Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Hear Res ; 442: 108935, 2024 02.
Article in English | MEDLINE | ID: mdl-38113793

ABSTRACT

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Subject(s)
Cochlear Nucleus , Hearing Loss , Humans , Cochlear Nucleus/pathology , Cochlear Nerve , Neurons/pathology , Synapses/pathology , Spiral Ganglion/pathology , Cochlea/physiology
2.
J Neurotrauma ; 38(23): 3248-3259, 2021 12.
Article in English | MEDLINE | ID: mdl-34605670

ABSTRACT

In the present study, we have evaluated the blast-induced auditory neurodegeneration in chinchilla by correlating the histomorphometric changes with diffusion tensor imaging. The chinchillas were exposed to single unilateral blast-overpressure (BOP) at ∼172dB peak sound pressure level (SPL) and the pathological changes were compared at 1 week and 1 month after BOP. The functional integrity of the auditory system was assessed by auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). The axonal integrity was assessed using diffusion tensor imaging at regions of interests (ROIs) of the central auditory neuraxis (CAN) including the cochlear nucleus (CN), inferior colliculus (IC), and auditory cortex (AC). Post-BOP, cyto-architecture metrics such as viable cells, degenerating neurons, and apoptotic cells were quantified at the CAN ROIs using light microscopic studies using cresyl fast violet, hematoxylin and eosin, and modified Crossmon's trichrome stains. We observed mean ABR threshold shifts of 30- and 10-dB SPL at 1 week and 1 month after BOP, respectively. A similar pattern was observed in DPAOE amplitudes shift. In the CAN ROIs, diffusion tensor imaging studies showed a decreased axial diffusivity in CN 1 month after BOP and a decreased mean diffusivity and radial diffusivity at 1 week after BOP. However, morphometric measures such as decreased viable cells and increased degenerating neurons and apoptotic cells were observed at CN, IC, and AC. Specifically, increased degenerating neurons and reduced viable cells were high on the ipsilateral side when compared with the contralateral side. These results indicate that a single blast significantly damages structural and functional integrity at all levels of CAN ROIs.


Subject(s)
Auditory Cortex/pathology , Blast Injuries/pathology , Cochlear Nucleus/pathology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/pathology , Inferior Colliculi/pathology , Neurodegenerative Diseases/pathology , Animals , Auditory Cortex/diagnostic imaging , Blast Injuries/complications , Blast Injuries/diagnostic imaging , Chinchilla , Cochlear Nucleus/diagnostic imaging , Diffusion Tensor Imaging , Disease Models, Animal , Hearing Loss, Noise-Induced/diagnostic imaging , Inferior Colliculi/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging
3.
J Comp Neurol ; 529(5): 957-968, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32681585

ABSTRACT

Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.


Subject(s)
Developmental Disabilities/genetics , Dystonic Disorders/genetics , Hearing Loss, Sensorineural/genetics , Tubulin/deficiency , Amino Acid Substitution , Animals , Auditory Perception , Child, Preschool , Cochlear Nucleus/pathology , Demyelinating Diseases/genetics , Disease Models, Animal , Ear, Inner/physiopathology , Evoked Potentials, Auditory , Female , Hearing Loss, Sensorineural/physiopathology , Humans , Inferior Colliculi/pathology , Male , Mutation, Missense , Myelin Sheath/pathology , Point Mutation , Rats , Rats, Mutant Strains , Rats, Sprague-Dawley , Tubulin/genetics
4.
Sci Rep ; 10(1): 20594, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244141

ABSTRACT

Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.


Subject(s)
Cochlear Nucleus/pathology , Hyperacusis/pathology , Animals , Cochlear Nerve/pathology , Cochlear Nucleus/cytology , Evoked Potentials, Auditory , Female , Guinea Pigs , Hyperacusis/etiology , Loudness Perception , Noise/adverse effects , Tinnitus/etiology , Tinnitus/pathology
5.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233709

ABSTRACT

Noise-induced hearing loss (NIHL) can lead to secondary changes that induce neural plasticity in the central auditory pathway. These changes include decreases in the number of synapses, the degeneration of auditory nerve fibers, and reorganization of the cochlear nucleus (CN) and inferior colliculus (IC) in the brain. This study investigated the role of microRNAs (miRNAs) in the neural plasticity of the central auditory pathway after acute NIHL. Male Sprague-Dawley rats were exposed to white band noise at 115 dB for 2 h, and the auditory brainstem response (ABR) and morphology of the organ of Corti were evaluated on days 1 and 3. Following noise exposure, the ABR threshold shift was significantly smaller in the day 3 group, while wave II amplitudes were significantly larger in the day 3 group compared to the day 1 group. The organ of Corti on the basal turn showed evidence of damage and the number of surviving outer hair cells was significantly lower in the basal and middle turn areas of the hearing loss groups relative to controls. Five and three candidate miRNAs for each CN and IC were selected based on microarray analysis and quantitative reverse transcription PCR (RT-qPCR). The data confirmed that even short-term acoustic stimulation can lead to changes in neuroplasticity. Further studies are needed to validate the role of these candidate miRNAs. Such miRNAs may be used in the early diagnosis and treatment of neural plasticity of the central auditory pathway after acute NIHL.


Subject(s)
Cochlear Nucleus , Hearing Loss, Noise-Induced/metabolism , Inferior Colliculi , MicroRNAs/metabolism , Neuronal Plasticity , Animals , Cochlear Nucleus/metabolism , Cochlear Nucleus/pathology , Evoked Potentials, Auditory, Brain Stem , Inferior Colliculi/metabolism , Inferior Colliculi/pathology , Male , Organ of Corti/pathology , Rats , Rats, Sprague-Dawley
6.
Neuroscience ; 399: 184-198, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30593923

ABSTRACT

The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28  d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.


Subject(s)
Cochlear Nucleus/physiopathology , Hearing Loss, Noise-Induced/physiopathology , Neuronal Plasticity/physiology , Synapses/physiology , Acoustic Stimulation/adverse effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cochlear Nucleus/pathology , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Gene Expression Regulation , Hearing Loss, Noise-Induced/pathology , Homer Scaffolding Proteins/metabolism , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/pathology , Time Factors
7.
Neuroscience ; 391: 91-103, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30236972

ABSTRACT

Tinnitus alters auditory-somatosensory plasticity in the cochlear nucleus (CN). Correspondingly, bimodal auditory-somatosensory stimulation treatment attenuates tinnitus, both in animals and humans (Marks et al., 2018). Therefore, we hypothesized that tinnitus is associated with altered somatosensory innervation of the CN. Here, we studied the expression of vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) in the CN, which reveals glutamatergic projections from the cochlea as well as somatosensory systems to this brainstem auditory center. Guinea pigs were unilaterally exposed to narrowband noise and behaviorally tested for tinnitus using gap-prepulse inhibition of the acoustic startle. Following physiological and behavioral measures, brain sections were immunohistochemically stained for VGLUT1 or VGLUT2. Puncta density was determined for each region of the ipsilateral and contralateral CN. Tinnitus was associated with an ipsilateral upregulation of VGLUT2 puncta density in the granule cell domain (GCD) and anteroventral CN (AVCN). Furthermore, there was a tinnitus-associated interaural asymmetry for VGLUT1 expression in the AVCN and deep layer of the dorsal CN (DCN3), due to contralateral downregulation of VGLUT1 expression. These tinnitus-related glutamatergic imbalances were reversed upon bimodal stimulation treatment. Tinnitus-associated ipsilateral upregulation of VGLUT2-positive projections likely derives from somatosensory projections to the GCD and AVCN. This upregulation may underlie the neurophysiological hallmarks of tinnitus in the CN. Reversing the increased ipsilateral glutamatergic innervation in the CN is likely a key mechanism in treating tinnitus.


Subject(s)
Cochlear Nucleus/metabolism , Cochlear Nucleus/pathology , Tinnitus/metabolism , Tinnitus/pathology , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Evoked Potentials, Auditory, Brain Stem , Female , Guinea Pigs , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Male , Noise , Prepulse Inhibition , Reflex, Startle , Up-Regulation
8.
Sci Transl Med ; 10(422)2018 01 03.
Article in English | MEDLINE | ID: mdl-29298868

ABSTRACT

The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide.


Subject(s)
Cochlear Nucleus/pathology , Tinnitus/therapy , Acoustic Stimulation , Animals , Cross-Over Studies , Double-Blind Method , Guinea Pigs , Humans , Neuronal Plasticity/physiology , Quality of Life , Swine
9.
Hum Mol Genet ; 27(5): 860-874, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29325119

ABSTRACT

The peripheral deafness gene Mir96 is expressed in both the cochlea and central auditory circuits. To investigate whether it plays a role in the auditory system beyond the cochlea, we characterized homozygous Dmdo/Dmdo mice with a point mutation in miR-96. Anatomical analysis demonstrated a significant decrease in volume of auditory nuclei in Dmdo/Dmdo mice. This decrease resulted from decreased cell size. Non-auditory structures in the brainstem of Dmdo/Dmdo mice or auditory nuclei of the congenital deaf Cldn14-/- mice revealed no such differences. Electrophysiological analysis in the medial nucleus of the trapezoid body (MNTB) showed that principal neurons fired preferentially multiple action potentials upon depolarization, in contrast to the single firing pattern prevalent in controls and Cldn14-/- mice. Immunohistochemistry identified significantly reduced expression of two predicted targets of the mutated miR-96, Kv1.6 and BK channel proteins, possibly contributing to the electrophysiological phenotype. Microscopic analysis of the Dmdo/Dmdo calyx of Held revealed a largely absent compartmentalized morphology, as judged by SV2-labeling. Furthermore, MNTB neurons from Dmdo/Dmdo mice displayed larger synaptic short-term depression, slower AMPA-receptor decay kinetics and a larger NMDA-receptor component, reflecting a less matured stage. Again, these synaptic differences were not present between controls and Cldn14-/- mice. Thus, deafness genes differentially affect the auditory brainstem. Furthermore, our study identifies miR-96 as an essential gene regulatory network element of the auditory system which is required for functional maturation in the peripheral and central auditory system alike.


Subject(s)
MicroRNAs/physiology , Rhombencephalon/growth & development , Rhombencephalon/pathology , Animals , Cell Size , Claudins/genetics , Cochlear Nucleus/growth & development , Cochlear Nucleus/pathology , Gene Expression Regulation, Developmental , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mice, Knockout , Mice, Mutant Strains , Mutation , Neuronal Plasticity , Neurons/pathology , Shaker Superfamily of Potassium Channels/genetics , Synapses/pathology , Synaptic Transmission
10.
Neurochem Int ; 114: 1-9, 2018 03.
Article in English | MEDLINE | ID: mdl-29248694

ABSTRACT

Acrolein is a ubiquitous dietary and environmental pollutant, which can also be generated endogenously during cellular stress. However, the molecular mechanisms underlying acrolein-induced neurotoxicity, especially in ototoxicity conditions, have not been fully determined. In this study, we investigated the mechanisms on acrolein-induced toxicity in primary cultured cochlear nucleus neurons with focus on Sirt3, a mitochondrial deacetylase. We found that acrolein treatment induced neuronal injury and programmed cell death (PCD) in a dose dependent manner in cochlear nucleus neurons, which was accompanied by increased intracellular reactive oxygen species (ROS) generation and lipid peroxidation. Acrolein exposure also significantly reduced the mitochondrial membrane potential (MMP) levels, promoted cytochrome c release and decreased mitochondrial ATP production. In addition, increased ER tracker fluorescence and activation of ER stress factors were observed after acrolein treatment, and the ER stress inhibitors were shown to attenuate acrolein-induced toxicity in cochlear nucleus neurons. The results of western blot and RT-PCR showed that acrolein markedly decreased the expression of Sirt3 at both mRNA and protein levels, and reduced the activity of downstream mitochondrial enzymes. Furthermore, overexpression of Sirt3 by lentivirus transfection partially prevented acrolein-induced neuronal injury in cochlear nucleus neurons. These results demonstrated that acrolein induces mitochondrial dysfunction and ER stress in cochlear nucleus neurons, and Sirt3 acts as an endogenous protective factor in acrolein-induced ototoxicity.


Subject(s)
Acrolein/toxicity , Cochlear Nucleus/metabolism , Cytoprotection/physiology , Neurons/metabolism , Oxidative Stress/physiology , Sirtuins/biosynthesis , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cochlear Nucleus/drug effects , Cochlear Nucleus/pathology , Cytoprotection/drug effects , Dose-Response Relationship, Drug , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Sirtuins/antagonists & inhibitors
11.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);83(6): 691-696, Nov.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889319

ABSTRACT

Abstract Introduction: The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. Objective: In this study, we aimed to evaluate the effects of 2100 MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Methods: Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30 days to a 2100 MHz electromagnetic fields with a signal level (power) of 5.4 dBm (3.47 mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30 days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. Results: The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p = 0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p = 0.002). Conclusion: The results support that long-term exposure to a GSM-like 2100 MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system.


Resumo Introdução: O uso de telefones celulares tornou-se generalizado nos últimos anos. Embora benéfico do ponto de vista da comunicação, os campos eletromagnéticos gerados por celulares pode causar alterações biológicas indesejáveis no corpo humano. Objetivo: Nesse estudo, o objetivo foi avaliar os efeitos do campo eletromagnético na frequência de 2.100 MHz, similar à modulação do Sistema Global para Comunicações Móveis, produzido por um gerador de campo eletromagnético, sobre o sistema auditivo de ratos usando os métodos eletrofisiológico, histopatológico e imunohistoquímico. Método: Foram incluídos no estudo catorze adultos ratos albinos Wistar. Os ratos foram divididos aleatoriamente em dois grupos de sete animais cada. O grupo de estudo foi exposto continuamente por 30 dias a um campo eletromagnético em 2100 MHz com um nível de sinal (potência) de 5,4 dBm (3,47 miliwatts) para simular o modo de conversação em um celular. O grupo controle não foi exposto ao campo eletromagnético acima mencionado. Após 30 dias, o potencial evocado auditivo de tronco encefálico de ambos os grupos foi gravado e os ratos foram sacrificados. Os núcleos cocleares foram avaliados pelos métodos histopatológico e imunohistoquímico. Resultados: Os registros do potencial evocado auditivo de tronco encefálico dos dois grupos não diferiram significativamente. A análise histopatológica mostrou aumento dos sinais de degeneração no grupo de estudo (p = 0,007). Além disso, a análise imuno-histoquímica revelou aumento do índice de apoptose no grupo de estudo em comparação com o grupo controle (p = 0,002). Conclusão: Os resultados confirmam que a exposição a longo prazo a um campo eletromagnético em 2100 MHz similar à modulação do sistema global para comunicações móveis causa um aumento na degeneração neuronal e apoptose no sistema auditivo.


Subject(s)
Animals , Male , Radio Waves/adverse effects , Cochlear Nucleus/radiation effects , Radiation Exposure/adverse effects , Cell Phone , Electromagnetic Fields/adverse effects , Hearing/radiation effects , Reference Values , Time Factors , Immunohistochemistry , Risk Factors , Evoked Potentials, Auditory, Brain Stem/radiation effects , Rats, Wistar , Apoptosis/radiation effects , Cochlear Nucleus/pathology , Nerve Degeneration/etiology
12.
Hear Res ; 350: 139-151, 2017 07.
Article in English | MEDLINE | ID: mdl-28478300

ABSTRACT

Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No-Tinnitus). Neuron degeneration was also documented in the cochlear nucleus and PFL of exposed animals, both with and without tinnitus. Degeneration was not found in unexposed animals. Implications for tinnitus neuropathy are discussed in the context of synaptic remodeling and cerebellar sensory modulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cerebellum/metabolism , Cochlear Nucleus/metabolism , Interneurons/metabolism , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Tinnitus/metabolism , Animals , Auditory Perception , Behavior, Animal , Biomarkers/metabolism , Cerebellum/pathology , Cerebellum/physiopathology , Chronic Disease , Cochlear Nucleus/pathology , Cochlear Nucleus/physiopathology , Disease Models, Animal , Doublecortin Domain Proteins , Doublecortin Protein , Evoked Potentials, Auditory, Brain Stem , Hearing , Interneurons/pathology , Male , Nerve Degeneration , Noise , Rats, Long-Evans , Tinnitus/pathology , Tinnitus/physiopathology , Tinnitus/psychology
13.
Braz J Otorhinolaryngol ; 83(6): 691-696, 2017.
Article in English | MEDLINE | ID: mdl-27865708

ABSTRACT

INTRODUCTION: The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. OBJECTIVE: In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. METHODS: Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. RESULTS: The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). CONCLUSION: The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system.


Subject(s)
Cell Phone , Cochlear Nucleus/radiation effects , Electromagnetic Fields/adverse effects , Hearing/radiation effects , Radiation Exposure/adverse effects , Radio Waves/adverse effects , Animals , Apoptosis/radiation effects , Cochlear Nucleus/pathology , Evoked Potentials, Auditory, Brain Stem/radiation effects , Immunohistochemistry , Male , Nerve Degeneration/etiology , Rats, Wistar , Reference Values , Risk Factors , Time Factors
14.
J Neurophysiol ; 117(2): 756-766, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27881722

ABSTRACT

The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler (dfw2J ) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes (dfw2J /dfw2J ) and high-frequency hearing loss in heterozygotes (+/dfw2J ). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/dfw2J and absent in dfw2J /dfw2J The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent.NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size.


Subject(s)
Cochlear Nucleus/pathology , Deafness/pathology , Deafness/physiopathology , Evoked Potentials, Auditory/physiology , Neurons/pathology , Sound , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Deafness/genetics , Diphtheria Toxin/pharmacology , Evoked Potentials, Auditory/genetics , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mice, Inbred CBA , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Neurons/physiology , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism , Presynaptic Terminals/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism
15.
Hear Res ; 342: 134-143, 2016 12.
Article in English | MEDLINE | ID: mdl-27773647

ABSTRACT

Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 µg/ml; 0.25 µl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN.


Subject(s)
Brain-Derived Neurotrophic Factor/administration & dosage , Cochlear Nucleus/drug effects , Cochlear Nucleus/pathology , Deafness/drug therapy , Deafness/pathology , Animals , Animals, Newborn , Cats , Cochlear Nucleus/growth & development , Deafness/chemically induced , Drug Delivery Systems , Evoked Potentials, Auditory, Brain Stem , Neomycin/toxicity , Organ Size/drug effects , Spiral Ganglion/drug effects , Spiral Ganglion/pathology
16.
J Neurosci ; 36(39): 10214-27, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27683915

ABSTRACT

UNLABELLED: Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. SIGNIFICANCE STATEMENT: Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at the level of the lateral lemniscus, and to long-lasting presynaptic and postsynaptic structural and molecular effects at the endbulb of the Held synapse. Knowledge of the structural and molecular changes associated with decreased sensory experience, along with their potential reversibility, is important for the treatment of hearing deficits, such as hyperacusis and chronic otitis media with effusion, which is prevalent in young children with language acquisition or educational disabilities.


Subject(s)
Cochlear Nerve/pathology , Cochlear Nerve/physiopathology , Cochlear Nucleus/pathology , Cochlear Nucleus/physiopathology , Hearing Loss, Conductive/pathology , Hearing Loss, Conductive/physiopathology , Synapses/pathology , Animals , Auditory Perception , Long-Term Potentiation , Long-Term Synaptic Depression , Male , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Potentials
17.
Neuroscience ; 332: 242-57, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27403879

ABSTRACT

In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.


Subject(s)
Auditory Pathways/pathology , Cochlea/pathology , Cochlear Nucleus/pathology , Hair Cells, Auditory/pathology , Hearing Loss, Noise-Induced/pathology , Noise/adverse effects , Animals , Auditory Pathways/metabolism , Cell Size , Cell Survival , Cochlea/metabolism , Cochlear Nucleus/metabolism , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Female , Hair Cells, Auditory/metabolism , Hearing Loss, Noise-Induced/metabolism , Immunohistochemistry , Male , Mice, Transgenic , Microscopy, Electron, Transmission , Receptors, AMPA/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
18.
Nat Rev Neurol ; 12(3): 150-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26868680

ABSTRACT

Tinnitus is a phantom auditory sensation that reduces quality of life for millions of people worldwide, and for which there is no medical cure. Most cases of tinnitus are associated with hearing loss caused by ageing or noise exposure. Exposure to loud recreational sound is common among the young, and this group are at increasing risk of developing tinnitus. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state could be involved in the development and maintenance of tinnitus via top-down mechanisms. Thus, military personnel in combat are particularly at risk owing to combined risk factors (hearing loss, somatosensory system disturbances and emotional stress). Animal model studies have identified tinnitus-associated neural changes that commence at the cochlear nucleus and extend to the auditory cortex and other brain regions. Maladaptive neural plasticity seems to underlie these changes: it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures, possibly generating the phantom percept. This Review highlights the links between animal and human studies, and discusses several therapeutic approaches that have been developed to target the neuroplastic changes underlying tinnitus.


Subject(s)
Auditory Pathways/physiopathology , Neuronal Plasticity/physiology , Tinnitus/diagnosis , Tinnitus/physiopathology , Animals , Auditory Cortex/pathology , Auditory Cortex/physiopathology , Auditory Pathways/pathology , Cochlear Nucleus/pathology , Cochlear Nucleus/physiopathology , Humans , Noise/adverse effects , Tinnitus/therapy , Treatment Outcome
19.
J Neurosci ; 36(6): 2068-73, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865628

ABSTRACT

Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT: Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures.


Subject(s)
Cochlear Nucleus/pathology , Tinnitus/pathology , Algorithms , Animals , Electrophysiological Phenomena , Evoked Potentials, Auditory/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Guinea Pigs , Models, Neurological , Noise , Reflex, Startle
20.
Hear Res ; 333: 210-215, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26386286

ABSTRACT

Aim of this study was to induce a single-sided deafness (SSD) in rats before hearing onset. Rats were operated at postnatal day 10 by approaching the tympanic cavity along a retroauricular path without manipulating ossicles or tympanic membrane. The ototoxic aminoglycoside neomycin was injected intracochlearly through the round window membrane on one side. When the animals have reached young adult stages, their hearing threshold was determined by their auditory brainstem response (ABR). Monaural deafening was considered successful when the hearing threshold was at least 95 dB above the threshold of the normal hearing ear. Growing up with one non-functional ear, rats developed a striking anatomical asymmetry of their cochlear nuclei (CN). The CN from age-matched normal hearing brains and from both sides of single-sided deaf brains were cut into series of frontal sections and their volumes calculated. No difference was detected between the volume of the normal hearing CN and the contralateral CN in SSD rats. By contrast, growth retardation was found for the ventral CN on the deaf side to result in a volume of only 57% compared to the normal hearing side. Marginal growth retardation was also observed for the dorsal CN on the deaf side. Thus, loss of sensory activation leads mainly, but not exclusively, to a reduction of tissue volume in the ventral CN of the deaf side, leaving the contralateral side apparently unaffected.


Subject(s)
Cochlear Nucleus/pathology , Hearing Loss, Unilateral/pathology , Acoustic Stimulation , Age Factors , Animals , Animals, Newborn , Auditory Threshold , Cochlear Nucleus/growth & development , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Female , Hearing , Hearing Loss, Unilateral/chemically induced , Hearing Loss, Unilateral/physiopathology , Hearing Loss, Unilateral/psychology , Male , Neomycin , Organ Size , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL