Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.751
1.
BMJ Case Rep ; 17(6)2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871641

We present an infant referred to Developmental Paediatrics for delays, slow growth, hypotonia, esotropia and spasticity. Over the course of 2 months, the infant's exam progressed, demonstrating worsening spasticity and tonal changes in the setting of a normal brain MRI with acquired microcephaly. Genetic testing demonstrated a pathogenic CTNNB1 nonsense mutation. Following the discovery of the underlying cause for the child's clinical picture, the child was evaluated by therapeutic services and neurology, which was initially only available via asynchronous telehealth, due to a resource limited area. Cerebral palsy is a nonprogressive neurodevelopmental disorder and, when associated with developmental delay, qualifies for further genetic investigation into the underlying aetiology. Genetic testing recommendations exist for developmental delay, but there is no current algorithm regarding testing for cerebral palsy. Education and clear guidelines on genetic testing allow for better prognostication and potential treatment in cases of cerebral palsy, especially when associated with other disorders.


Cerebral Palsy , Developmental Disabilities , Muscle Spasticity , beta Catenin , Humans , Muscle Spasticity/genetics , Muscle Spasticity/diagnosis , Infant , Developmental Disabilities/genetics , Cerebral Palsy/genetics , beta Catenin/genetics , Male , Codon, Nonsense , Female , Magnetic Resonance Imaging , Genetic Testing
2.
Ups J Med Sci ; 1292024.
Article En | MEDLINE | ID: mdl-38863730

Mutations in the TP53 tumor suppressor gene occur with high prevalence in a wide range of human tumors. A significant fraction of these mutations (around 10%) are nonsense mutations, creating a premature termination codon (PTC) that leads to the expression of truncated inactive p53 protein. Induction of translational readthrough across a PTC in nonsense mutant TP53 allows the production of full-length protein and potentially restoration of normal p53 function. Aminoglycoside antibiotics and a number of novel compounds have been shown to induce full-length p53 in tumor cells carrying various TP53 nonsense mutations. Full-length p53 protein generated by translational readthrough retains the capacity to transactivate p53 target genes and trigger tumor cell death. These findings raise hopes for efficient therapy of TP53 nonsense mutant tumors in the future.


Codon, Nonsense , Neoplasms , Tumor Suppressor Protein p53 , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Aminoglycosides/therapeutic use , Aminoglycosides/pharmacology
3.
Ren Fail ; 46(2): 2362391, 2024 Dec.
Article En | MEDLINE | ID: mdl-38847497

Fabry disease, a lysosomal storage disease, is an uncommon X-linked recessive genetic disorder stemming from abnormalities in the alpha-galactosidase gene (GLA) that codes human alpha-Galactosidase A (α-Gal A). To date, over 800 GLA mutations have been found to cause Fabry disease (FD). Continued enhancement of the GLA mutation spectrum will contribute to a deeper recognition and underlying mechanisms of FD. In this study, a 27-year-old male proband exhibited a typical phenotype of Fabry disease. Subsequently, family screening for Fabry disease was conducted, and high-throughput sequencing was employed to identify the mutated gene. The three-level structure of the mutated protein was analyzed, and its subcellular localization and enzymatic activity were determined. Apoptosis was assessed in GLA mutant cell lines to confirm the functional effects. As a result, a new mutation, c.777_778del (p. Gly261Leufs*3), in the GLA gene was identified. The mutation caused a frameshift during translation and the premature appearance of a termination codon, which led to a partial deletion of the domain in C-terminal region and altered the protein's tertiary structure. In vitro experiments revealed a significant reduction of the enzymatic activity in mutant cells. The expression was noticeably decreased at the mRNA and protein levels in mutant cell lines. Additionally, the subcellular localization of α-Gal A changed from a homogeneous distribution to punctate aggregation in the cytoplasm. GLA mutant cells exhibited significantly higher levels of apoptosis compared to wild-type cells.


Codon, Nonsense , Fabry Disease , Pedigree , alpha-Galactosidase , Humans , Fabry Disease/genetics , Fabry Disease/diagnosis , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Male , Adult , China , Asian People/genetics , Apoptosis/genetics , East Asian People
4.
Nat Commun ; 15(1): 4446, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789441

Stop codon readthrough events give rise to longer proteins, which may alter the protein's function, thereby generating short-lasting phenotypic variability from a single gene. In order to systematically assess the frequency and origin of stop codon readthrough events, we designed a library of reporters. We introduced premature stop codons into mScarlet, which enabled high-throughput quantification of protein synthesis termination errors in E. coli using fluorescent microscopy. We found that under stress conditions, stop codon readthrough may occur at rates as high as 80%, depending on the nucleotide context, suggesting that evolution frequently samples stop codon readthrough events. The analysis of selected reporters by mass spectrometry and RNA-seq showed that not only translation but also transcription errors contribute to stop codon readthrough. The RNA polymerase was more likely to misincorporate a nucleotide at premature stop codons. Proteome-wide detection of stop codon readthrough by mass spectrometry revealed that temperature regulated the expression of cryptic sequences generated by stop codon readthrough in E. coli. Overall, our findings suggest that the environment affects the accuracy of protein production, which increases protein heterogeneity when the organisms need to adapt to new conditions.


Codon, Terminator , Escherichia coli Proteins , Escherichia coli , Protein Biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Codon, Terminator/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Transcription, Genetic , Codon, Nonsense/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial
5.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791543

Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the "lissencephaly (LIS) spectrum", which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother-daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic-phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases.


Classical Lissencephalies and Subcortical Band Heterotopias , Doublecortin Domain Proteins , Doublecortin Protein , Microtubule-Associated Proteins , Pedigree , Phenotype , Humans , Female , Microtubule-Associated Proteins/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/pathology , Neuropeptides/genetics , Codon, Nonsense/genetics , Adult , Mutation, Missense , Child , Magnetic Resonance Imaging , Child, Preschool , Adolescent
6.
BMJ Case Rep ; 17(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38697680

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance, most commonly known to affect the skin and eyes. Although lung involvement in the form of cysts and bullae occurs in up to 20% of adults, the seemingly intuitive association of NF1 and spontaneous pneumothorax is not widely recognised among clinicians. Here, we report the second case of recurring spontaneous pneumothorax in the context of NF1 with a confirmed molecular diagnosis. In both cases, the NF1 variants featured a premature stop codon in the C-terminal protein domain. Interestingly, our patient had mild skin symptoms, suggesting that spontaneous pneumothorax may not be correlated with cutaneous disease severity. More genotype-phenotype correlation studies are needed for NF1 in general and for its link to spontaneous pneumothorax in particular.


Neurofibromatosis 1 , Pneumothorax , Recurrence , Humans , Pneumothorax/genetics , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Male , Genetic Association Studies , Adult , Female , Neurofibromin 1/genetics , Codon, Nonsense
7.
Genes (Basel) ; 15(5)2024 04 23.
Article En | MEDLINE | ID: mdl-38790154

Infantile onset transient hypomyelination (IOTH) is a rare form of leukodystrophy that is associated with transient motor impairment and delayed central nervous system myelination. Here, we report a case of a new mutation in the transmembrane protein 63A (TMEM63A) gene identified using Whole-Exome Sequencing (WES) in an 8.5-year-old boy with clinical symptoms similar to IOTH. The patient exhibited a mild developmental delay, including hypotonia and delayed motor milestones, as well as some notable phenotypic characteristics, such as macrocephaly and macrosomia. Despite the absence of early neuroimaging, genetic testing revealed a paternally inherited variant in TMEM63A (NM_14698.3:c.220A>T;p:(Arg74*)), potentially linked to infantile transient hypomyelinating leukodystrophy type 19. Our findings in this study and the patient's favorable clinical course underscore the potential for successful myelination even with delayed initiation and may contribute to a better understanding of the genotype-phenotype correlation in IOTH, emphasizing the importance of genetic analysis in unresolved developmental delay cases and providing critical insights for accurate diagnosis, prognosis and potential therapeutic strategies in rare leukodystrophies.


Membrane Proteins , Humans , Male , Membrane Proteins/genetics , Child , Codon, Nonsense/genetics , Exome Sequencing , Heterozygote , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Genetic Association Studies
8.
Genes (Basel) ; 15(5)2024 05 06.
Article En | MEDLINE | ID: mdl-38790217

Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes.


Claudins , Connexin 26 , Deafness , Pedigree , Phenotype , Humans , Male , Female , Connexin 26/genetics , Syria , Deafness/genetics , Claudins/genetics , Mutation , Exome Sequencing , Adult , Codon, Nonsense/genetics , Connexins/genetics
9.
Genet Test Mol Biomarkers ; 28(6): 257-262, 2024 Jun.
Article En | MEDLINE | ID: mdl-38721948

Background: Wolfram syndrome (WFS) is an autosomal recessive disorder that often leads to diabetes, optic atrophy, and sensorineural hearing loss. The aim of this study was to determine the clinical characteristics and the genetic cause of the first two Moroccan families presenting with WFS. Methods: The clinical features of five members of two WFS families were evaluated. Whole-exome sequencing was conducted to explore the underlying genetic cause in the affected patients. Results: Two homozygous variants in the WFS1 gene were identified, each in one of the two families studied: a missense c.1329C>G variant (p.Ser443Arg) and a nonsense mutation c.1113G>A (p.Trp371Ter). These variants affected conserved amino acid residues, segregated well in the two families, and are absent from genetic databases and in controls of Moroccan origin. Bioinformatics analysis classified the two variants as pathogenic by in silico tools and molecular modeling. Conclusion: Our study identified for the first time two variants in Moroccan patients with WFS that extends the mutational spectrum associated with the disease.


Membrane Proteins , Mutation, Missense , Pedigree , Wolfram Syndrome , Adolescent , Adult , Child , Female , Humans , Male , Codon, Nonsense/genetics , Exome Sequencing/methods , Homozygote , Membrane Proteins/genetics , Morocco , Mutation , Mutation, Missense/genetics , Wolfram Syndrome/genetics , Young Adult
10.
Curr Genet ; 70(1): 5, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709348

The nonsense-mediated mRNA decay (NMD) pathway was initially identified as a surveillance pathway that degrades mRNAs containing premature termination codons (PTCs). NMD is now also recognized as a post-transcriptional regulatory pathway that regulates the expression of natural mRNAs. Earlier studies demonstrated that regulation of functionally related natural mRNAs by NMD can be differential and condition-specific in Saccharomyces cerevisiae. Here, we investigated the regulation of MAC1 mRNAs by NMD in response to copper as well as the role the MAC1 3'-UTR plays in this regulation. MAC1 is a copper-sensing transcription factor that regulates the high-affinity copper uptake system. MAC1 expression is activated upon copper deprivation. We found that MAC1 mRNAs are regulated by NMD under complete minimal (CM) but escaped NMD under low and high copper conditions. Mac1 protein regulated gene, CTR1 is not regulated by NMD in conditions where MAC1 mRNAs are NMD sensitive. We also found that the MAC1 3'-UTR is the NMD targeting feature on the mRNAs, and that MAC1 mRNAs lacking 3'-UTRs were stabilized during copper deprivation. Our results demonstrate a mechanism of regulation for a metal-sensing transcription factor, at both the post-transcriptional and post-translational levels, where MAC1 mRNA levels are regulated by NMD and copper, while the activity of Mac1p is controlled by copper levels.


3' Untranslated Regions , Copper Transporter 1 , Copper , Gene Expression Regulation, Fungal , Nonsense Mediated mRNA Decay , Nuclear Proteins , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Copper/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Nonsense/genetics
11.
PLoS Genet ; 20(5): e1011279, 2024 May.
Article En | MEDLINE | ID: mdl-38748723

The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.


Codon, Nonsense , Nonsense Mediated mRNA Decay , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Codon, Nonsense/genetics , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mutation , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
J Hand Surg Asian Pac Vol ; 29(3): 248-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38726487

Ectodermal dysplasia-syndactyly syndrome 1 (EDSS1) is an exceedingly rare condition associated with mutations in the PVL4 gene. It is characterised by sparse, brittle hair, eyebrows and eyelashes, abnormal dentition and nails, along with bilateral cutaneous syndactyly involving the fingers and toes. We report a 2-year-old girl who presented to us with bilateral complete simple syndactyly of the third and fourth web spaces of the hands, along with bilateral syndactyly of both feet involving the second to fourth toes. Upon examination, sparse hair and eyebrows, along with abnormal dentition, were noted. Thorough clinical examination and genetic analysis were conducted on the affected child and her father, who exhibited similar clinical features. Genetic analysis revealed a homozygous nonsense mutation in the PVL4 gene in both individuals. According to the literature, EDSS1 has been reported in only 10 families worldwide, and there are no reported cases from India. Level of Evidence: Level V (Therapeutic).


Ectodermal Dysplasia , Syndactyly , Humans , Female , Syndactyly/genetics , Syndactyly/diagnosis , Syndactyly/pathology , Child, Preschool , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/pathology , Codon, Nonsense , Male
13.
Mol Genet Genomics ; 299(1): 57, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787432

Hereditary spherocytosis (HS) is one of the most common causes of hereditary hemolytic anemia. The current diagnostic guidelines for HS are mainly based on a combination of physical examination and laboratory investigation. However, some patients present with complicated clinical manifestations that cannot be explained by routine diagnostic protocols. Here, we report a rare HS case of mild anemia with extremely high indirect bilirubin levels and high expression of fetal hemoglobin. Using whole exome sequencing analysis, this patient was identified as a heterozygous carrier of a de novo SPTB nonsense mutation (c.605G > A; p.W202*) and a compound heterozygous carrier of known UGT1A1 and KLF1 mutations. This genetic analysis based on the interpretation of the patient's genomic data not only achieved precise diagnosis by an excellent explanation of the complicated phenotype but also provided valuable suggestions for subsequent appropriate approaches for treatment, surveillance and prophylaxis.


Kruppel-Like Transcription Factors , Phenotype , Spherocytosis, Hereditary , Humans , Spherocytosis, Hereditary/genetics , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/blood , Spherocytosis, Hereditary/complications , Kruppel-Like Transcription Factors/genetics , Spectrin/genetics , Glucuronosyltransferase/genetics , Exome Sequencing , Codon, Nonsense/genetics , Male , Heterozygote , Female
14.
J Am Heart Assoc ; 13(9): e032872, 2024 May 07.
Article En | MEDLINE | ID: mdl-38639351

BACKGROUND: Peripheral pulmonary stenosis (PPS) is a condition characterized by the narrowing of the pulmonary arteries, which impairs blood flow to the lung. The mechanisms underlying PPS pathogenesis remain unclear. Thus, the aim of this study was to investigate the genetic background of patients with severe PPS to elucidate the pathogenesis of this condition. METHODS AND RESULTS: We performed genetic testing and functional analyses on a pediatric patient with PPS and Williams syndrome (WS), followed by genetic testing on 12 patients with WS and mild-to-severe PPS, 50 patients with WS but not PPS, and 21 patients with severe PPS but not WS. Whole-exome sequencing identified a rare PTGIS nonsense variant (p.E314X) in a patient with WS and severe PPS. Prostaglandin I2 synthase (PTGIS) expression was significantly downregulated and cell proliferation and migration rates were significantly increased in cells transfected with the PTGIS p.E314X variant-encoding construct when compared with that in cells transfected with the wild-type PTGIS-encoding construct. p.E314X reduced the tube formation ability in human pulmonary artery endothelial cells and caspase 3/7 activity in both human pulmonary artery endothelial cells and human pulmonary artery smooth muscle cells. Compared with healthy controls, patients with PPS exhibited downregulated pulmonary artery endothelial prostaglandin I2 synthase levels and urinary prostaglandin I metabolite levels. We identified another PTGIS rare splice-site variant (c.1358+2T>C) in another pediatric patient with WS and severe PPS. CONCLUSIONS: In total, 2 rare nonsense/splice-site PTGIS variants were identified in 2 pediatric patients with WS and severe PPS. PTGIS variants may be involved in PPS pathogenesis, and PTGIS represents an effective therapeutic target.


Cytochrome P-450 Enzyme System , Intramolecular Oxidoreductases , Pulmonary Valve Stenosis , Williams Syndrome , Adolescent , Child , Child, Preschool , Female , Humans , Male , Cell Movement , Cell Proliferation , Cells, Cultured , Codon, Nonsense , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Exome Sequencing , Genetic Predisposition to Disease , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Phenotype , Pulmonary Artery/physiopathology , Pulmonary Artery/enzymology , Pulmonary Valve Stenosis/genetics , Pulmonary Valve Stenosis/physiopathology , Severity of Illness Index , Williams Syndrome/genetics , Williams Syndrome/physiopathology , Williams Syndrome/enzymology
15.
Blood Cells Mol Dis ; 107: 102841, 2024 Jul.
Article En | MEDLINE | ID: mdl-38581917

Pyruvate kinase (PK) deficiency is a rare autosomal recessive disorder characterized by chronic hemolytic anemia of variable severity. Nine Polish patients with severe hemolytic anemia but normal PK activity were found to carry mutations in the PKLR gene encoding PK, five already known ones and one novel (c.178C > T). We characterized two of the known variants by molecular modeling (c.1058delAAG) and minigene splicing analysis (c.101-1G > A). The former gives a partially destabilized PK tetramer, likely of suboptimal activity, and the c.101-1G > A variant gives alternatively spliced mRNA carrying a premature stop codon, encoding a severely truncated PK and likely undergoing nonsense-mediated decay.


Anemia, Hemolytic, Congenital Nonspherocytic , Mutation , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/deficiency , Poland , Pyruvate Metabolism, Inborn Errors/genetics , Male , Female , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Child , Child, Preschool , Models, Molecular , Infant , Adolescent , Codon, Nonsense , Alternative Splicing
16.
BMC Ophthalmol ; 24(1): 167, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622537

PURPOSE: The goal of the study was to search for novel bi-allelic CRB1 mutations, and then to analyze the CRB1 literature at the genotypic and phenotypic levels. APPROACH: We screened various variables such as the CRB1 mutation types, domains, exons, and genotypes and their relation with specific ocular phenotypes. An emphasis was given to the bi-allelic missense and nonsense mutations because of their high prevalence compared to other mutation types. Finally, we quantified the effect of various non-modifiable factors over the best-corrected visual acuity oculus uterque (BCVA OU) using multivariate linear regression models and identified genetic interactions. RESULTS: A novel bi-allelic missense in the exon 9 of CRB1; c.2936G > A; p.(Gly979Asp) was found to be associated with rod-cone dystrophy (RCD). CRB1 mutation type, exons, domains, and genotype distribution varied significantly according to fundus characteristics, such as peripheral pigmentation and condition, optic disc, vessels, macular condition, and pigmentation (P < 0.05). Of the 154 articles retrieved from PubMed, 96 studies with 439 bi-allelic CRB1 patients were included. Missense mutations were significantly associated with an absence of macular pigments, pale optic disc, and periphery pigmentation, resulting in a higher risk of RCD (P < 0.05). In contrast, homozygous nonsense mutations were associated with macular pigments, periphery pigments, and a high risk of LCA (P < 0.05) and increased BCVA OU levels. We found that age, mutation types, and inherited retinal diseases were critical determinants of BCVA OU as they significantly increased it by 33% 26%, and 38%, respectively (P < 0.05). Loss of function alleles additively increased the risk of LCA, with nonsense having a more profound effect than indels. Finally, our analysis showed that p.(Cys948Tyr) and p.(Lys801Ter) and p.(Lys801Ter); p.(Cys896Ter) might interact to modify BCVA OU levels. CONCLUSION: This meta-analysis updated the literature and identified genotype-phenotype associations in bi-allelic CRB1 patients.


Codon, Nonsense , Nerve Tissue Proteins , Humans , Alleles , Nerve Tissue Proteins/genetics , Genetic Association Studies , Retina , Phenotype , Mutation , Eye Proteins/genetics , Pedigree , DNA Mutational Analysis , Membrane Proteins/genetics
17.
Acta Myol ; 43(1): 8-15, 2024.
Article En | MEDLINE | ID: mdl-38586166

Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by dystrophin gene deletions (75%), duplications (15-20%) and point mutations (5-10%), a small portion of which are nonsense mutations. Women carrying dystrophin gene mutations are commonly unaffected because the wild X allele may produce a sufficient amount of the dystrophin protein. However, approximately 8-10% of them may experience muscle symptoms and 50% of those over 40 years develop cardiomyopathy. The presence of symptoms defines the individual as an affected "symptomatic or manifesting carrier". Though there is no effective cure for DMD, therapies are available to slow the decline of muscle strength and delay the onset and progression of cardiac and respiratory impairment. These include ataluren for patients with nonsense mutations, and antisense oligonucleotides therapies, for patients with specific deletions. Symptomatic DMD female carriers are not included in these indications and little data documenting their management, often entrusted to the discretion of individual doctors, is present in the literature. In this article, we report the clinical and instrumental outcomes of four symptomatic DMD carriers, aged between 26 and 45 years, who were treated with ataluren for 21 to 73 months (average 47.3), and annually evaluated for muscle strength, respiratory and cardiological function. Two patients retain independent ambulation at ages 33 and 45, respectively. None of them developed respiratory involvement or cardiomyopathy. No clinical adverse effects or relevant abnormalities in routine laboratory values, were observed.


Cardiomyopathies , Muscular Dystrophy, Duchenne , Oxadiazoles , Humans , Female , Child, Preschool , Dystrophin/genetics , Pilot Projects , Codon, Nonsense , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy
18.
Cell Stem Cell ; 31(4): 537-553.e5, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579684

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.


Cysts , Polycystic Kidney Diseases , Humans , Mice , Animals , Codon, Nonsense/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/therapy , Polycystic Kidney Diseases/metabolism , Kidney/metabolism , Organoids/metabolism , Cysts/genetics , Cysts/metabolism , Glycosides/metabolism
19.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580646

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Codon, Nonsense , RNA, Transfer , Codon, Nonsense/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Codon/genetics , Ribosomes/metabolism , Genetic Therapy , Protein Biosynthesis/genetics , Codon, Terminator
20.
Genet Test Mol Biomarkers ; 28(5): 213-217, 2024 May.
Article En | MEDLINE | ID: mdl-38613467

DeSanto-Shinawi syndrome (DESSH, OMIM #616708) is a rare genetic disorder caused by pathogenic variants in the WAC gene. This syndrome is characterized by a wide range of physical and neurological symptoms including dysmorphic features, developmental delay, intellectual disability, and behavioral abnormalities. DESSH was described by DeSanto in 2015, and since then, only a few dozen cases have been reported worldwide. Recent research has focused on identifying the underlying genetic cause of the syndrome as well as exploring potential treatments. In this report, we describe a female case who had dysmorphic features including long palpebral fissures, depressed nasal root, mild bulbous nasal tip, thin upper lip, hypertrichosis, short fingers, and intellectual disability, speech delay, and motor retardation. In addition, she had behavioral abnormalities such as agitation, anxiety, and attention deficit hyperactivity disorder (ADHD). Clinical exome sequencing showed a pathogenic heterozygous nonsense variant in exon 13 of the WAC gene c.1837C>T, p.(Arg613Ter) with de novo inheritance. To the best of our knowledge, this is the first case of DESSH reported from Turkey. We aimed to report this rare syndrome and compare the clinical findings of our case with previously reported cases in the literature.


Intellectual Disability , Phenotype , Humans , Female , Turkey , Intellectual Disability/genetics , Developmental Disabilities/genetics , Exome Sequencing/methods , Codon, Nonsense , Attention Deficit Disorder with Hyperactivity/genetics , Child , Abnormalities, Multiple/genetics
...