Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.822
Filter
1.
Protein Expr Purif ; 225: 106584, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39178976

ABSTRACT

Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.


Subject(s)
Cocos , Lipase , Lipase/isolation & purification , Lipase/chemistry , Lipase/biosynthesis , Lipase/metabolism , Cocos/chemistry , Plant Oils/chemistry , Fermentation , Fungal Proteins/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/biosynthesis , Fungal Proteins/genetics
2.
Environ Monit Assess ; 196(10): 962, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302482

ABSTRACT

This pioneering work explores the immense potential of young coconut waste, a continuously marginalized residue of the food and beverage industry, to serve as an indispensable feedstock in the production of biochar. Through an examination of the key carbonization factors that include time, temperature, and concentrations of the activating agent, KOH, the outcomes offer relevant insights that could be leveraged to maximize biochar production for tailored applications. This study stands out for its innovative use of Artificial Neural Network (ANN) approaches for predictive modeling. Fifty datasets, supplemented with secondary data obtained from the literature and experiments, were utilized for the purposes of training, testing, and validating the neural network model. Here, the datasets were processed utilizing the Deep Neural Network (DNN) framework, which was designed and implemented with the minimal loss function framework feasible. The architectural configuration comprises the following; an input layer, four hidden layers (128-neuron dense layer, batch normalization, and 64-neuron dense layer, batch normalization), a dropout layer, and an output layer. With an R2 of 0.8238 for biochar yield and 0.7324 for iodine number, the trained DNN model showed a relatively high degree of accuracy in making predictions.


Subject(s)
Charcoal , Cocos , Neural Networks, Computer , Charcoal/chemistry , Adsorption
3.
Sci Rep ; 14(1): 20702, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237662

ABSTRACT

The use of skin barrier-enhancing topical medication is a favorable approach for the treatment of occupational hand dermatitis (OHD). Cocos nucifera or coconut oil is one of the best sources of lipid enriched with laurate acid, and glycerin is a well-known humectant that improves skin hydration. This study is aimed is to evaluate the effectiveness of C. nucifera and glycerin for secondary prevention of OHD among batik (Indonesian traditional fabric) workers. In a randomized, double-blind, crossover trial, the effect of glycerine-C. nucifera cream versus glycerin-only was considered with multiple afterwork applications of moisturizer over a 2-week period on batik workers with OHD. Assessment of trans-epidermal water loss (TEWL), skin capacitance, and a clinical assessment using the Hand Eczema Severity Index (HECSI) were carried out at day 0 and 14. The results show thirty-two batik dyeing and/or rinsing workers were enrolled in the study with mild to moderate OHD. Clinical improvement was demonstrated by 20% decrease in HECSI and TEWL, and 20% increase in skin capacitance. Both moisturizers were equally effective for the secondary prevention of OHD. As a conclusion, glycerine-C. nucifera and glycerin-only cream are equally effective for secondary prevention for OHD among batik worker to reduce the prevalence of hand dermatitis.


Subject(s)
Cocos , Cross-Over Studies , Emollients , Glycerol , Humans , Adult , Male , Double-Blind Method , Female , Cocos/chemistry , Emollients/administration & dosage , Emollients/therapeutic use , Middle Aged , Dermatitis, Occupational/prevention & control , Dermatitis, Occupational/etiology , Hand Dermatoses/prevention & control , Hand Dermatoses/drug therapy , Skin Cream/administration & dosage , Skin Cream/therapeutic use , Secondary Prevention/methods
4.
J Hazard Mater ; 479: 135647, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217928

ABSTRACT

In French Polynesia, the pearl farming industry relies entirely on collecting natural spat using a shade-mesh collector, which is reported to contribute to both plastic pollution and the release of toxic chemicals. With the aim of identifying more environment-friendly collectors, this study investigates the chemical toxicity of shade-mesh (SM) and alternative materials, including reusable plates (P), a newly developed biomaterial (BioM) and Coconut coir geotextile (Coco), on the embryo-larval development of Pinctada margaritifera. Embryos were exposed during 48 h to four concentrations (0, 0.1, 10 and 100 g L-1) of leachates produced from materials. Chemical screening of raw materials and leachates was performed to assess potential relationships with the toxicity observed on D-larvae development. Compared to the other tested materials, results demonstrated lower levels of chemical pollutants in BioM and no toxic effects of its leachates at 10 g L-1. No toxicity was observed at the lowest tested concentration (0.1 g L-1). These findings offer valuable insights for promoting safer spat collector alternatives such as BioM and contribute to the sustainable development of pearl farming.


Subject(s)
Embryo, Nonmammalian , Larva , Pinctada , Water Pollutants, Chemical , Animals , Pinctada/drug effects , Pinctada/growth & development , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/growth & development , Cocos , Embryonic Development/drug effects
5.
Arch Microbiol ; 206(10): 417, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325189

ABSTRACT

The coconut rhinoceros beetle (Oryctes rhinoceros, CRB) is a serious pest of coconut and oil palms. It is native to South and Southeast Asia and was inadvertently introduced to Samoa in 1909. It has invaded many other Pacific countries throughout the last century. Oryctes rhinoceros nudivirus (OrNV), a natural pathogen of CRB in its native range, was successfully introduced as a classical biocontrol agent and has effectively suppressed invasive CRB populations for decades. However, resurgence of CRB has been recorded, with new invasions detected in several Pacific Island Countries and Territories. Additionally, new populations of CRB are emerging in some invaded areas that have a degree of resistance to the virus isolates commonly released for CRB biocontrol. Here, we designed a fast and reliable tool for distinguishing between different OrNV isolates that can help with the selection process to identify effective isolates for management of new CRB invasions. A comparison of 13 gene/gene region sequences within the OrNV genome of 16 OrNV isolates from native and invaded ranges allowed us to identify unique Single Nucleotide Polymorphisms (SNPs). With these SNPs, we developed an assay using multiplex PCR-amplicon-based nanopore sequencing to distinguish between OrNV isolates. We found that as few as four gene fragments were sufficient to identify 15 out of 20 OrNV isolates. This method can be used as a tool to monitor the establishment and distribution of OrNV isolates selected for release as biocontrol agents in CRB-infected areas.


Subject(s)
Cocos , Coleoptera , Genome, Viral , Nudiviridae , Animals , Coleoptera/virology , Cocos/virology , Nudiviridae/genetics , Nudiviridae/isolation & purification , Polymorphism, Single Nucleotide , Pest Control, Biological/methods , Biological Control Agents , Phylogeny
6.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337532

ABSTRACT

Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.


Subject(s)
Cocos , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Cocos/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Genome, Plant , Genome-Wide Association Study , Gene Expression Profiling , Salinity
7.
PeerJ ; 12: e18049, 2024.
Article in English | MEDLINE | ID: mdl-39346073

ABSTRACT

Lignans play a crucial role in maintaining plant growth, development, metabolism and stress resistance. Computed tomography (CT) imaging technology can be used to explore the internal structure and morphology of plants, and understanding the correlation between the two is highly significant. In this study, the content of lignan metabolites in coconut water was determined using liquid chromatography. The internal structure data of coconut fruit was obtained by CT scanning, and the relationship between lignan metabolites and CT image data at different developmental stages was evaluated using partial least square (PLS) regression. The results showed that the total lignan content in coconut water initially decreased, then increased, and gradually decreased after the maturity stage. The Wenye No. 5 variety exhibited higher levels of Epiturinol, Turbinol, Isobarinin-9'-o-glucoside, 5'-methoxy-rohanoside, Rohan rosin-4,4'-di-o-glucoside, turbinol-4-O-glucoside, cycloisoperinolin-4-O-glucoside compared to local coconuts. Coconut meat had the greatest effect on Rohan rosin-4,4'-di-o-glucoside, coconut water on Daphne, and coconut shell and coconut fiber on Larinin-4'-o-glucoside. The data from different parts of coconut fruit's images showed a significant correlation with the content of lignan metabolites. This study has preliminarily explored the correlation between non-destructive testing of coconut fruit and its development process of coconut fruit, providing a new approach and method for further research on non-destructive testing of coconut fruit development.


Subject(s)
Cocos , Fruit , Lignans , Tomography, X-Ray Computed , Lignans/metabolism , Lignans/analysis , Lignans/chemistry , Cocos/metabolism , Cocos/chemistry , Fruit/metabolism , Fruit/growth & development , Fruit/chemistry , Tomography, X-Ray Computed/methods
8.
Food Res Int ; 194: 114937, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232549

ABSTRACT

Coconut milk products are susceptible to bacterial damage, necessitating sterilization methods that often compromise nutrient and aroma integrity. This study investigates the effects of different thermal sterilisation methods on coconut milk aroma using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We assessed the impact of pasteurisation (PAS, 70 °C, 25 min), high-temperature sterilisation (HTS, 121.1 °C, 15 min), and ultra-high temperature sterilisation (UHT, 130 °C, 5 s) through clustered heat maps and correlation analyses. Significant differences were observed (p < 0.05), with 37 and 52 substances detected by HS-GC-IMS and HS-SPME-GC-MS, respectively, identifying 12 key aroma compounds. UHT treatment primarily reduced 8 acids, maintaining a compositional structure and sensory profile similar to raw coconut milk. PAS and HTS treatments decreased the sensory intensity of overall coconut milk aroma, creamy, and floral notes, correlating with the presence of 2-heptanol, nonanal, 4-methylvaleric acid, and 2-tridecanone. These methods increased cooked notes, associated with 5-methyl-3-heptanone, 3-butyn-1-ol, hydroxyacetone, and acetoin. Rancidity was linked to acids such as isobutyric acid, isovaleric acid, and heptanoic acid, with high temperatures effectively reducing these compounds. Prolonged temperature changes in PAS and HTS accelerated lipid oxidative degradation and the Maillard reaction, involving free fatty acids in the formation of alcohols, aldehydes, esters, and lactones. These findings provide a theoretical basis for studying coconut milk flavour deterioration.


Subject(s)
Cocos , Gas Chromatography-Mass Spectrometry , Hot Temperature , Odorants , Pasteurization , Solid Phase Microextraction , Volatile Organic Compounds , Cocos/chemistry , Odorants/analysis , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Humans , Food Handling/methods , Ion Mobility Spectrometry/methods , Taste
9.
J Pak Med Assoc ; 74(5 (Supple-5)): S51-S54, 2024 May.
Article in English | MEDLINE | ID: mdl-39221800

ABSTRACT

Objective: To determine the effect of young coconut water on reducing blood pressure in hypertensive patients. METHODS: The quasi-experimental study was conducted in the work area of the Perhentian Luas Public Health Centre, Kuantan Singingi district, Riau province, Indonesia, from June 12 to 26, 2022, and comprised people aged >35 years with stage I hypertension. They were divided into intervention group A and control group B. Group A received young coconut water 150ml for 1 week once a day in the morning. Data was collected using observation sheets and blood pressure monitoring. Data was analysed using SPSS 20. RESULTS: Of the 30 subjects, 15(50%) were each in each of the two groups. All the 15(100%) respondents in group A were females, while there were 10(66.7%) males and 5(33.3%) females in group B. In both the groups, there were 8(53.3%) subjects aged 26-45 years and 7(46.7%) aged >45 years. Systolic and diastolic blood pressure before and after the intervention showed significant difference in group A (p<0.05), while the difference in group B was not significant (p>0.05). Conclusion: Consuming young coconut water every day for 7 days reduced blood pressure in hypertensive patients.


Subject(s)
Blood Pressure , Cocos , Hypertension , Humans , Female , Male , Hypertension/physiopathology , Middle Aged , Adult , Blood Pressure/physiology , Indonesia , Water
10.
Chemosphere ; 364: 143127, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154767

ABSTRACT

Soil contamination with metals is a major threat for the environment and public health since most metals are toxic to humans and to non-human biota, even at low concentrations. Thus, new sustainable remediation approaches are currently needed to immobilize metals in soils to decrease their mobility and bioavailability. In this work, we explore the application of discarded substrates from hydroponic cultivation, namely coconut shell and a mixture of coconut shell and pine bark, for immobilization of metals (Cd, Cr, Ni, Cu, Pb, Hg, Sb and As) in a naturally contaminated soil from a mining region in Portugal. The immobilization capacity of substrates (added to the soil at 5% mass ratio) was assessed both individually and also combined with other traditional agriculture soil additives (limestone and gypsum, at 2% mass ratio) and nanoparticles of zero-valent iron (nZVI) at 1-3% mass ratio. The overall results obtained after a 30-d incubation showed that the discarded substrates are a viable, economic, and environmental-friendly solution for metal remediation in soils, with the capacity of immobilization ranging from 20 to 91% for the metals and metalloids studied. Furthermore, they showed the capacity to reduce the soil toxicity (EC50 ∼ 6000 mg/L) to non-toxic levels (EC50 > 10000 mg/L) to the bacteria Aliivrio fischeri.


Subject(s)
Environmental Restoration and Remediation , Hydroponics , Soil Pollutants , Soil , Soil Pollutants/metabolism , Soil/chemistry , Environmental Restoration and Remediation/methods , Metals/chemistry , Mining , Portugal , Aliivibrio fischeri/drug effects , Metals, Heavy , Agriculture/methods , Cocos/chemistry , Biodegradation, Environmental
11.
Pak J Biol Sci ; 27(7): 365-372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39206470

ABSTRACT

<b>Background and Objective:</b> Organic fertilizer is a source of nutrition for plants which is an alternative to inorganic fertilizer. Liquid organic fertilizer (LOF) which comes from coconut fiber and banana LOF which comes from banana stems from which the fruit has been removed, so that wasted plant residue can be used as fertilizer. The study aimed to obtain the best type of LOF and concentration in increasing the growth and yield of the Batang Piaman rice variety using the SRI method. <b>Materials and Methods:</b> The research was conducted from June to December, 2023 in Padang City, West Sumatra. The method used was an experiment with a Randomized Complete Block Design (RCBD) in nested with each treatment consisting of 3 groups. The treatment consisted of LOF types at two levels (banana stems and coconut fiber) and LOF concentrations at seven levels (0, 50, 100, 150, 200, 250 and 300 mL/L). Observational data were analysed by variance analysis with F test at 5% real level, but if there were differences, it was continued with DMRT further test at 5% real level by STAR IRRI Philippine software (Philippine). <b>Results:</b> The results obtained were that LOF coconut fiber provided better growth components, yield components and physiological components than banana stem LOF with the best concentration, on the provision of LOF coconut fiber 100 mL/L on the number of rice plant tillers and stomatal density and concentration of 200 mL/L on the number of productive tillers. <b>Conclusion:</b> The application of LOF coconut fiber is better for the growth and yield of rice plants of the Batang Piaman variety compared to the administration of LOF banana stems by applying coconut fiber liquid organic fertilizer with a concentration of 100 mL/L, it is recommended to add coconut fiber LOF to rice fields to increase growth and yield.


Subject(s)
Fertilizers , Musa , Oryza , Oryza/growth & development , Musa/growth & development , Cocos/growth & development , Agriculture/methods
12.
J Agric Food Chem ; 72(32): 18110-18120, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093148

ABSTRACT

Some consumers are replacing cow's milk with plant-based milk alternatives (PBMAs). The present study aimed to characterize the lipid profiles of cow's milk (n = 60) and PBMA types (soya, oat, rice, almond, coconut, and hazelnut; n = 10 per type). Significant differences were found in the fatty acid (FA) profiles of PBMAs and milk, particularly in FA diversity (15 FAs in PBMAs vs 54 FAs in milk) and the proportion of prime FA groups. The FA profile of coconut was dominated by saturated FAs (SFA), whereas monounsaturated FAs (MUFA) or polyunsaturated FAs (PUFA) were dominant in the remaining PBMA types. Cholesterol was not detected in any PBMA type. The FA profile of milk FAs was dominated by SFA; however, different individual SFA have varying health outcomes. Additionally, milk contains some FA groups with health-promoting properties, such as methyl-branched-chain FAs (BCFA) and conjugated linoleic acid (CLA), both of which are absent in PBMAs.


Subject(s)
Fatty Acids , Milk Substitutes , Milk , Animals , Milk/chemistry , Cattle , Fatty Acids/analysis , Fatty Acids/chemistry , Milk Substitutes/chemistry , Avena/chemistry , Corylus/chemistry , Lipids/analysis , Lipids/chemistry , Oryza/chemistry , Cocos/chemistry , Prunus dulcis/chemistry , Glycine max/chemistry , Female
13.
Bioresour Technol ; 412: 131397, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39216704

ABSTRACT

In the current study, a novel heterogeneous catalyst has been prepared from waste coconut trunk biomass using an ultrasound-assisted batch reactor. It is observed from the characterization studies that the raw coconut trunk biomass consists of the maximum amount of silicon dioxide (SiO2) present in it which is further converted to mullite (composition of 3Al2O3.2SiO2) with a composition of 94.18 % (analyzed through Energy Dispersive Spectroscopy (EDAX) studies) is formed through the reaction in an ultrasound reactor processed at a very mild reaction temperature and reaction time 80℃ and 90mins. Synthesis of catalyst at mild process conditions will help to enhance the formation of energy-intensive products at a low cost. It is also observed from the XRD studies of raw feedstock and synthesized catalyst a change in the crystalline structure from hexagonal silicon dioxide to orthorhombic mullite shape. In comparison with the surface area of the raw biomass and mullite, a large amount of surface area âˆ¼ 32 m2/g is observed which is due to the process of reaction in a highly intense ultrasound reactor. A change in the morphological structure of raw feedstock and synthesized catalyst is also observed through scanning electron microscope (SEM) analysis. The activity of the synthesized catalyst has been analyzed through its application in the production of biodiesel from waste cooking oil is also studied., and a yield of 75 % with a conversion of 74 % is observed at process conditions of 1:3 (oil: ethanol) (volumetric ratio), 3 (wt%) of catalyst concentration and 3hrs of reaction time. A prospective aspect of the implication of the entire work to analyze the life cycle analysis (LCA) is also reported in terms of environmental friendliness and sustainability.


Subject(s)
Biofuels , Biomass , Cocos , Cocos/chemistry , Catalysis , Silicon Dioxide/chemistry , X-Ray Diffraction , Waste Products
14.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126077

ABSTRACT

There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.


Subject(s)
Carbohydrate Metabolism , Cocos , Fatty Acids , Plant Proteins , Seeds , Fatty Acids/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Seeds/growth & development , Cocos/metabolism , Proteomics/methods , Proteome/metabolism , Lipid Metabolism , Gene Expression Regulation, Plant
15.
Luminescence ; 39(8): e4830, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129381

ABSTRACT

Fabricating metal oxide nanoparticles has garnered much attention lately because creating safe chemicals, sustainable materials, economic processes, and renewable resources is becoming increasingly important. This research shows how TiO2 nanoparticles (NPs) could be generated in an ecologically responsible way using waste coconut husk with the help of tender coconut. This extract functions as both a reducing agent and a sealing agent. The investigation of TiO2 NPs exploited ultraviolet (UV), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) methods. The germicidal properties of TiO2 NPs against food-borne pathogenic strains were studied using the agar well method. Employing Congo red pigment, the photodecomposition behavior was investigated. The TiO2 NPs produced had a crystallite size measuring 16.2 nm. The average grain size of the sample, as measured by FE-SEM inspection, falls within the range of 15 to 25 nm. Impressive anti-germ effects against food-borne germs like Gram-positive (Staphylococcus aureus and Listeria monocytogenes), Gram-negative (Salmonella typhimurium and Escherichia coli) bacteria, and fungi (Candida albicans and Aspergillus niger) have been proved by the sustainable fabrication of TiO2 NPs. The catalytic effectiveness of Congo red decreased by 88% after 90 min. The findings suggest that sustainable synthesis of TiO2 NPs is an effective tool for food-borne germicides and photodecomposition behaviors.


Subject(s)
Cocos , Titanium , Titanium/chemistry , Titanium/pharmacology , Cocos/chemistry , Waste Products/analysis , Metal Nanoparticles/chemistry , Luminescence , Food Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Photochemical Processes , Particle Size
16.
Water Environ Res ; 96(7): e11073, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978428

ABSTRACT

The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater sewer lines into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of three different granular activated carbon filter technologies, operating side by side, under similar operating conditions, each having an average 3.8-s contact time. The three activated carbon filters contained each 0.07 m3 of coconut, coal, and coconut mixed with permanganate media. The foul air entering the granular activated carbon filters contained 82% to 83% relative humidity. No moisture removal mechanism was used prior to treatment. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (hydrogen sulfide), rotten vegetables (methyl mercaptan), canned corn (dimethyl sulfide), rotten garlic (dimethyl disulfide), earthy/musty (2-methyl isoborneol and 2-isopropyl 3-methoxy pyrazine), and fecal (skatole and indole). This is the first time a study evaluates the removal of specific odors by simultaneously employing sensory analyses using the odor profile method, which defines the different odor characters and intensities, together with chemical analyses of the odorants causing these odors. The results show that the three granular activated carbon filters, before hydrogen sulfide breakthrough, provided significant improvement in odor intensity and odorant removal. Breakthrough was reached after 57 days for the coconut mixed with permanganate, 107 days for the coconut, and 129 days for the coal granular activated carbon filter. Breakthrough (the critical saturation point of the activated carbon media) was considered reached when the hydrogen sulfide percentage removal diminished to 90% and continued downward. The coconut mixed with permanganate granular activated carbon filter provided the best treatment among the media tested, achieving very good reduction of odorants, as measured by chemical analyses, and reasonable removal of odor intensities, as measured by the odor profile method. The coconut mixed with permanganate granular activated carbon is recommended for short-term odor control systems at sewer networks or emergency plant maintenance situations given its shorter time to breakthrough compared with the other granular activated carbons. The coal and coconut granular activated carbon filters are generally used as the last stage of an odor treatment system. Because of the observed poor to average performance in removing odorants other than hydrogen sulfide, the treatment stage(s) prior to the use of these granulated activated carbons should provide a good methyl mercaptan removal of at least 90% in order to avoid the formation of dimethyl disulfide, which, in the presence of moisture in the carbon filter, emit the characteristic rotten garlic odor. The differences observed between the performances based on odorant removal by chemical analysis compared with those based on sensorial analyses by the odor profile method indicate that both analyses are required to understand more fully the odor dynamics. PRACTITIONER POINTS: Three virgin granulated activated carbon media were evaluated in a field pilot unit using raw collections foul air. Coal, coconut, and coconut mixed with permanganate were tested until breakthrough. Samples were analyzed both chemically (odorants) and sensorially (odors). Coconut mixed with permanganate proved to be the media that better reduced odorants and odors.


Subject(s)
Charcoal , Filtration , Odorants , Charcoal/chemistry , Filtration/methods , Cocos/chemistry , Carbon/chemistry
17.
Methods Mol Biol ; 2827: 197-206, 2024.
Article in English | MEDLINE | ID: mdl-38985272

ABSTRACT

The coconut tree is a crop widely distributed in more than 90 countries worldwide. It has a high economic value derived from the large number of products obtained from the plant, with fast-growing global markets for some of them. Unfortunately, coconut production is decreasing mainly due to the old age of the plants and devastating pests and diseases, such as phytoplasma disease lethal yellowing (LY). Massive replanting is required with phytoplasma-resistant and high-yielding selected coconut plants to keep up with the market demand for fruit. For this purpose, an efficient micropropagation technology via somatic embryogenesis has been established at CICY, yielding fully developed vitro-plants grown within an in vitro environment. Hence, the last stage of the micropropagation process is the acclimatization of the vitro-plants, which are gradually adapted to live in external conditions outside the glass container and the growth room. A protocol has been developed at CICY to acclimate the coconut vitro-plants, and close to 80% survival can be obtained. This protocol is described here.


Subject(s)
Acclimatization , Cocos , Plant Somatic Embryogenesis Techniques/methods , Phytoplasma
18.
Methods Mol Biol ; 2827: 323-350, 2024.
Article in English | MEDLINE | ID: mdl-38985280

ABSTRACT

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.


Subject(s)
DNA Methylation , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic , Enzyme-Linked Immunosorbent Assay/methods , DNA, Plant/genetics , Cocos/genetics , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methods
19.
PeerJ ; 12: e17502, 2024.
Article in English | MEDLINE | ID: mdl-38952971

ABSTRACT

Background: Desserts with vegetable ingredients are a constantly expanding global market due to the search for alternatives to cow's milk. Fermentation of these matrices by lactic acid bacteria can add greater functionality to the product, improving its nutritional, sensory, and food safety characteristics, as well as creating bioactive components with beneficial effects on health. Concern for health and well-being has aroused interest in byproducts of the industry that have functional properties for the body, such as mature coconut water, a normally discarded residue that is rich in nutrients. This study aimed to develop a probiotic gelatin based on pulp and water from mature coconuts and evaluate the physicochemical characteristics, viability of the Lacticaseibacillus rhamnosus LR32 strain in the medium, as well as the texture properties of the product. Methods: After collection and cleaning, the physicochemical characterization, mineral analysis, analysis of the total phenolic content and antioxidant activity of mature coconut water were carried out, as well as the centesimal composition of its pulp. Afterwards, the gelling was developed with the addition of modified corn starch, gelatin, sucrose, and probiotic culture, being subjected to acidity analysis, texture profile and cell count, on the first day and every 7 days during 21 days of storage, under refrigeration at 5 °C. An analysis of the centesimal composition was also carried out. Results: The main minerals in coconut water were potassium (1,932.57 mg L-1), sodium (19.57 mg L-1), magnesium (85.13 mg L-1) calcium (279.93 mg L-1) and phosphorus (11.17 mg L- 1), while the pulp had potassium (35.96 g kg-1), sodium (0.97 g kg-1), magnesium (2.18 g kg-1), 37 calcium (1.64 g kg-1), and phosphorus (3.32 g kg-1). The phenolic content of the water and pulp was 5.72 and 9.77 mg gallic acid equivalent (GAE) 100 g-1, respectively, and the antioxidant capacity was 1.67 and 0.98 39 g of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) mg-1, respectively. The coconut pulp had 2.81 g 100 g-1of protein, 1.11 g 100 g-1 of 40 ash, 53% moisture, and 5.81 g 100 g-1 of carbohydrates. The gelatin produced during the storage period presented firmness parameters ranging from 145.82 to 206.81 grams-force (gf), adhesiveness from 692.85 to 1,028.63 gf sec, cohesiveness from 0.604 to 0.473, elasticity from 0.901 to 0.881, gumminess from 86.27 to 97.87 gf, and chewiness from 77.72 to 91.98 gf. Regarding the viability of the probiotic microorganism, the dessert had 7.49 log CFU g-1 that remained viable during the 21-day storage, reaching 8.51 CFU g-1. Acidity ranged from 0.15 to 0.64 g of lactic acid 100 g-1. The centesimal composition of the product showed 4.88 g 100 g-1 of protein, 0.54 g 100 g-1 of ash, 85.21% moisture, and 5.37g 100 g-1 of carbohydrates. The development of the gelatin made it possible to obtain a differentiated product, contributing to diversification in the food sector, providing a viable alternative for maintaining consumer health and reducing costs compared to desserts already available on the market.


Subject(s)
Cocos , Gelatin , Lacticaseibacillus rhamnosus , Probiotics , Cocos/chemistry , Cocos/microbiology , Gelatin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Fermentation
20.
A A Pract ; 18(7): e01815, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38975685

ABSTRACT

We report the case of a term neonate who was somnolent at birth with ventilatory distress and experienced 2 seizures shortly after delivery. Laboratory tests revealed the neonate had a serum sodium of 113 mmol/L. The seizures stopped after treatment with midazolam, and the sodium was corrected slowly with 3% hypertonic saline without further sequelae. The severe neonatal hyponatremia and seizures were attributed to maternal consumption of excessive amounts of coconut water during labor. This case demonstrates the importance of careful consideration of both fluid volume and fluid electrolyte composition during labor to prevent adverse maternal and neonatal outcomes.


Subject(s)
Cocos , Hyponatremia , Seizures , Humans , Infant, Newborn , Female , Seizures/etiology , Hyponatremia/etiology , Pregnancy , Adult , Labor, Obstetric
SELECTION OF CITATIONS
SEARCH DETAIL