Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 411
Filter
1.
BMJ Case Rep ; 17(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097326

ABSTRACT

A man in his 70s was admitted to an intensive care unit with severe COVID-19 and treated with dexamethasone and tocilizumab. After recovery from COVID-19, he developed Clostridium butyricum bacteraemia and non-occlusive mesenteric ischaemia, with fatal outcome. He had been prescribed C. butyricum MIYAIRI 588 fine granules as probiotics for a month. The genome sequences of the C. butyricum isolate from the blood culture and C. butyricum MIYAIRI 588 fine granules were identical by single nucleotide polymorphism analysis. This is the first case of definitive probiotics-related C. butyricum bacteraemia after treatment of severe COVID-19.


Subject(s)
Bacteremia , COVID-19 , Clostridium butyricum , Probiotics , Whole Genome Sequencing , Humans , Male , Clostridium butyricum/genetics , Probiotics/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , COVID-19/complications , Aged , Clostridium Infections , Fatal Outcome , SARS-CoV-2 , Mesenteric Ischemia
2.
Poult Sci ; 103(8): 103966, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959642

ABSTRACT

Leg disorders have become increasingly common in broilers, leading to lower meat quality and major economic losses. This study evaluated the effects of dietary supplementation with Clostridium butyricum (C. butyricum) and 25-hydroxyvitamin D3 (25-OH-D3) on bone development by comparing growth performance, tibial parameters, Ca and P contents of tibial ash, bone development-related indicators' level, and cecal short-chain fatty acids in Cobb broilers. All birds were divided into four treatment groups, which birds fed either a basal diet (Con), basal diet + 75 mg chlortetracycline/kg (Anti), basal diet + C. butyricum at 109 CFU/kg (Cb), basal diet + C. butyricum at 109 CFU/kg and 25-OH-D3 at 25 µg/kg (CbD), or basal diet + 25-OH-D3 at 25 µg/kg (CD). Our results suggest that the dietary supplementation in Cb, CbD, and CD significantly increased the body weight (BW) and average daily gain (ADG), and reduced the feed-to-weight ratio (F/G) at different stages of growth (P < 0.05). Dietary supplementation in Cb, CbD, and CD prolonged (P < 0.05) the behavioral responses latency-to-lie (LTL) time, reduced (P < 0.05) the levels of osteocalcin (BGP) and peptide tyrosine (PYY), and increased (P < 0.05) serotonin (5-HT) and dopamine (DA). Treatment with Cb increased (P < 0.05) the levels of acetic acid, isobutyric acid, butyric acid, and isovaleric acid compared with those in Con group. The cecal metagenome showed that Alistipes spp. were significantly more abundant in Cb, CbD, and CD groups (P < 0.05). A total of 12 metabolic pathways were significantly affected by supplementation, including the signaling pathways of glucagon, insulin, and PI3K-AKT; primary and secondary bile acid biosynthesis; and P-type Ca 2+ transporters (P < 0.05). Hence, the CbD supplementation modulates bone metabolism by regulating the mediators of gut-brain axis, which may inform strategies to prevent leg diseases and improve meat quality in broilers.


Subject(s)
Animal Feed , Calcifediol , Chickens , Clostridium butyricum , Diet , Dietary Supplements , Animals , Chickens/physiology , Clostridium butyricum/physiology , Animal Feed/analysis , Diet/veterinary , Calcifediol/administration & dosage , Calcifediol/pharmacology , Dietary Supplements/analysis , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Male , Bone and Bones/drug effects , Random Allocation , Gastrointestinal Microbiome/drug effects
3.
Nano Lett ; 24(31): 9750-9759, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052067

ABSTRACT

Clostridium butyricum (CbAgo)-based bioassays are popular due to their programmability and directional cleavage capabilities. However, the relatively compact protein structure of CbAgo limits its cleavage activity (even at the optimal temperature), thus restricting its wider application. Here, we observed that guide DNA (gDNA) with specific structural features significantly enhanced CbAgo cleavage efficiency. Then, we invented a novel gDNA containing DNAzyme segments (gDNAzyme) that substantially enhanced the CbAgo cleavage efficency (by 100%). Using a molecular dynamics simulation system, we found that the augmented cleavage efficiency might be attributed to the large-scale global movement of the PIWI domain of CbAgo and an increased number of cleavage sites. Moreover, this gDNAzyme feature allowed us to create a biosensor that simultaneously and sensitively detected three pathogenic bacteria without DNA extraction and amplification. Our work not only dramatically expands applications of the CbAgo-based biosensor but also provides unique insight into the protein-DNA interactions.


Subject(s)
Argonaute Proteins , Biosensing Techniques , Clostridium butyricum , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Biosensing Techniques/methods , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Molecular Dynamics Simulation , DNA/chemistry
4.
Bioresour Technol ; 407: 131141, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047800

ABSTRACT

Furfural-tolerant and hydrogen-producing microbial consortia were enriched from soil, with hydrogen production of 259.84 mL/g-xylose under 1 g/L furfural stress. The consortia could degrade 2.5 g/L furfural within 24 h in the xylose system, more efficient than in the sugar-free system. Despite degradation of furfural to furfuryl alcohol, the release of reactive oxygen species and lactate dehydrogenase was also detected, suggesting that furfuryl alcohol is also a potential inhibitor of hydrogen production. The butyrate/acetate ratio was observed to decrease with increasing furfural concentration, leading to decreased hydrogen production. Furthermore, microbial community analysis suggested that dominated Clostridium butyricum was responsible for furfural degradation, while Clostridium beijerinckii reduction led to hydrogen production decrease. Overall, the enriched consortia in this study could efficiently degrade furfural and produce hydrogen, providing new insights into hydrogen-producing microbial consortia with furfural tolerance.


Subject(s)
Furaldehyde , Hydrogen , Microbial Consortia , Xylose , Hydrogen/metabolism , Furaldehyde/metabolism , Furaldehyde/pharmacology , Microbial Consortia/physiology , Xylose/metabolism , Reactive Oxygen Species/metabolism , Soil Microbiology , Clostridium butyricum/metabolism , Clostridium beijerinckii/metabolism , L-Lactate Dehydrogenase/metabolism , Furans
5.
Arch Microbiol ; 206(6): 265, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761195

ABSTRACT

Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.


Subject(s)
AMP-Activated Protein Kinases , Clostridium butyricum , Disease Models, Animal , Pancreatitis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, G-Protein-Coupled , Animals , Clostridium butyricum/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Pancreatitis/metabolism , Pancreatitis/microbiology , Pancreatitis/pathology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Male , Signal Transduction , Up-Regulation
6.
Genomics ; 116(3): 110855, 2024 05.
Article in English | MEDLINE | ID: mdl-38703968

ABSTRACT

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Subject(s)
Clostridium butyricum , Genome, Bacterial , Phylogeny , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Whole Genome Sequencing , Bacteriocins/genetics , Bacteriocins/biosynthesis , Industrial Microbiology , Botulinum Toxins/genetics , Virulence Factors/genetics
7.
BMC Microbiol ; 24(1): 105, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561662

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by an elevated level of blood glucose due to the absence of insulin secretion, ineffectiveness, or lack of uptake of secreted insulin in the body. The improperly diagnosed and poorly managed DM can cause severe damage to organs in the body like the nerves, eyes, heart, and kidneys. This study was aimed at investigating the effect of Clostridium butyricum (probiotic) with magnesium supplementation to evaluate the effect on gut microbial dysbiosis and blood glucose levels. In the laboratory, 6-8 weeks old 24 male albino rats weighing 200-250 g were given free access to water and food. Diabetes was induced using streptozotocin (60 mg/kg) in overnight fasted rats. Diabetic rats were randomly divided into four groups (n = 6, 6 replicates in each group). Metformin (100 mg/kg/day) with a standard basal diet was provided to control group (G0), Clostridium butyricum (1.5 × 105 CFU/day) with standard basal diet was provided to treatment group (G1), magnesium (500 mg/kg/day) was provided to group (G2). Clostridium butyricum (1.5 × 105 CFU/day) and magnesium (300 mg/kg/day) in combination with a standard basal diet was provided to group (G3). Blood Glucose, Magnesium blood test and microbial assay were done. Random blood glucose levels were monitored twice a week for 21 days and were represented as mean of each week. The results conclude that Clostridium butyricum (1.5 × 105 CFU) is very effective in balancing random blood glucose levels from 206.6 ± 67.7 to 85.1 ± 3.8 (p = 0.006) compared to other groups (p > 0.005). The results of stool analysis showed that Clostridium butyricum as probiotic restores microbial dysbiosis as evident by the 105 CFU Clostridium butyricum load in G1, which was higher than G0, G2 and G3 which were 103 and 104 CFU respectively. The findings of this study conclude that Clostridium butyricum supplementation improved blood glucose levels and intestinal bacterial load in type II diabetes mellitus.


Subject(s)
Clostridium butyricum , Diabetes Mellitus, Type 2 , Probiotics , Male , Rats , Animals , Clostridium butyricum/physiology , Blood Glucose , Magnesium , Dysbiosis , Probiotics/pharmacology
8.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659027

ABSTRACT

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Subject(s)
Clostridium butyricum , Clostridium , Recombinant Proteins , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Clostridium/genetics , Clostridium/metabolism , Humans , Recombinant Proteins/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Cancer Vaccines/immunology , Cancer Vaccines/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Administration, Oral , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Vaccination , COVID-19/prevention & control , Genetic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Promoter Regions, Genetic
9.
Anaerobe ; 87: 102854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614288

ABSTRACT

OBJECTIVES: Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that Clostridium butyricum may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways. METHODS: An AP disease model was established in mice and treated with C. butyricum. The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin-eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1ß, and MCP-1. RESULTS: C. butyricum ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of Erysipelatoclostridium and Akkermansia. In addition, C. butyricum treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice. CONCLUSIONS: C. butyricum may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.


Subject(s)
Clostridium butyricum , Disease Models, Animal , Gastrointestinal Microbiome , Metabolomics , Pancreatitis , RNA, Ribosomal, 16S , Animals , RNA, Ribosomal, 16S/genetics , Mice , Pancreatitis/microbiology , Pancreatitis/metabolism , Pancreatitis/pathology , Metabolomics/methods , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Probiotics/administration & dosage , Male , Feces/microbiology , Pancreas/pathology , Pancreas/microbiology , Lung/microbiology , Lung/pathology
10.
Probiotics Antimicrob Proteins ; 16(4): 1148-1157, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38684634

ABSTRACT

This work was designed to evaluate the advantages of using multi-strain probiotics feed (Bacillus subtilis, Bacillus licheniformis and Clostridium butyricum) (PRO) and alpha-monolaurin (AML) on laying performance, criteria of egg quality, blood parameters, and yolk fatty acids' profile in laying hens. One hundred forty of Bovans brown laying hens at 45 weeks old (25th week of egg production) were randomly allocated into four groups, with seven replicates of five birds each in a complete randomized design. The first group was fed a basal diet without feed additives (0 g/kg diet), and the second, third, and fourth groups received diets containing 1 g PRO, 1 g AML, and 1 g PRO + 1 g AML/kg diet, respectively. No significant impacts of PRO, AML, or their mixture on body weight (BW), body weight gain (BWG), feed intake (FI), or egg weight. Egg production, egg mass, and feed conversion ratio (FCR) were enhanced by 1 g PRO/kg and /or 1 g AML/kg supplementation in laying hen diets. Furthermore, egg shape index, eggshell thickness, and yolk color were statistically higher by PRO and AML supplementation at 55 weeks. However, oviduct, infundibulum, and uterus weights were significantly decreased by 1 g PRO or/and 1 g AML. Additionally, total cholesterol, triglycerides, low density lipoprotein (LDL), glucose, and glutamate pyruvate transaminase (GPT) levels were decreased by PRO and AML supplementation. In conclusion, it seems that dietary inclusion with 1 g PRO/kg, 1 g of AML/kg, and 1 g PRO + 1 g AML improved egg production, egg mass, FCR, and yolk fatty acids profile and lowered total cholesterol and malondialdehyde (MDA) contents in laying hens.


Subject(s)
Animal Feed , Chickens , Eggs , Fatty Acids , Laurates , Probiotics , Animals , Chickens/physiology , Chickens/growth & development , Probiotics/administration & dosage , Probiotics/pharmacology , Female , Fatty Acids/metabolism , Fatty Acids/analysis , Eggs/analysis , Animal Feed/analysis , Laurates/pharmacology , Bacillus subtilis , Clostridium butyricum , Bacillus licheniformis , Egg Yolk/chemistry , Dietary Supplements/analysis , Diet/veterinary , Ovum , Monoglycerides
11.
Enzyme Microb Technol ; 178: 110447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626534

ABSTRACT

Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.


Subject(s)
Clostridium butyricum , Mutation , Probiotics , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Clostridium butyricum/radiation effects , Carbon/metabolism , Animals , Cellulase/metabolism , Cellulase/genetics , Amylases/metabolism , Amylases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521894

ABSTRACT

BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.


Subject(s)
Clostridium butyricum , Nephrotic Syndrome , Humans , Child , Mice , Animals , RNA, Ribosomal, 16S , Inflammation , Kidney , Fatty Acids, Volatile , Butyrates , Interleukin-6 , Acetates
13.
Bone Marrow Transplant ; 59(6): 795-802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431763

ABSTRACT

In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, ß-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Retrospective Studies , Graft vs Host Disease/microbiology , Aged
14.
J Transl Med ; 22(1): 222, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429821

ABSTRACT

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Microbiota , Humans , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Fatty Acids, Volatile/metabolism , Colonoscopy , Butyric Acid/pharmacology , Butyric Acid/metabolism
15.
Int Immunopharmacol ; 130: 111773, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38430808

ABSTRACT

As bacteria synthesize nutrients primarily in the cecum, coprophagy is indispensable for supplying rabbits with essential nutrients. Recent research has demonstrated its pivotal role in maintaining intestinal microbiota homeostasis and immune regulation in rabbits, although the specific mechanism remains unknown. Here, we used coprophagy prevention (CP) to investigate the effects of coprophagy on the cecum homeostasis and microbiota in New Zealand white rabbits. Furthermore, whether supplementation of Clostridium butyricum (C. butyricum) may alleviate the cecum inflammation and apoptosis caused by CP was also explored. Four groups were randomly assigned: control (Con), sham-coprophagy prevention (SCP), coprophagy prevention (CP), and CP and C. butyricum addition (CPCB). Compared to Con and SCP, CP augmented cecum inflammation and apoptosis, as well as bacterial adhesion to the cecal epithelial mucosa, while decreasing the expression of tight junction proteins (ZO-1, occluding, and claudin-1). The relative abundance of short-chain fatty acids (SCFAs)-producing bacteria was significantly decreased in the CP group. Inversely, there was an increase in the Firmicutes/Bacteroidetes ratio and the relative abundance of Christensenellaceae_R-7_group. Additionally, CP increased the levels of Flagellin, IFN-γ, TNF-a, and IL-1ß in cecum contents and promoted the expression of TLR5/MyD88/NF-κB pathway in cecum tissues. However, the CPCB group showed significant improvements in all parameters compared to the CP group. Dietary C. butyricum supplementation significantly increased the production of SCFAs, particularly butyric acid, triggering anti-inflammatory, tissue repairing, and barrier-protective responses. Notably, CPCB effectively mitigated CP-induced apoptosis and inflammation. In summary, CP disrupts the cecum epithelial barrier and induces inflammation in New Zealand white rabbits, but these effects can be alleviated by C. butyricum supplementation. This process appears to be largely associated with the TLR5/MyD88/NF-κB signaling pathway.


Subject(s)
Clostridium butyricum , Probiotics , Rabbits , Animals , Clostridium butyricum/physiology , NF-kappa B/metabolism , Coprophagia , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 5/metabolism , Fatty Acids, Volatile , Inflammation
16.
Emerg Infect Dis ; 30(4): 665-671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413242

ABSTRACT

Clostridium butyricum, a probiotic commonly prescribed in Asia, most notably as MIYA-BM (Miyarisan Pharmaceutical Co., Ltd.; https://www.miyarisan.com), occasionally leads to bacteremia. The prevalence and characteristics of C. butyricum bacteremia and its bacteriologic and genetic underpinnings remain unknown. We retrospectively investigated patients admitted to Osaka University Hospital during September 2011-February 2023. Whole-genome sequencing revealed 5 (0.08%) cases of C. butyricum bacteremia among 6,576 case-patients who had blood cultures positive for any bacteria. Four patients consumed MIYA-BM, and 1 patient consumed a different C. butyricum-containing probiotic. Most patients had compromised immune systems, and common symptoms included fever and abdominal distress. One patient died of nonocclusive mesenteric ischemia. Sequencing results confirmed that all identified C. butyricum bacteremia strains were probiotic derivatives. Our findings underscore the risk for bacteremia resulting from probiotic use, especially in hospitalized patients, necessitating judicious prescription practices.


Subject(s)
Bacteremia , Clostridium butyricum , Probiotics , Humans , Clostridium butyricum/genetics , Japan/epidemiology , Retrospective Studies , Probiotics/adverse effects , Bacteremia/epidemiology
17.
Probiotics Antimicrob Proteins ; 16(4): 1465-1482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38336953

ABSTRACT

A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , HIV Infections , Probiotics , Humans , Clostridium butyricum/physiology , HIV Infections/complications , HIV Infections/drug therapy , Probiotics/administration & dosage , Comorbidity
18.
Gut Microbes ; 16(1): 2315631, 2024.
Article in English | MEDLINE | ID: mdl-38385162

ABSTRACT

Immune checkpoint inhibitors (ICI) have been positioned as a standard of care for patients with advanced non-small-cell lung carcinomas (NSCLC). A pilot clinical trial has reflected optimistic association between supplementation with Clostridium butyricum MIYAIRI 588 (CBM588) and ICI efficacy in NSCLC. However, it remains to be established whether this biotherapeutic strain may be sufficient to heighten the immunogenicity of the tumor draining lymph nodes to overcome resistance to ICI. Herein, we report that supplementation with CBM588 led to an improved responsiveness to antibody targeting programmed cell death protein 1 (aPD-1). This was statistically associated with a significant decrease in α-diversity of gut microbiota from CBM588-treated mice upon PD-1 blockade. At the level of the tumor-draining lymph node, such combination of treatment significantly lowered the frequency of microbiota-modulated subset of regulatory T cells that express Retinoic Orphan Receptor gamma t (Rorγt+ Treg). Specifically, this strongly immunosuppressive was negatively correlated with the abundance of bacteria that belong to the family of Ruminococcaceae. Accordingly, the colonic expression of both indoleamine 2,3-Dioxygenase 1 (IDO-1) and interleukin-10 (IL-10) were heightened in mice with greater PD-1 blockade efficacy. The CBM588-induced ability to secrete Interleukin-10 of lamina propria mononuclear cells was heightened in tumor bearers when compared with cancer-free mice. Conversely, blockade of interleukin-10 signaling preferentially enhanced the capacity of CD8+ T cells to secrete Interferon gamma when being cocultured with CBM588-primed lamina propria mononuclear cells of tumor-bearing mice. Our results demonstrate that CBM588-centered intervention can adequately improve intestinal homeostasis and efficiently overcome resistance to PD-1 blockade in mice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Clostridium butyricum , Gastrointestinal Microbiome , Lung Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Clostridium butyricum/physiology , Interleukin-10/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3 , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory
19.
Diabetes Metab J ; 48(3): 390-404, 2024 May.
Article in English | MEDLINE | ID: mdl-38310882

ABSTRACT

BACKGRUOUND: Gut microbiota is closely related to the occurrence and development of diabetes and affects the prognosis of diabetic complications, and the underlying mechanisms are only partially understood. We aimed to explore the possible link between the gut microbiota and vascular inflammation of diabetic mice. METHODS: The db/db diabetic and wild-type (WT) mice were used in this study. We profiled gut microbiota and examined the and vascular function in both db/db group and WT group. Gut microbiota was analyzed by 16s rRNA sequencing. Vascular function was examined by ultrasonographic hemodynamics and histological staining. Clostridium butyricum (CB) was orally administered to diabetic mice by intragastric gavage every 2 days for 2 consecutive months. Reactive oxygen species (ROS) and expression of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were detected by fluorescence microscopy. The mRNA expression of inflammatory cytokines was tested by quantitative polymerase chain reaction. RESULTS: Compared with WT mice, CB abundance was significantly decreased in the gut of db/db mice, together with compromised vascular function and activated inflammation in the arterial tissue. Meanwhile, ROS in the vascular tissue of db/db mice was also significantly increased. Oral administration of CB restored the protective microbiota, and protected the vascular function in the db/db mice via activating the Nrf2/HO-1 pathway. CONCLUSION: This study identified the potential link between decreased CB abundance in gut microbiota and vascular inflammation in diabetes. Therapeutic delivery of CB by gut transplantation alleviates the vascular lesions of diabetes mellitus by activating the Nrf2/HO-1 pathway.


Subject(s)
Clostridium butyricum , Diabetes Mellitus, Experimental , Gastrointestinal Microbiome , Inflammation , Animals , Mice , Male , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Heme Oxygenase-1/metabolism , Probiotics/administration & dosage , Membrane Proteins
20.
Nutrients ; 16(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201981

ABSTRACT

Clostridium butyricum (CB) and Phellinus igniarius (PI) have anti-inflammatory, immune regulation, anti-tumor, and other functions. This study aimed to explore the therapeutic effect of CB and mycelium of PI (MPI) alone and in combination on colitis mice induced by dextran sodium sulfate (DSS). Mice were randomly assigned to five groups: (1) control (CTRL), (2) DSS, (3) CB, (4) MPI, and (5) CB + MPI (CON). The weight of the mice was recorded daily during the experiment, and the length of the colon was measured on the last day of the experiment. The colons were collected for hematoxylin and eosin staining, colon contents were collected for intestinal flora analysis, and serum was collected for metabolite analysis. The results showed that compared with the DSS group, CB, MPI, and CON treatments inhibited the weight loss and colon length shortening caused by DSS, significantly increased the concentrations of interleukin (IL)-4, IL-10, and superoxide dismutase, and significantly decreased the concentrations of IL-6, tumor necrosis factor-α, and myeloperoxidase. Gene sequence analysis of 16S rRNA showed that CB, MPI, and CON treatments changed the composition and structure of intestinal microorganisms. Metabolome results showed that CB, MPI, and CON treatments changed serum metabolites in DSS-treated mice, including dodecenoylcarnitine, L-urobilinogen, and citric acid. In conclusion, CB, MPI, and CON treatments alleviated DSS-induced colitis in mice by regulating intestinal flora and metabolites, with the CON group having the best effect.


Subject(s)
Clostridium butyricum , Colitis , Gastrointestinal Microbiome , Phellinus , Animals , Mice , RNA, Ribosomal, 16S/genetics , Colitis/chemically induced , Colitis/drug therapy , Mycelium
SELECTION OF CITATIONS
SEARCH DETAIL