Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
1.
J Biotechnol ; 389: 86-93, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38718874

ABSTRACT

l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M ß-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.


Subject(s)
Carnosine , Clostridium perfringens , Dipeptidases , Clostridium perfringens/enzymology , Clostridium perfringens/genetics , Carnosine/metabolism , Carnosine/chemistry , Carnosine/analogs & derivatives , Dipeptidases/genetics , Dipeptidases/metabolism , Dipeptidases/chemistry , Protein Engineering/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Mutagenesis, Site-Directed
2.
Toxins (Basel) ; 16(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668620

ABSTRACT

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Subject(s)
Bacterial Proteins , Clostridium perfringens , Enterotoxins , Histidine Kinase , Spores, Bacterial , Clostridium perfringens/genetics , Clostridium perfringens/enzymology , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Enterotoxins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Gene Expression Regulation, Bacterial , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Mice
3.
Nature ; 626(8000): 852-858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326608

ABSTRACT

Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.


Subject(s)
Acyltransferases , Amidohydrolases , Bile Acids and Salts , Clostridium perfringens , Gastrointestinal Microbiome , Animals , Humans , Mice , Acyltransferases/chemistry , Acyltransferases/metabolism , Alleles , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acids/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bariatric Surgery , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Catalytic Domain , Clostridium perfringens/enzymology , Clostridium perfringens/metabolism , Feces/chemistry , Gallbladder/metabolism , Gastrointestinal Microbiome/physiology , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Liver/metabolism , Taurocholic Acid/metabolism
4.
Vet Microbiol ; 266: 109371, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35176607

ABSTRACT

Necrotic enteritis, caused by NetB producing Clostridium perfringens type G strains, is a globally important poultry disease. An initial step in the pathogenesis of necrotic enteritis is the colonization and degradation of the intestinal mucus layer, a process in which C. perfringens sialidases - such as NanI sialidase - may play an important role. Sialidases cleave terminal sialic acid from complex carbohydrates on glycoconjugates, such as mucins. This study shows that NE-associated C. perfringens strain CP56 is able to use sialic acid (Neu5Ac) as a carbon source for bacterial growth. It is shown that supplementation of Neu5Ac in the growth medium does not only induce the production of extracellular sialidases of strain CP56, but also increases the production of both alpha toxin and NetB toxin. Moreover, it was found that pre-treating avian hepatocellular carcinoma cells (LMH cells) with the recombinant NanI sialidase increases the adherence of C. perfringens type G strain CP56 to these cells. As such, the data suggest an important role for sialidases in the pathogenesis of the disease.


Subject(s)
Clostridium Infections , Clostridium perfringens , Animals , Clostridium Infections/veterinary , Clostridium perfringens/enzymology , Clostridium perfringens/pathogenicity , Enteritis/veterinary , In Vitro Techniques , Intestines/microbiology , Mucins/metabolism , Neuraminidase/metabolism
5.
Mol Ther ; 30(3): 1201-1214, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34813961

ABSTRACT

Prior to adoptive transfer, CAR T cells are activated, lentivirally infected with CAR transgenes, and expanded over 9 to 11 days. An unintended consequence of this process is the progressive differentiation of CAR T cells over time in culture. Differentiated T cells engraft poorly, which limits their ability to persist and provide sustained tumor control in hematologic as well as solid tumors. Solid tumors include other barriers to CAR T cell therapies, including immune and metabolic checkpoints that suppress effector function and durability. Sialic acids are ubiquitous surface molecules with known immune checkpoint functions. The enzyme C. perfringens neuraminidase (CpNA) removes sialic acid residues from target cells, with good activity at physiologic conditions. In combination with galactose oxidase (GO), NA has been found to stimulate T cell mitogenesis and cytotoxicity in vitro. Here we determine whether CpNA alone and in combination with GO promotes CAR T cell antitumor efficacy. We show that CpNA restrains CAR T cell differentiation during ex vivo culture, giving rise to progeny with enhanced therapeutic potential. CAR T cells expressing CpNA have superior effector function and cytotoxicity in vitro. In a Nalm-6 xenograft model of leukemia, CAR T cells expressing CpNA show enhanced antitumor efficacy. Arming CAR T cells with CpNA also enhanced tumor control in xenograft models of glioblastoma as well as a syngeneic model of melanoma. Given our findings, we hypothesize that charge repulsion via surface glycans is a regulatory parameter influencing differentiation. As T cells engage target cells within tumors and undergo constitutive activation through their CARs, critical thresholds of negative charge may impede cell-cell interactions underlying synapse formation and cytolysis. Removing the dense pool of negative cell-surface charge with CpNA is an effective approach to limit CAR T cell differentiation and enhance overall persistence and efficacy.


Subject(s)
Clostridium perfringens , Receptors, Chimeric Antigen , Antigens, CD19 , Cell Line, Tumor , Clostridium perfringens/enzymology , Humans , Immunotherapy, Adoptive , Neuraminidase/genetics , Xenograft Model Antitumor Assays
6.
FEBS Open Bio ; 11(12): 3262-3275, 2021 12.
Article in English | MEDLINE | ID: mdl-34709730

ABSTRACT

Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.


Subject(s)
Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelin Phosphodiesterase/physiology , Type C Phospholipases/metabolism , Type C Phospholipases/physiology , Animals , Clostridium perfringens/enzymology , Clostridium perfringens/pathogenicity , Humans , Listeria monocytogenes/enzymology , Listeria monocytogenes/pathogenicity , Phospholipases , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/pathogenicity , Type C Phospholipases/genetics
7.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577187

ABSTRACT

Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall peptidoglycan binding remain unclear. Here, the structures of CpAcp SH3bs were studied through NMR spectroscopy and structural simulation. The NMR structure of SH3b6 was determined at first, which adopts a typical ß-barrel fold and has three potential ligand-binding pockets. The largest pocket containing eight conserved residues was suggested to bind with peptide ligand in a novel model. The structures of the other nine SH3bs were subsequently predicted to have a fold similar to SH3b6. Their ligand pockets are largely similar to those of SH3b6, although with varied size and morphology, except that SH3b1/2 display a third pocket markedly different from those in other SH3bs. Thus, it was supposed that SH3b3-10 possess similar ligand-binding ability, while SH3b1/2 have a different specificity and additional binding site for ligand. As an entirety, ten SH3bs confer a capacity for alternatively binding to various peptidoglycan sites in the cell wall. This study presents an initial insight into the structure and potential function of CpAcp SH3bs.


Subject(s)
Clostridium perfringens/enzymology , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Amino Acid Sequence , Catalytic Domain , Escherichia coli , Ligands , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Protein Conformation , Structure-Activity Relationship
8.
Biochem Biophys Res Commun ; 576: 66-72, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34482025

ABSTRACT

Phage-derived endolysins, enzymes that degrade peptidoglycans, have the potential to serve as alternative antimicrobial agents. Psa, which was identified as an endolysin encoded in the genome of Clostridium perfringens st13, was shown to specifically lyse C. perfringens. Psa has an N-terminal catalytic domain that is homologous to the Amidase_2 domain (PF01510), and a novel C-terminal cell wall-binding domain. Here, we determined the X-ray structure of the Psa catalytic domain (Psa-CD) at 1.65 Å resolution. Psa-CD has a typical Amidase_2 domain structure, consisting of a spherical structure with a central ß-sheet surrounded by two α-helix groups. Furthermore, there is a Zn2+ at the center of Psa-CD catalytic reaction site, as well as a unique T-shaped substrate-binding groove consisting of two grooves on the molecule surface. We performed modeling study of the enzyme/substrate complex along with a mutational analysis, and demonstrated that the structure of the substrate-binding groove is closely related to the amidase activity. Furthermore, we proposed a Zn2+-mediated catalytic reaction mechanism for the Amidase_2 family, in which tyrosine constitutes part of the catalytic reaction site.


Subject(s)
Amidohydrolases/chemistry , Amidohydrolases/metabolism , Clostridium perfringens/enzymology , Endopeptidases/chemistry , Endopeptidases/metabolism , Zinc/metabolism , Catalytic Domain , Cell Wall/metabolism , Clostridium perfringens/chemistry , Crystallography, X-Ray/methods , Models, Molecular , Peptidoglycan/metabolism , Protein Conformation , Zinc/chemistry
9.
Biochem Biophys Res Commun ; 554: 138-144, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33794418

ABSTRACT

Pili of Gram-positive bacteria are flexible rod proteins covalently attached to the bacterial cell wall, that play important roles in the initial adhesion of bacterial cells to host tissues and bacterial colonization. Pili are formed by the polymerization of major and minor pilins, catalyzed by class C sortase (SrtC), a family of cysteine transpeptidases. The Gram-positive bacterium Clostridium perfringens has a major pilin (CppA), a minor pilin (CppB), and SrtC (CpSrtC). CpSrtC recognizes the C-terminal cell wall sorting signal motifs with five amino acid residues, LPSTG of CppA and LPETG of CppB, for the polymerization of pili. Here, we report biochemical analysis to detect the formation of Clostridium perfringens pili in vivo, and the X-ray structure of a novel intermolecular substrate-enzyme complex of CpSrtC with a sequence of LPST at the C-terminal site. The results showed that CpSrtC has a subsite for substrate-binding to aid polymerization of pili, and that the catalytic site has structural variations, giving insights into the enzyme catalytic reaction mechanism and affinities for the C-terminal cell wall sorting signal motif sequences.


Subject(s)
Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Clostridium perfringens/enzymology , Cysteine Endopeptidases/chemistry , Fimbriae Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Cell Wall/chemistry , Cell Wall/enzymology , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Fimbriae Proteins/metabolism , Models, Molecular , Protein Conformation , Substrate Specificity
10.
Biochim Biophys Acta Biomembr ; 1863(7): 183620, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33831405

ABSTRACT

Bioaugmentation is a promising method of the remediation of soils polluted by persistent organic pollutants (POP). Unfortunately, it happens frequently that the microorganisms inoculated into the soil die out due to the presence of enzymes secreted by autochthonous microorganisms. Especially destructive are here phospholipases C (PLC) and lipases which destruct the microorganism's cellular membrane. The composition of bacterial membranes differs between species, so it is highly possible that depending on the membrane constitution some bacteria are more resistant to PLCs and lipases than other. To shed light on these problems we applied phospholipid Langmuir monolayers as model microbial membranes and studied their interactions with α-toxin (model bacterial PLC) and the lipase isolated from soil fungus Candida rugosa. Membrane phospholipids differing in their headgroup (phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols and cardiolipins) and in their tail structure were applied. The monolayers were characterized by the Langmuir technique, visualized by Brewster angle microscopy, and the packing mode of the phospholipid molecules was verified by the application of the diffraction of synchrotron radiation. We also studied the mutual miscibility of diacylglycerols and the native phospholipids as their interaction is crucial for the understanding of the PLC and lipase activity. It turned out that all the investigated phospholipid classes can be hydrolyzed by PLC; however, they differ profoundly in the hydrolysis degree. Depending on the effects of the initial PLC action and the mutual organization of the diacylglycerol and phospholipid molecules the lipase can ruin the model membranes or can be completely neutral to them.


Subject(s)
Lipase/metabolism , Type C Phospholipases/metabolism , Unilamellar Liposomes/metabolism , Clostridium perfringens/enzymology , Lipase/chemistry , Models, Biological , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Saccharomycetales/enzymology , Type C Phospholipases/chemistry , Unilamellar Liposomes/chemistry
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658366

ABSTRACT

A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.


Subject(s)
Bacterial Proteins/chemistry , Clostridium perfringens/enzymology , Metalloendopeptidases/chemistry , Mucins/chemistry , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Clostridium perfringens/genetics , Hydrolysis , Metalloendopeptidases/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics
12.
Bioorg Chem ; 107: 104526, 2021 02.
Article in English | MEDLINE | ID: mdl-33309269

ABSTRACT

Diarylheptanoids, known to be rich in the Zingiberaceae family, have been reported to have various pharmacological activities including neuraminidase (NA) inhibitory activity. In this study, to analyze the correlation between NA and diarylheptanoid, A. officinarum, belonging to the Zingiberaceae family, was selected as a natural resource. Four new compounds along with 26 known diarylheptanoids from the rhizomes of A. officinarum were isolated using various chromatographic techniques. The Structure-based virtual screening (SBVS) was performed to discover putative binding ligand and corresponding binding conformation of the isolated compounds. Among the isolated compounds, 10 compounds showed stable binding energy levels in NA. Five of these 10 potential hits showed the potent inhibitory activity through in vitro NA enzyme assay. Moreover, it can be deduced that hydrogen-bonding formation between carbonyl group of active diarylheptanoids and arginine 555 and arginine 615 of NA allowed for the most stable binding between the enzyme and docked compounds.


Subject(s)
Alpinia/chemistry , Diarylheptanoids/chemistry , Enzyme Inhibitors/chemistry , Neuraminidase/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Clostridium perfringens/enzymology , Diarylheptanoids/isolation & purification , Diarylheptanoids/metabolism , Enzyme Assays , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Neuraminidase/chemistry , Neuraminidase/metabolism , Protein Binding , Rhizome/chemistry
13.
Carbohydr Res ; 494: 108082, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32634753

ABSTRACT

The glycoside hydrolase (GH) family 126 was established based on the X-ray structure determination of the amylolytic enzyme CPF_2247 from Clostridium perfringens genome. Its original identification as a putative carbohydrate-active enzyme was based on its low, yet significant sequence identity to members of the family GH8, which are inverting endo-ß-1,4-glucanases. As the family GH8 forms the clan GH-M with GH48, the CPF_2247 protein also exhibits similarities with members of the family GH48. The original screening of the CPF_2247 on carbohydrate substrates demonstrated its activity on glycogen and amylose, thus classifying this protein as an "α-amylase". It should be pointed out, however, there are apparent inconsistencies concerning the exact enzyme specificity of the "amylase" CPF_2247, since it exhibits both the endo- and exo-fashion of action. The family GH126 currently counts ~1000 amino acid sequences solely from Bacteria; all belonging to the phylum Firmicutes. The present study delivers the first detailed bioinformatics study of 117 selected amino acid sequences from the family GH126, featuring the insightful sequence-structure comparison with the aim to define seven conserved sequence regions and elucidate the evolutionary relationships within the family. In addition, a comparative structural analysis of the GH126 members with representatives of other GH families adopting the same (α/α)6-barrel catalytic domain fold indicates the possible sharing a catalytic residue between the families GH126 and GH76.


Subject(s)
Computer Simulation , Glycoside Hydrolases/analysis , Amino Acid Sequence , Clostridium perfringens/enzymology , Crystallography, X-Ray , Glycoside Hydrolases/metabolism , Models, Molecular , Sequence Alignment
14.
Biomolecules ; 10(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532086

ABSTRACT

Petasites japonicus have been used since a long time in folk medicine to treat diseases including plague, pestilential fever, allergy, and inflammation in East Asia and European countries. Bioactive compounds that may prevent and treat infectious diseases are identified based on their ability to inhibit bacterial neuraminidase (NA). We aimed to isolate and identify bioactive compounds from leaves and stems of P. japonicas (PJA) and elucidate their mechanisms of NA inhibition. Key bioactive compounds of PJA responsible for NA inhibition were isolated using column chromatography, their chemical structures revealed using 1 H NMR, 13 C NMR, DEPT, and HMBC, and identified to be bakkenolide B (1), bakkenolide D (2), 1,5-di-O-caffeoylquinic acid (3), and 5-O-caffeoylquinic acid (4). Of these, 3 exhibited the most potent NA inhibitory activity (IC50 = 2.3 ± 0.4 µM). Enzyme kinetic studies revealed that 3 and 4 were competitive inhibitors, whereas 2 exhibited non-competitive inhibition. Furthermore, a molecular docking simulation revealed the binding affinity of these compounds to NA and their mechanism of inhibition. Negative-binding energies indicated high proximity of these compounds to the active site and allosteric sites of NA. Therefore, PJA has the potential to be further developed as an antibacterial agent for use against diseases associated with NA.


Subject(s)
Clostridium perfringens/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Neuraminidase/antagonists & inhibitors , Petasites/chemistry , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Sesquiterpenes/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Kinetics , Molecular Structure , Neuraminidase/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
15.
Molecules ; 25(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182773

ABSTRACT

The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.


Subject(s)
Antiviral Agents/chemistry , Enzymes, Immobilized/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Vidarabine/chemistry , Aeromonas hydrophila/enzymology , Biocatalysis , Bioreactors , Biotransformation/drug effects , Clostridium perfringens/enzymology , Enzymes, Immobilized/genetics , Glyoxylates/chemistry , Humans , Protein Engineering/methods , Purine Nucleosides/chemistry , Purine Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/genetics , Sepharose/chemistry , Substrate Specificity , Vidarabine/biosynthesis , Vidarabine/genetics
16.
J Med Chem ; 63(9): 4617-4627, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32105467

ABSTRACT

Selective inhibitors of gut bacterial ß-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 µM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Cyclitols/chemistry , Gastrointestinal Microbiome/drug effects , Glucuronidase/antagonists & inhibitors , Piperidines/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Cattle , Clostridiales/enzymology , Clostridium perfringens/enzymology , Crystallography, X-Ray , Cyclitols/chemical synthesis , Cyclitols/metabolism , Enzyme Assays , Escherichia coli/enzymology , Glucuronidase/chemistry , Glucuronidase/metabolism , Molecular Conformation , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Structure-Activity Relationship
17.
Int J Med Microbiol ; 310(2): 151398, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31987726

ABSTRACT

Clostridium perfringens is the causative agent of human clostridial myonecrosis; the major toxins involved in this disease are α-toxin and perfringolysin O. The RevSR two-component regulatory system has been shown to be involved in regulating virulence in a mouse myonecrosis model. Previous microarray and RNAseq analysis of a revR mutant implied that factors other than the major toxins may play a role in virulence. The RNAseq data showed that the expression of the gene encoding the EngCP endo α-N-acetylgalactosaminidase (CPE0693) was significantly down-regulated in a revR mutant. Enzymes from this family have been identified in several Gram-positive pathogens and have been postulated to contribute to their virulence. In this study, we constructed an engCP mutant of C. perfringens and showed that it was significantly less virulent than its wild-type parent strain. Virulence was restored by complementation in trans with the wild-type engCP gene. We also demonstrated that purified EngCP was able to hydrolyse α-dystroglycan derived from C2C12 mouse myotubes. However, EngCP had little effect on membrane permeability in mice, suggesting that EngCP may play a role other than the disruption of the structural integrity of myofibres. Glycan array analysis indicated that EngCP could recognise structures containing the monosaccharide N-acetlygalactosamine at 4C, but could recognise structures terminating in galactose, glucose and N-acetylglucosamine under conditions where EngCP was enzymatically active. In conclusion, we have obtained evidence that EngCP is required for virulence in C. perfringens and, although classical exotoxins are important for disease, we have now shown that an O-glycosidase also plays an important role in the disease process.


Subject(s)
Clostridium perfringens/enzymology , Clostridium perfringens/pathogenicity , Gas Gangrene/microbiology , Virulence Factors/genetics , alpha-N-Acetylgalactosaminidase/genetics , Animals , Cell Membrane Permeability , Clostridium perfringens/genetics , Female , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred BALB C , Sequence Analysis, RNA , alpha-N-Acetylgalactosaminidase/metabolism
18.
J Vet Diagn Invest ; 32(2): 259-267, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924132

ABSTRACT

Two putative zinc metalloproteases encoded by Clostridium perfringens have been implicated in the pathogenesis of necrotic enteritis, an economically significant poultry disease that is caused by this anaerobic bacterium. These proteases have ~64% amino acid identity and are encoded by the zmpA and zmpB genes. We screened 83 C. perfringens isolates by PCR for the presence of these genes. The first gene, zmpB, is chromosomally located and was present in all screened strains of C. perfringens, regardless of their origin and virulence. The second gene, zmpA, is plasmid-borne and was only found in isolates derived from chickens with necrotic enteritis. We describe the generation of insertionally inactivated mutants of both zmpA and zmpB in a virulent C. perfringens isolate. For each mutant, a significant (p < 0.001) reduction in virulence was observed in a chicken necrotic enteritis disease model. Examples of each mutant strain were characterized by whole genome sequencing, which showed that there were a few off-site mutations with the potential to affect the virulence of these strains. To confirm the importance of these genes, independently derived zmpA and zmpB mutants were constructed in different virulent C. perfringens isolates and shown to have reduced virulence in the experimental disease induction model. A zmpA-zmpB double mutant also was generated and shown to have significantly reduced virulence, to the same extent as the respective single mutants. Our results provide evidence that both putative zinc metalloproteases play an important role in disease pathogenesis.


Subject(s)
Bacterial Proteins/genetics , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Clostridium perfringens/pathogenicity , Enterocolitis, Necrotizing/veterinary , Metalloendopeptidases/genetics , Poultry Diseases/microbiology , Animals , Bacterial Proteins/metabolism , Clostridium Infections/microbiology , Clostridium perfringens/enzymology , Enterocolitis, Necrotizing/microbiology , Metalloendopeptidases/metabolism , Virulence
19.
Food Microbiol ; 86: 103325, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703860

ABSTRACT

Clostridium perfringens SM101 genome encodes three serine proteases (CspA, CspB, and CspC), and genetic evidence indicates that CspB is required for processing of pro-SleC into active SleC, an enzyme essential for degradation of the peptidoglycan cortex during spore germination. In this study, the expression of cspA and cspC, as well as the germination and colony formation by spores of cspAC and cspC mutants of strain SM101, were assessed. We demonstrated that 1) the cspA and cspC genes were expressed as a bicistronic operon only during sporulation in the mother cell compartment of SM101; 2) both cspAC and cspC mutant spores were unable to germinate significantly with either KCl, l-glutamine, brain heart infusion (BHI) broth, or a 1:1 chelate of Ca2+ and dipicolinic acid (DPA); 3) consistent with germination results, both cspAC and cspC mutant spores were defective in normal DPA release; 4) the colony formation by cspAC and cspC mutant spores was ~106-fold lower than that of wild-type spores, although decoated mutant spores yielded wild-type level colony formation on plates containing lysozyme; 5) no processing of inactive pro-SleC into active SleC was observed in cspAC and cspC mutant spores during germination; and finally, 6) the defects in germination, DPA release, colony formation and SleC processing in cspAC and cspC mutant spores were complemented by the wild-type cspA-cspC operon. Collectively, these results indicate that both CspA and CspC are essential for C. perfringens spore germination through activating SleC and inducing cortex hydrolysis.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Clostridium perfringens/enzymology , Spores, Bacterial/growth & development , Bacterial Proteins/genetics , Carrier Proteins/genetics , Clostridium perfringens/drug effects , Clostridium perfringens/genetics , Clostridium perfringens/growth & development , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Developmental , Hydrolysis , Operon , Picolinic Acids/pharmacology , Protein Processing, Post-Translational , Spores, Bacterial/drug effects , Spores, Bacterial/enzymology , Spores, Bacterial/genetics
20.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31701135

ABSTRACT

The opportunistic pathogen Clostridium perfringens possesses the ability to colonize the protective mucin layer in the gastrointestinal tract. To assist this, the C. perfringens genome contains a battery of genes encoding glycoside hydrolases (GHs) that are likely active on mucin glycans, including four genes encoding family 84 GHs: CpGH84A (NagH), CpGH84B (NagI), CpGH84C (NagJ) and CpGH84D (NagK). To probe the potential advantage gained by the expansion of GH84 enzymes in C. perfringens, we undertook the structural and functional characterization of the CpGH84 catalytic modules. Here, we show that these four CpGH84 catalytic modules act as ß-N-acetyl-D-glucosaminidases able to hydrolyze N- and O-glycan motifs. CpGH84A and CpGH84D displayed a substrate specificity restricted to terminal ß-1,2- and ß-1,6-linked N-acetyl-D-glucosamine (GlcNAc). CpGH84B and CpGH84C appear more promiscuous with activity on terminal ß-1,2-, ß-1,3- and ß-1,6-linked GlcNAc; both possess some activity toward ß-1,4-linked GlcNAc, but this is dependent upon which monosaccharide it is linked to. Furthermore, all the CpGH84s have different optimum pHs ranging from 5.2 to 7.0. Consistent with their ß-N-acetyl-D-glucosaminidase activities, the structures of the four catalytic modules revealed similar folds with a catalytic site including a conserved -1 subsite that binds GlcNAc. However, nonconserved residues in the vicinity of the +1 subsite suggest different accommodation of the sugar preceding the terminal GlcNAc, resulting in subtly different substrate specificities. This structure-function comparison of the four GH84 catalytic modules from C. perfringens reveals their different biochemical properties, which may relate to how they are deployed in the bacterium's niche in the host.


Subject(s)
Clostridium perfringens/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Biocatalysis , Crystallography, X-Ray , Glycoside Hydrolases/genetics , Humans , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...