C. difficile was isolated from 35 % (6/17) samples. Four toxigenic strains were identified (tpi+, tcdA+, tcdB+, cdtB-, without tcdC deletions) belonging to PCR ribotypes and PFGE-pulsotypes: 046 (new pulsotype 1174), 106 (NAP11), 002 (new pulsotype 1274), 012 (new pulsotype NML-1235). Two of the six isolates belonging to ribotypes 143 and 133 were non-toxigenic. All toxigenic strains were sensitive to metronidazole and vancomycin. Regarding the clinical manifestation, diarrhea lasted an average of 11 days, ranging from 3 to 50 days and was often associated with mucus and/or blood. All six patients from whom the C. difficile was isolated had a chronic disease diagnosis, with these comorbidities as the main risk factors. CONCLUSION: Our study enhances our understanding of the present epidemiological landscape of C. difficile-associated diarrhea (CDI) among children in northeastern Brazil, reveling a substantial CDI frequency of 30.4 %, with toxigenic strains detected in 76.4 % of cases, highlighting a higher prevalence compared to earlier Brazilian studies. In the globalized world, an understanding of disease-generating strains, the associated risk factors, clinical manifestation, and antimicrobial sensitivity has fundamental epidemiological importance and draws attention to preventive measures, allowing for more decisive action.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Hospitals, Pediatric , Microbial Sensitivity Tests , Tertiary Care Centers , Humans , Clostridioides difficile/genetics , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Child , Adolescent , Female , Male , Brazil/epidemiology , Cross-Sectional Studies , Prospective Studies , Tertiary Care Centers/statistics & numerical data , Child, Preschool , Anti-Bacterial Agents/pharmacology , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Risk Factors , Infant , Molecular Epidemiology , Diarrhea/microbiology , Diarrhea/epidemiology , Ribotyping , Drug Resistance, Bacterial/genetics
17.
Toxins (Basel) ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38922136

ABSTRACT

Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Host Microbial Interactions , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Clostridium Infections/pathology , Gene Order , Inflammation/pathology , Humans , Animals
18.
J Clin Microbiol ; 62(7): e0052424, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38934589

ABSTRACT

This study compared the performance of two commercial molecular assays, the STANDARD M10 Clostridioides difficile assay (M10) and the Xpert C. difficile assay (Xpert), for detecting toxigenic C. difficile in stool specimens. A total of 487 consecutive stool specimens submitted for routine C. difficile testing between June and November 2023 were included. Following routine testing using C. DIFF QUIK CHEK COMPLETE (QCC), M10 and Xpert were tested in parallel, alongside toxigenic culture (reference standard). Additionally, two-step algorithms, using QCC on the first step and either M10 or Xpert on the second step, were assessed. Both M10 and Xpert demonstrated a sensitivity and negative predictive value (NPV) of 100%. M10 exhibited significantly higher specificity and positive predictive value (PPV; 91.9% and 64.2%, respectively) than Xpert (90.3% and 59.8%, respectively). Both two-step algorithms showed a sensitivity and NPV of 98.4% and 99.8%, respectively. The specificity and PPV of the two-step algorithm using M10 (95.2% and 75.0%, respectively) were slightly higher than those of the one using Xpert (94.8% and 73.2%, respectively), without statistical significance. Receiver operating characteristic curve analysis, assessing the predictive ability of cycle threshold (Ct) values for the detection of free toxin, exhibited an area under the curve of 0.825 for M10 and 0.843 for Xpert. This indicates the utility of Ct values as predictors for the detection of free toxin in both assays. In conclusion, M10 proves to be an effective diagnostic tool with performance comparable to Xpert, whether utilized independently or as part of a two-step algorithm.


Subject(s)
Clostridioides difficile , Clostridium Infections , Feces , Molecular Diagnostic Techniques , Sensitivity and Specificity , Humans , Clostridioides difficile/isolation & purification , Clostridioides difficile/genetics , Feces/microbiology , Clostridium Infections/diagnosis , Clostridium Infections/microbiology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Algorithms , Bacterial Toxins/analysis , Bacterial Toxins/genetics , Predictive Value of Tests
19.
J Vet Med Sci ; 86(7): 769-776, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38797681

ABSTRACT

The pathogenicity of Clostridioides difficile in piglets remains controversial. It is unknown whether C. difficile control helps protect piglet health. To clarify the association between C. difficile presence and piglet diarrhea, isolates were obtained from piglets with and without diarrhea. In addition, to determine the genetic relationship of C. difficile from pigs and humans, we performed whole-genome sequencing (WGS) of C. difficile isolates. Diarrheal and non-diarrheal stool samples were collected from neonatal piglets from five farms in Japan in 2021. To clarify the relationship between C. difficile derived from pigs and those from human clinical cases, WGS of C. difficile isolates was performed. Toxin-positive C. difficile were significantly more prevalent in piglets with diarrhea, although the overall frequency of C. difficile did not differ between piglets with and without diarrhea. This observation indicates an association between toxin-positive C. difficile and diarrhea in piglets. However, further studies are needed to establish a direct causal relationship and to explore other contributing factors to diarrhea in piglets. WGS results showed that C. difficile sequence type (ST) 11 including the hypervirulent PCR ribotype 078 isolates derived from Japanese pigs were closely related to ST11 of overseas strains (human clinical and animal-derived) and a Japanese human clinical strain. Toxin-positive C. difficile may cause diarrhea in piglets and hypervirulent C. difficile are spreading among pigs and human populations worldwide.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Diarrhea , Swine Diseases , Animals , Swine , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Swine Diseases/microbiology , Swine Diseases/transmission , Diarrhea/veterinary , Diarrhea/microbiology , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/transmission , Humans , Bacterial Toxins/genetics , Japan/epidemiology , Whole Genome Sequencing , Animals, Newborn/microbiology , Feces/microbiology
20.
Int J Antimicrob Agents ; 64(2): 107222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810936

ABSTRACT

OBJECTIVES: Clostridioides difficile has emerged as a major cause of life-threatening diarrheal disease. Conventional antibiotics used in current standards of care exacerbate the emergence of antibiotic-resistant strains and pose a risk of recurrent C. difficile infection (CDI). Thus, there is an urgent need for alternative therapeutics that selectively eliminate C. difficile without disturbing the commensal microbiota. This study aimed to explore the potential of endolysins as an alternative therapeutic agent to antibiotics. Endolysin is a bacteriophage-derived peptidoglycan hydrolase that aids in the release of phage progeny during the final stage of infection. METHODS: In order to exploit endolysin as a therapeutic agent against CDI, the bactericidal activity of 23 putative endolysins was compared and ΦCD27 endolysin CD27L was selected and modified to CD27L_EAD by cleaving the cell-wall binding domain of CD27L. RESULTS: CD27L_EAD exhibited greater bacteriolytic activity than CD27L and its activity was stable over a wide range of salt concentrations and pH conditions. CD27L_EAD was added to a co-culture of human gut microbiota with C. difficile and the bacterial community structure was analyzed. CD27L_EAD did not impair the richness and diversity of the bacterial population but remarkably attenuated the abundance of C. difficile. Furthermore, the co-administration of vancomycin exerted synergistic bactericidal activity against C. difficile. ß-diversity analysis revealed that CD27L_EAD did not significantly disturb the composition of the microbial community, whereas the abundance of some species belonging to the family Lachnospiraceae decreased after CD27L_EAD treatment. CONCLUSIONS: This study provides insights into endolysin as a prospective therapeutic agent for the treatment of CDI without damaging the normal gut microbiota.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Endopeptidases , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , Endopeptidases/pharmacology , Endopeptidases/genetics , Endopeptidases/therapeutic use , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Bacteriophages/genetics , Bacteriolysis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL