Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.174
1.
PLoS One ; 19(5): e0303238, 2024.
Article En | MEDLINE | ID: mdl-38709762

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
2.
PLoS One ; 19(5): e0302941, 2024.
Article En | MEDLINE | ID: mdl-38709777

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.S.). However, bollworm larvae that survive after consuming Bt toxins may experience sublethal effects, which could alter interactions with other organisms, such as natural enemies. Experiments were conducted to evaluate how sublethal effects of a commercial Bt product (Dipel) incorporated into artificial diet and from Bt cotton flowers impact predation from the convergent lady beetle (Hippodamia convergens Guérin-Méneville) (Coleoptera: Coccinellidae), common in cotton fields of the mid-southern U.S. Sublethal effects were detected through reduced weight and slower development in bollworm larvae which fed on Dipel incorporated into artificial diet, Bollgard II, and Bollgard 3 cotton flowers. Sublethal effects from proteins incorporated into artificial diet were found to significantly alter predation from third instar lady beetle larvae. Predation of bollworm larvae also increased significantly after feeding for three days on a diet incorporated with Bt proteins. These results suggest that the changes in larval weight and development induced by Bt can be used to help predict consumption of bollworm larvae by the convergent lady beetle. These findings are essential to understanding the potential level of biological control in Bt cotton where lepidopteran larvae experience sublethal effects.


Bacillus thuringiensis , Coleoptera , Flowers , Gossypium , Larva , Plants, Genetically Modified , Predatory Behavior , Animals , Coleoptera/drug effects , Coleoptera/physiology , Gossypium/parasitology , Gossypium/genetics , Predatory Behavior/drug effects , Larva/drug effects , Pest Control, Biological , Moths/drug effects , Moths/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis Toxins
3.
PLoS One ; 19(5): e0304037, 2024.
Article En | MEDLINE | ID: mdl-38787856

Spinosads are insecticides used to control insect pests, especially in organic farming where limited tools for pest management exist. However, resistance has developed to spinosads in economically important pests, including Colorado potato beetle (CPB), Leptinotarsa decemlineata. In this study, we used bioassays to determine spinosad sensitivity of two field populations of CPB, one from an organic farm exposed exclusively to spinosad and one from a conventional farm exposed to a variety of insecticides, and a reference insecticide naïve population. We found the field populations exhibited significant levels of resistance compared with the sensitive population. Then, we compared transcriptome profiles between the two field populations to identify genes associated primarily with spinosad resistance and found a cytochrome P450, CYP9E2, and a long non-coding RNA gene, lncRNA-2, were upregulated in the exclusively spinosad-exposed population. Knock-down of these two genes simultaneously in beetles of the spinosad-exposed population using RNA interference (RNAi) resulted in a significant increase in mortality when gene knock-down was followed by spinosad exposure, whereas single knock-downs of each gene produced smaller effects. In addition, knock-down of the lncRNA-2 gene individually resulted in significant reduction in CYP9E2 transcripts. Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 transcript. Our results imply that CYP9E2 and lncRNA-2 jointly contribute to spinosad resistance in CPB, and lncRNA-2 is involved in regulation of CYP9E2 expression. These results provide evidence that metabolic resistance, driven by overexpression of CYP and lncRNA genes, contributes to spinosad resistance in CPB.


Coleoptera , Drug Combinations , Insect Proteins , Insecticide Resistance , Insecticides , Macrolides , RNA, Long Noncoding , Animals , Coleoptera/genetics , Coleoptera/drug effects , Macrolides/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , RNA, Long Noncoding/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA Interference
4.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791374

Cryptococcus neoformans (C. neoformans) is a pathogenic fungus that can cause life-threatening meningitis, particularly in individuals with compromised immune systems. The current standard treatment involves the combination of amphotericin B and azole drugs, but this regimen often leads to inevitable toxicity in patients. Therefore, there is an urgent need to develop new antifungal drugs with improved safety profiles. We screened antimicrobial peptides from the hemolymph transcriptome of Blaps rhynchopetera (B. rhynchopetera), a folk Chinese medicine. We found an antimicrobial peptide named blap-6 that exhibited potent activity against bacteria and fungi. Blap-6 is composed of 17 amino acids (KRCRFRIYRWGFPRRRF), and it has excellent antifungal activity against C. neoformans, with a minimum inhibitory concentration (MIC) of 0.81 µM. Blap-6 exhibits strong antifungal kinetic characteristics. Mechanistic studies revealed that blap-6 exerts its antifungal activity by penetrating and disrupting the integrity of the fungal cell membrane. In addition to its direct antifungal effect, blap-6 showed strong biofilm inhibition and scavenging activity. Notably, the peptide exhibited low hemolytic and cytotoxicity to human cells and may be a potential candidate antimicrobial drug for fungal infection caused by C. neoformans.


Antifungal Agents , Antimicrobial Peptides , Coleoptera , Cryptococcus neoformans , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Coleoptera/microbiology , Coleoptera/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Biofilms/drug effects , Amino Acid Sequence
5.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Article En | MEDLINE | ID: mdl-38730215

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Coleoptera , Fumigation , Oils, Volatile , Animals , Coleoptera/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Quantitative Structure-Activity Relationship , Insecticides/chemistry , Insecticides/pharmacology , Tribolium/drug effects
6.
Pestic Biochem Physiol ; 201: 105907, 2024 May.
Article En | MEDLINE | ID: mdl-38685228

The use of essential oils (EOs) in the development of alternative management methods for bruchid control under storage conditions aroused great interest because they have proven to be effective, less toxic, and less persistent in the ecosystem than synthetic pesticides. In this sense, leaves of Lippia turbinata (Griseb.) Moldenke EO were studied in the present work. The monoterpene limonene and the monoterpenoid eucalyptol were its main constituents. EO showed a potent insecticidal activity, both in contact and fumigant conditions, against Rhipibruchus picturatus (F.) which is one of the main pests of Prosopis alba pods in stored conditions. Moreover, the EO produces repellency in these insects. Additionally, the toxicity mechanism of action was studied. In this regard, the EO inhibits the acetylcholinesterase enzyme in in vitro assays, alters the activity of the antioxidant enzymes superoxide dismutase and catalase, and produces an increase in the lipid peroxidation reactions. This is the first report of the use of the L. turbinata EO against R. picturatus insect pest. The data obtained demonstrate its potential for developing more efficient and natural storage pest control strategies.


Insect Repellents , Insecticides , Lippia , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lippia/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/toxicity , Insect Repellents/pharmacology , Insect Repellents/chemistry , Coleoptera/drug effects , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism , Acetylcholinesterase/metabolism , Catalase/metabolism , Plant Leaves/chemistry
7.
Sci Total Environ ; 930: 172521, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38641095

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.


Agriculture , Pesticides , Animals , Pesticides/toxicity , Agriculture/methods , Mites/drug effects , Toxicity Tests, Acute , Wasps/drug effects , Pest Control/methods , Coleoptera/drug effects , Pest Control, Biological
8.
Sci Total Environ ; 931: 172617, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38653409

Lady beetles play a crucial role in natural ecosystems and agricultural settings. Unfortunately, these insects and more specifically the two-spotted lady beetle (Adalia bipunctata) are currently facing a severe decline in populations due to various stressors, with pesticide exposure being a significant threat. Flupyradifurone is a relatively newly introduced insecticide and as existing research is mainly elucidating its effects on bees there remains a limited understanding of its effects on non-hymenopteran insects, including lady beetles. In this study we investigated the impact of acute orally applied flupyradifurone doses on survival and sublethal parameters such as physical condition and mobility on A. bipunctata. Our findings revealed a significant increase in mortality among individuals subjected to flupyradifurone doses of 19 ng/individual (corresponding to >1.5-2.0 ng active substance (a.s.)/mg body weight (bw). The calculated LD50 of flupyradifurone at 48 h was 2.11 ng a.s./mg bw corresponding to an amount of 26.38 ng/individual. Sublethal consequences were observable immediately after pesticide application. Even at doses as low as 2 ng/individual (corresponding to >0.0-0.5 ng a.s./mg bw), flupyradifurone induced trembling and temporary immobility in treated animals. Furthermore, pesticide intoxication led to hypoactivity, with less distance covered and a decline in straightness of locomotion. In conclusion, our study underscores the harmful effects of flupyradifurone on the two-spotted lady beetle at doses notably lower than those affecting bees. These findings stress the importance of additional research to attain a more holistic understanding of pesticide impacts not only on a broader range of non-target arthropods species, but also on various exposure routes as well as lethal and sublethal effects.


Coleoptera , Insecticides , Animals , Coleoptera/drug effects , Coleoptera/physiology , Insecticides/toxicity , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/toxicity , Pyridines/toxicity
9.
Neotrop Entomol ; 53(3): 682-693, 2024 Jun.
Article En | MEDLINE | ID: mdl-38656592

Insecticides efficient against the target species while conserving natural enemies in the agroecosystem are required for IPM. With the imminent discontinuation of fipronil, a broad-spectrum insecticide, ethiprole, which belongs to the same group as phenylpyrazole (2B), and isocycloseram, a novel isoxazoline insecticide with distinct mode of action (30), provide options for controlling boll weevil. The susceptibility of the boll weevil, Anthonomus grandis grandis (Boh.), and two natural enemies [Eriopis connexa (Germar) and Bracon vulgaris Ashmead] to these insecticides were studied. Furthermore, the survival and biological traits of the lady beetle, E. connexa, exposed to fipronil, isocycloseram, and ethiprole were assessed. The LC50s values for fipronil, ethiprole, and isocycloseram for A. grandis grandis were 2.71, 0.32, and 0.025 mg a.i./L, respectively; 0.86, > 200, and 3.21 mg a.i./L for E. connexa; and 2.31, 592.94, and 0.18 mg a.i./L for B. vulgaris, respectively. The recommended rates of ethiprole did not cause mortality in adult lady beetles, although fipronil and isocycloseram were highly toxic. Lady beetle larvae and adults survived more than 80% when exposed to dried residues of ethiprole, but less than 10% when exposed to fipronil and isocycloseram. Lady beetle larvae development, reproduction, and predation rates of adults were similar between ethiprole and the control group. Although fipronil and ethiprole belong to the same insecticide group, the difference in toxicity to boll weevils and natural enemies is presented and discussed. Ethiprole was more toxic to boll weevils than to its parasitoid and lady beetle, and isocycloseram was highly toxic to all three species.


Insecticides , Weevils , Animals , Weevils/drug effects , Isoxazoles/toxicity , Pyrazoles/toxicity , Coleoptera/drug effects
10.
Chemosphere ; 356: 141926, 2024 May.
Article En | MEDLINE | ID: mdl-38588895

Insecticides, including the widely used neonicotinoids, can affect both pest and non-target species. In addition to lethal effects, these insecticides at sub-lethal levels may cause disruption to sensory perception and processing leading to behavioural impairments. In this laboratory experiment, we investigated the effects of a 10-day exposure to the neonicotinoid insecticide, imidacloprid, on the behaviour of larvae of the damselfly, Lestes congener. In tests of baseline activity, imidacloprid concentrations of 1.0 and 10.0 µg/L caused significant reductions in foraging behaviour. Moreover, in response to chemical cues that indicate a potential risk to the larvae, imidacloprid caused the loss of an appropriate antipredator response (reduced foraging) depending on the concentration and duration of exposure. Imidacloprid at 0.1 µg/L caused the loss of responses toward the odour of a beetle (Dytiscus spp.) predator after 10 days of exposure, whereas 1.0 µg/L caused lost responses toward both the predator odour and injured conspecific cues (i.e., alarm cues) and after only 2 days of exposure. However, at 10.0 µg/L, larvae responded appropriately to both cues throughout the duration of the study, suggesting compensatory responses to imidacloprid at higher concentrations. Hence, the lack of appropriate responses at 1.0 µg/L likely resulted from a cognitive impairment rather than chemical alteration of these important chemosensory cues. In the natural environment, such effects will likely cause decreased survivorship in predator encounters. Hence, imidacloprid exposure, even at low concentrations, could have adverse consequences for chemosensory ecology of this damselfly species.


Cues , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Odonata , Predatory Behavior , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecticides/toxicity , Larva/drug effects , Larva/physiology , Predatory Behavior/drug effects , Odonata/physiology , Odonata/drug effects , Coleoptera/drug effects , Coleoptera/physiology , Odorants , Imidazoles/toxicity , Behavior, Animal/drug effects
11.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673947

Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.


Bicyclic Monoterpenes , Coleoptera , Receptors, Odorant , Animals , Arthropod Antennae/drug effects , Arthropod Antennae/metabolism , Bicyclic Monoterpenes/pharmacology , Coleoptera/drug effects , Coleoptera/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Molecular Docking Simulation , Monoterpenes/chemistry , Monoterpenes/pharmacology , Odorants , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
12.
Environ Microbiol Rep ; 16(2): e13247, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644048

The cereal leaf beetle (CLB, Oulema melanopus) is one of the major cereal pests. The effect of insecticides belonging to different chemical classes, with different mechanisms of action and the active substances' concentrations on the CLB bacterial microbiome, was investigated. Targeted metagenomic analysis of the V3-V4 regions of the 16S ribosomal gene was used to determine the composition of the CLB bacterial microbiome. Each of the insecticides caused a decrease in the abundance of bacteria of the genus Pantoea, and an increase in the abundance of bacteria of the genus Stenotrophomonas, Acinetobacter, compared to untreated insects. After cypermethrin application, a decrease in the relative abundance of bacteria of the genus Pseudomonas was noted. The dominant bacterial genera in cypermethrin-treated larvae were Lactococcus, Pantoea, while in insects exposed to chlorpyrifos or flonicamid it was Pseudomonas. Insecticide-treated larvae were characterized, on average, by higher biodiversity and richness of bacterial genera, compared to untreated insects. The depletion of CLB-associated bacteria resulted in a decrease in larval survival, especially after cypermethrin and chlorpyrifos treatments. The use of a metagenome-based functional prediction approach revealed a higher predicted function of bacterial acetyl-CoA C-acetyltransferase in flonicamid and chlorpyrifos-treated larvae and tRNA dimethyltransferase in cypermethrin-treated insects than in untreated insects.


Bacteria , Coleoptera , Insecticides , Larva , Animals , Insecticides/pharmacology , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Larva/microbiology , Larva/drug effects , Coleoptera/microbiology , Coleoptera/drug effects , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects , Metagenomics , Pyrethrins/pharmacology , Chlorpyrifos , Pantoea/genetics , Pantoea/drug effects
13.
J Insect Sci ; 23(6)2023 Nov 01.
Article En | MEDLINE | ID: mdl-38055941

The nest-scavenging beetle Aethina tumida remains a persistent problem for beekeepers in parts of the Southeast United States, where warm wet soils allow beetle populations to grow rapidly and overwhelm colonies, especially during the summer dearth. Furthermore, small hive beetle infestation prevents beekeepers from easily provisioning colonies with additional pollen or protein feed (patties), preventing holistic management of honey bee health via improved nutrition, and reducing the economic potential of package and nucleus colony rearing in the Southeast. Here, we demonstrate using both in vitro laboratory trials and a small in vivo field trial that the differential specificity of anthranilic diamide insecticides (specifically, chlorantraniliprole) between bees and beetles allows for the control and prevention of small hive beetle infestation in honey bee colonies even when feeding with large patties. Honey bees show orders of magnitude higher tolerance to chlorantraniliprole compared to small hive beetles, opening new avenues for improving bee health including during spring splits and throughout the summer.


Bees , Coleoptera , Insecticides , ortho-Aminobenzoates , Animals , Bees/drug effects , Behavior, Animal/drug effects , Coleoptera/drug effects , Diamide , Hymenoptera/drug effects , Insecticides/pharmacology , ortho-Aminobenzoates/pharmacology
14.
PLoS One ; 18(12): e0295753, 2023.
Article En | MEDLINE | ID: mdl-38117762

The sustainability of the traditional extensive livestock sector will only be possible if healthy dung-decomposing insect communities are preserved. However, many current pharmaceutical anthelmintics are harmful to dung beetles, their presence can have a negative impact on biological systems. Phytochemical anthelmintics are an alternative to ecotoxic synthetic pharmaceutical anthelmintics, although ecotoxicological tests of their possible indirect effects on dung beetles are required to demonstrate their viability. In this study, the potential ecotoxicity of thymol, carvacrol, cinnamaldehyde and garlic oil (diallyl disulfide and diallyl trisulfide) were tested for the first time. Inhibition of antennal response was measured as a relevant parameter by obtaining relevant toxicity thresholds derived from concentration‒response curves, such as the IC50. All phytochemical compounds tested were demonstrated to be suitable alternative candidates to the highly ecotoxic compound ivermectin, considering their non-toxicity to nontarget organisms. Residues of the phytochemical antiparasitics found in cattle droppings were extremely low, even undetectable in the case of diallyl disulfide and diallyl trisulfide. Furthermore, our results showed that none of the phytochemical compounds have ecotoxic effects, even at extremely high concentrations, including those almost 1000 times higher than what is most likely to be found in dung susceptible to ingestion by dung beetles in the field. We can conclude that the four selected phytochemical compounds meet the requirements to be considered reliable alternatives to ecotoxic veterinary medicinal products, such as ivermectin.


Anthelmintics , Coleoptera , Animals , Cattle , Anthelmintics/toxicity , Coleoptera/drug effects , Ivermectin/toxicity , Phytochemicals/toxicity , Thymol/toxicity
15.
Molecules ; 27(3)2022 Jan 18.
Article En | MEDLINE | ID: mdl-35163853

The problems of the environment and human health related to the use of synthetic and broad-spectrum insecticides have increasingly motivated scientific research on different alternatives and among these, the use of green systems, such as essential oils, have been explored. Several species of the Apiaceae and Asteraceae families, aromatic herbs rich in secondary bioactive metabolites, are used in the industrial field for pharmaceutical, cosmetic, and food purposes. Different essential oils extracted from some species of these families have shown acute toxicity and attractive and/or repellent effects towards different insects. In our work, we investigated the toxic potential of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against four insect species, Sitophilus oryzae, Lasioderma serricorne, Necrobia rufipes, and Rhyzoperta dominica, which are common pests of stored products. The composition of both oils, extracted by hydrodistillation from the aerial parts of the two plants, was evaluated by GC×GC-MS. Calendula incana subsp. maritima essential oil was rich in oxygenated sesquiterpenoids, such as cubebol (35.39%), 4-epi-cubebol (22.99%), and cubenol (12.77%), while the Laserpitium siler subsp. siculum essential oil was composed mainly of monoterpene hydrocarbons, such as ß-phellandrene (42.16%), limonene (23.87%), and ß-terpinene (11.80%). The toxicity Petri dish bioassays indicated that C. maritima oil killed a mean of 65.50% of S. oryzae and 44.00% of R. dominica adults, indicating a higher biocidal activity in comparison with L. siculum oil, while toward the other species, no significant differences in mortality were recorded. Calendula maritima oil could be, then, considered a promising candidate for further tests as an alternative biocide toward S. oryzae and R. dominica. The possibility that the relatively high content of oxygenated sesquiterpenoids in C. maritima essential oil determines its higher biocidal activity is discussed.


Apiaceae/chemistry , Asteraceae/chemistry , Coleoptera/drug effects , Insecticides/pharmacology , Oils, Volatile/analysis , Oils, Volatile/pharmacology , Weevils/drug effects , Animals , Insecticides/analysis , Plant Oils/analysis , Plant Oils/pharmacology
16.
ACS Appl Mater Interfaces ; 14(4): 6083-6092, 2022 Feb 02.
Article En | MEDLINE | ID: mdl-35072467

Although employing nanocarriers for gene/drug delivery shows great potential in agricultural fields, the biotoxicity of nanocarriers is a major concern for large-scale applications. Herein, we synthesized a cationic star polymer (SPc) as a pesticide nanocarrier/adjuvant to evaluate its safety against a widely used predatory ladybird (Harmonia axyridis). The application of SPc at extremely high concentrations nearly did not influence the hatching of ladybird eggs but it led to the death of ladybird larvae at lethal concentration 50 (LC50) values of 43.96 and 19.85 mg/mL through the soaking and feeding methods, respectively. The oral feeding of SPc downregulated many membrane protein genes and lysosome genes significantly, and the cell membrane and nucleus in gut tissues were remarkably damaged by SPc application, revealing that the lethal mechanism might be SPc-mediated membrane damage. Furthermore, the oral feeding of SPc increased the relative abundance of Serratia bacteria in ladybird guts to result in bacterial infection. Coapplication of ladybird and SPc-loaded thiamethoxam/matrine achieved desired control efficacies of more than 80% against green peach aphids, revealing that the coapplication could overcome the slow-acting property of ladybirds. To our knowledge, this is the first attempt to investigate the polymer-mediated lethal mechanism toward natural enemies and explore the possibility of coapplying SPc-loaded pesticides and natural enemies for pest management.


Coleoptera/drug effects , Drug Carriers/chemistry , Insecticides/toxicity , Polymethacrylic Acids/chemistry , Alkaloids/toxicity , Animals , Bacterial Infections/etiology , Coleoptera/microbiology , Drug Carriers/toxicity , Gastrointestinal Microbiome/drug effects , Larva/drug effects , Ovum/drug effects , Polymethacrylic Acids/toxicity , Quinolizines/toxicity , Thiamethoxam/toxicity , Matrines
17.
J Med Chem ; 65(3): 2297-2312, 2022 02 10.
Article En | MEDLINE | ID: mdl-34986308

The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.


Drug Design , Insect Proteins/metabolism , Insecticides/chemical synthesis , Receptors, Nicotinic/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Animals , Binding Sites , Coleoptera/drug effects , Coleoptera/metabolism , Crystallography, X-Ray , Humans , Insect Control/methods , Insect Proteins/chemistry , Insect Proteins/genetics , Insecticides/metabolism , Insecticides/pharmacology , Molecular Conformation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Pyridines/chemistry , Pyridines/metabolism , Pyrimidinones/chemistry , Pyrimidinones/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Sulfur Compounds/chemistry , Sulfur Compounds/metabolism
18.
PLoS One ; 16(12): e0260532, 2021.
Article En | MEDLINE | ID: mdl-34928980

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major maize pest in the United States causing significant economic loss. The emergence of field-evolved resistant WCR to Bacillus thuringiensis (Bt) traits has prompted the need to discover and deploy new insecticidal proteins in transgenic maize. In the current study we determined the crystal structure and mode of action (MOA) of the Vpb4Da2 protein (formerly known as Vip4Da2) from Bt, the first identified insecticidal Vpb4 protein with commercial level control against WCR. The Vpb4Da2 structure exhibits a six-domain architecture mainly comprised of antiparallel ß-sheets organized into ß-sandwich layers. The amino-terminal domains 1-3 of the protein share structural homology with the protective antigen (PA) PA14 domain and encompass a long ß-pore forming loop as in the clostridial binary-toxB module. Domains 5 and 6 at the carboxyl-terminal half of Vpb4Da2 are unique as this extension is not observed in PA or any other structurally-related protein other than Vpb4 homologs. These unique Vpb4 domains adopt the topologies of carbohydrate-binding modules known to participate in receptor-recognition. Functional assessment of Vpb4Da2 suggests that domains 4-6 comprise the WCR receptor binding region and are key in conferring the observed insecticidal activity against WCR. The current structural analysis was complemented by in vitro and in vivo characterizations, including immuno-histochemistry, demonstrating that Vpb4Da2 follows a MOA that is consistent with well-characterized 3-domain Bt insecticidal proteins despite significant structural differences.


Bacillus thuringiensis/metabolism , Bacterial Proteins/chemistry , Insecticides/pharmacology , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coleoptera/drug effects , Coleoptera/growth & development , Crystallography, X-Ray , Insecticides/chemistry , Intestines/metabolism , Larva/drug effects , Larva/metabolism , Mutagenesis, Site-Directed , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Zea mays/metabolism , Zea mays/parasitology
19.
Molecules ; 26(21)2021 Oct 27.
Article En | MEDLINE | ID: mdl-34770901

Essential oils (EOs) are widely recognized as efficient and safe alternatives for controlling pest insects in foods. However, there is a lack of studies evaluating the toxicological stability of botanical insecticides in stored grains in order to establish criteria of use and ensure your efficiency. The objective of this work was to evaluate the toxicological stability of basil essential oil (O. basilicum) and its linalool and estragole components for Sitophilus zeamais (Motschulsky) adults in corn grains by fumigation. The identification of the chemical compounds of the essential oil was performed with a gas chromatograph coupled to a mass selective detector. Mortality of insects was assessed after 24 h exposure. After storage for six (EO) and two months (linalool and estragole) under different conditions of temperature (5, 20, and 35 °C) and light (with and without exposure to light), its toxicological stability was evaluated. Studies revealed that the essential oil of O. basilicum and its main components exhibited insecticidal potential against adults of S. zeamais. For greater toxicological stability, suitable storage conditions for them include absence of light and temperatures equal to or less than 20 °C.


Coleoptera/drug effects , Insect Control , Insecticides/pharmacology , Ocimum basilicum/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Animals , Drug Stability , Insecticides/chemistry , Lethal Dose 50 , Oils, Volatile/chemistry , Plant Oils/chemistry , Toxicity Tests
20.
J Econ Entomol ; 114(6): 2598-2609, 2021 12 06.
Article En | MEDLINE | ID: mdl-34729597

Preventing insect infestations is a critical component for establishing a pest management plan for stored-product insects. Long-lasting insecticide-treated netting (LLIN) is a potential tool to reduce insect movement by providing a chemical barrier, where insects may be able to physically pass through but ultimately die after exposure to the netting. Sublethal effects, such as reduced movement immediately after exposure and reduced ability to colonize, have been reported. Here we examine the sublethal effects of exposure to LLIN on two beetle species, Trogoderma variabile Ballion, warehouse beetle, and Tribolium castaneum Herbst, red flour beetle. We found that both female and male T. castaneum exposed to LLIN produced significantly less adult progeny than those exposed to untreated netting. Adult progeny output did not differ for T. variabile, but survivorship increased in T. variabile females exposed to LLIN. Importantly, the overall net reproductive rate was significantly decreased for both T. variabile and T. castaneum. The number of copulation attempts did not differ between males or females exposed to LLIN compared to untreated netting, but males exposed to LLIN showed increased durations of attempted and successful copulation events. This research demonstrates that the implications of LLIN exposure extend past direct mortality, with sublethal effects on reproductive output potentially increasing the effectiveness of this tool for preventing insect infestations.


Coleoptera , Insecticide-Treated Bednets , Mating Preference, Animal/drug effects , Tribolium , Animals , Coleoptera/drug effects , Coleoptera/physiology , Female , Male , Reproduction , Tribolium/drug effects , Tribolium/physiology
...