Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.651
1.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744176

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Mesalamine , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Mesalamine/pharmacology , Mesalamine/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Humans , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Colon/immunology , Cells, Cultured , Male , Cell Proliferation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
2.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731431

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Colitis, Ulcerative , Cytokines , Dextran Sulfate , Perilla , Plant Extracts , Seeds , Animals , Dextran Sulfate/adverse effects , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cytokines/metabolism , Cytokines/blood , Seeds/chemistry , Perilla/chemistry , Disease Models, Animal , Male , Depsides/pharmacology , Depsides/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Rosmarinic Acid , Perilla frutescens/chemistry
3.
Ann Clin Lab Sci ; 54(2): 156-159, 2024 Mar.
Article En | MEDLINE | ID: mdl-38802165

OBJECTIVE: There has been no significant improvement in remission rate in inflammatory bowel disease (IBD) despite several new drugs being introduced in the past two decades. Post-treatment biopsies sometimes show histologic healing in some areas of the intestine while other areas within the same intestine continue to show active inflammation. The aim of this short descriptive study was to determine whether heterogeneous treatment response in IBD may be caused by heterogeneous expression of treatment targets within the same intestine. METHODS: Six cases of Crohn's disease and five cases of ulcerative colitis in which moderate to severe active inflammation was present in at least two biopsies from the same intestine obtained during the same endoscopy procedure were entered in the study. Sections were stained for TNFα and phospho-JAK1 (p-JAK1) using immunohistochemistry. Expression of TNFα and p-JAK1 was recorded as high when the staining intensity was moderate or high, or low when there was no or week staining. The number of eosinophils per high power field was counted in the area of peak density. RESULTS: Different sites within the same intestine from IBD patients with moderate to severe active inflammation may express different levels of TNFα and p-JAK1. For example, in one patient with Crohn's disease with histologically moderate to severe activity in biopsies from the ileum (site 1) and cecum (site 2), there was high expression of p-JAK1 and low TNFα in the ileum biopsy with the exact opposite in the cecum biopsy (low p-JAK1 and high TNFα expression). In this example neither small molecule drug targeting JAK1 nor anti-TNFα biologic given as single agent therapy would be expected to induce histologic remission in both actively inflamed sites in this patient. CONCLUSIONS: The heterogeneous expression of treatment targets within the same intestine may explain why some patients with IBD may not have complete remission on single drug. Studies are needed to determine whether assay for target expression in mucosal biopsies from IBD patients can help to optimize treatment selection.


Inflammatory Bowel Diseases , Janus Kinase 1 , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Janus Kinase 1/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Male , Female , Adult , Crohn Disease/metabolism , Crohn Disease/pathology , Crohn Disease/drug therapy , Middle Aged , Biopsy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/drug therapy
4.
Life Sci ; 348: 122700, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38724004

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Colitis, Ulcerative , Colon , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Plastoquinone , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Colon/drug effects , Colon/pathology , Colon/metabolism , Oxidative Stress/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/pharmacology , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Dextran Sulfate
5.
Georgian Med News ; (348): 151-153, 2024 Mar.
Article En | MEDLINE | ID: mdl-38807409

Rebamipide contributes to the improvement of blood supply of the GI mucosa, activates its barrier function, activates alkaline secretion of the stomach, increases proliferation and metabolism of epithelial cells of the GI tract, cleanses the mucosa from hydroxyl radicals and suppresses superoxides, produced by polymorphonuclear leukocytes and neutrophils in the presence of Helicobacter pylori, protects the GI mucosa from bacterial invasion and the damaging effects of non-steroidal anti-inflammatory drugs (NSAIDs) on the mucosa. Rebamipide, originally developed as a treatment for gastric ulcers, has attracted the attention of researchers as a potential drug for the treatment of UC due to its ability to stimulate mucus production, reduce oxidative stress, and decrease inflammation. Due to the presence of these properties, it is hypothesized that rebamipide may have a protective effect on the intestinal mucosa during prolonged inflammation, making it a promising candidate for inclusion in therapeutic strategies for ulcerative colitis. The results of this study suggest that rebamipide holds potential therapeutic benefits for the treatment of ulcerative colitis.


Alanine , Colitis, Ulcerative , Quinolones , Quinolones/therapeutic use , Quinolones/pharmacology , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/pharmacology , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Rats , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Male , Disease Progression , Disease Models, Animal , Rats, Wistar
6.
J Transl Med ; 22(1): 488, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773576

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Apoptosis , Colitis, Ulcerative , Dextran Sulfate , Endoplasmic Reticulum Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Cytokines/metabolism , Permeability/drug effects , Signal Transduction/drug effects
7.
Int J Colorectal Dis ; 39(1): 77, 2024 May 24.
Article En | MEDLINE | ID: mdl-38782770

PURPOSE: The diagnostic accuracy of Narrow Band Imaging (NBI) in the endoscopic surveillance of ulcerative colitis (UC) has been disappointing in most trials which used the Kudo classification. We aim to compare the performance of NBI in the lesion characterization of UC, when applied according to three different classifications (NICE, Kudo, Kudo-IBD). METHODS: In a prospective, real-life study, all visible lesions found during consecutive surveillance colonoscopies with NBI (Exera-II CV-180) for UC were classified as suspected or non-suspected for neoplasia according to the NICE, Kudo and Kudo-IBD criteria. The sensitivity (SE), specificity (SP), positive (+LR) and negative (-LR) likelihood ratios of the three classifications were calculated, using histology as the reference standard. RESULTS: 394 lesions (mean size 6 mm, range 2-40 mm) from 84 patients were analysed. Twenty-one neoplastic (5%), 49 hyperplastic (12%), and 324 inflammatory (82%) lesions were found. The diagnostic accuracy of the NICE, Kudo and Kudo-IBD classifications were, respectively: SE 76%-71%-86%; SP 55-69%-79% (p < 0.05 Kudo-IBD vs. both Kudo and NICE); +LR 1.69-2.34-4.15 (p < 0.05 Kudo-IBD vs. both Kudo and NICE); -LR 0.43-0.41-0.18. CONCLUSION: The diagnostic accuracy of NBI in the differentiation of neoplastic and non-neoplastic lesions in UC is low if used with conventional classifications of the general population, but it is significantly better with the modified Kudo classification specific for UC.


Colitis, Ulcerative , Colonoscopy , Narrow Band Imaging , Humans , Colitis, Ulcerative/diagnostic imaging , Colitis, Ulcerative/pathology , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/classification , Narrow Band Imaging/methods , Prospective Studies , Female , Male , Middle Aged , Adult , Colonoscopy/methods , Aged , Population Surveillance
8.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791116

Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 µL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.


Colitis, Ulcerative , Disease Models, Animal , Mesalamine , Physical Conditioning, Animal , Animals , Mesalamine/therapeutic use , Mesalamine/pharmacology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Mice , Male , Colon/pathology , Colon/drug effects , Colon/metabolism , Dextran Sulfate , NF-kappa B/metabolism , Cytokines/metabolism , Apoptosis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
9.
Int Immunopharmacol ; 134: 112241, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38761782

Ulcerative colitis (UC) is a main form of inflammatory bowel disease (IBD), which is a chronic and immune-mediated inflammatory disease. Moringin (MOR) is an isothiocyanate isolated from Moringa oleifera Lam., and has been recognized as a promising potent drug for inflammatory diseases and antibacterial infections. The present study investigated the role of moringin in dextran sulfate sodium (DSS)-induced UC mice. Mouse colitis was induced by adding DSS to the drinking water for seven consecutive days. Our experimental results showed that MOR relieves DSS-induced UC in mice by increasing body weight and colonic length, and reducing the disease activity index and histological injury. Mechanistically, MOR improves intestinal barrier function by increasing the expression of tight junction proteins (TJPs) and enhancing the secretion of mucin in DSS-induced mice. MOR inhibits inflammatory response and intestinal damage by regulating Nrf2/NF-κB signaling pathway and modulating the PI3K/AKT/mTOR pathway. Furthermore, in Nrf2 knockout (Nrf2-/-) mice, the protective effects of MOR on DSS-induced UC were abolished. Meanwhile, treatment with MOR reduced inflammation and cell damage via regulating Nrf2/NF-κB pathway in a lipopolysaccharide (LPS)-induced inflammation model of Caco-2 cells. In contrast, ML385, an Nrf2 inhibitor, might eliminate the protection provided by MOR. Notably, treatment with MOR significantly up-regulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), suggesting that MOR may be a potential PPAR-γ activator. In conclusion, MOR exerts protective effect in UC by improving intestinal barrier function, regulating Nrf2/NF-κB and PI3K/AKT/mTOR signaling pathways, and another effect associated with the regulation of PPAR-γ expression.


Colitis, Ulcerative , Dextran Sulfate , Mice, Inbred C57BL , NF-E2-Related Factor 2 , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Caco-2 Cells , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Knockout , Disease Models, Animal , Colon/pathology , Colon/drug effects
10.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710716

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
11.
Biosci Rep ; 44(5)2024 May 29.
Article En | MEDLINE | ID: mdl-38699907

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Apoptosis , Colitis, Ulcerative , Oxidative Stress , Pentacyclic Triterpenes , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , Pentacyclic Triterpenes/pharmacology , Rats , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Colon/metabolism , Lipid Peroxidation/drug effects , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Rats, Wistar
12.
Braz J Med Biol Res ; 57: e13379, 2024.
Article En | MEDLINE | ID: mdl-38808888

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.


Autophagy , Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Mice , Inflammasomes/metabolism , Humans , Male , Angiopoietin-Like Protein 2 , Mice, Inbred C57BL , Female , Angiopoietin-2/metabolism , Dextran Sulfate , Oxidative Stress , Immunohistochemistry , Blotting, Western
13.
Molecules ; 29(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38731645

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
14.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713944

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
15.
Int Immunopharmacol ; 134: 112217, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38718658

The imbalance between T helper cell 17 (Th17)and regulatory T cells (Treg) cells leading to inflammation has an important role in the pathogenesis of ulcerative colitis (UC). Mammalian target of rapamycin (mTOR) can regulate the differentiation of T cells, but the specific pathway leading mTOR to regulate Th17/Treg cells in UC remains unclear. Our aim with this study was to investigate the effects of mTOR overexpression and silencing on the hypoxia inducible factor-1α (HIF-1α) - Th17/Treg signaling pathway. To mimic a human study, we established a colon cancer epithelial cell line (HT-29) co-culture system with human CD4+ T cells, and we treated the cells with TNF-α. We observed the effects of mTOR on the HIF-Th17/Treg signaling pathway to determine whether mTOR is involved in the regulatory mechanism. Under the stimulation of TNF-α, the levels of HIF-1α in CD4+T cells were increased in the HT-29 co-culture with CD4+ T cells, promoting glycolysis, increasing the Th17 proportion, decreasing the Treg proportion, increasing the pro-inflammatory factors levels, and decreasing the anti-inflammatory factors levels. Moreover, after mTOR silencing, the HIF-1α level and cell glycolysis levels decreased, Th17 cell differentiation decreased, the pro-inflammatory factor levels decreased, and the anti-inflammatory factor levels increased. In contrast, mTOR overexpression lead to the opposite results.mTOR promotes inflammation by regulating the HIF signaling pathway during UC, and silencing mTOR may alleviate inflammation. An mTOR inhibitor is a potential therapeutic target for UC treatment.


Coculture Techniques , Colitis, Ulcerative , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , Th17 Cells , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Th17 Cells/immunology , HT29 Cells , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Inflammation/immunology , Glycolysis
16.
Biomed Pharmacother ; 175: 116722, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729051

Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.


Colitis, Ulcerative , Ferroptosis , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Animals , Gastrointestinal Microbiome , Endoplasmic Reticulum Stress/drug effects , Signal Transduction , Lipid Peroxidation/drug effects , Molecular Targeted Therapy
17.
Int Immunopharmacol ; 135: 112286, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38776849

Ulcerative colitis (UC) is a subtype of inflammatory bowel disease. Previous studies have suggested a link between senescence process and the body's inflammatory reaction, indicating that senescence may exacerbate UC, yet the relation between UC and senescence remains unclear. Tedizolid Phosphate (TED), a novel oxazolidinone antimicrobial, is indicated in acute bacterial skin infections, its impact on senescence is not known. Our research revealed that the UC inducer dextran sulfate sodium (DSS) triggers senescence in both colon epithelial NCM460 cells and colon tissues, and TED that screened from a compound library demonstrated a strong anti-senescence effect on DSS treated NCM460 cells. As an anti-senescence medication identified in this research, TED efficiently alleviated UC and colonic senescence in mice caused by DSS. By proteomic analysis and experimental validation, we found that DSS significantly inhibits the AMPK signaling pathway, while TED counteracts senescence by restoring AMPK activity. This research verified that the development of UC is accompanied with colon tissue senescence, and TED, an anti-senescence medication, can effectively treat UC caused by DSS and alleviate colon senescence. Our work suggests anti-senescence strategy is an effective approach for UC treatment.


AMP-Activated Protein Kinases , Cellular Senescence , Colitis, Ulcerative , Colon , Dextran Sulfate , Signal Transduction , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Signal Transduction/drug effects , Colon/drug effects , Colon/pathology , Cellular Senescence/drug effects , Humans , AMP-Activated Protein Kinases/metabolism , Mice , Mice, Inbred C57BL , Cell Line , Male , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Organophosphates/pharmacology , Organophosphates/therapeutic use , Disease Models, Animal
18.
Int Immunopharmacol ; 135: 112318, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38795598

Ferroptosis of intestinal epithelial cells (IECs) had been identified as a key factor in the development of ulcerative colitis (UC). Therefore, targeted inhibition of ferroptosis may provide a new strategy for the treatment of UC. Isorhamnetin (ISO) was an O-methylated flavonol with therapeutic effects on a variety of diseases, such as cardiovascular disease, neurological disorders and tumors. However, the role and mechanism of ISO in ferroptosis and associated colitis were rarely investigated. In this study, we demonstrated that ISO could effectively alleviate intestinal inflammation by inhibiting ferroptosis of IECs in DSS-induced mice. Moreover, our results shown that ISO acted as a potent and common ferroptosis inhibitor in multiple human and murine cell lines. Mechanistically, ISO inhibited ferroptosis independent of its previously reported targets MEK1 and PI3K, but alleviated oxidative stress by targeting and activating NRF2. Furthermore, ISO could also directly chelate iron to hinder ferroptosis. In conclusion, our study indicated that ISO as a novel potential ferroptosis inhibitor, providing a promising therapeutic strategy for ferroptosis-related colitis.


Ferroptosis , Heme Oxygenase-1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Quercetin , Signal Transduction , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/therapeutic use , Humans , Mice , Heme Oxygenase-1/metabolism , Signal Transduction/drug effects , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Cell Line , Male , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced
19.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Article En | MEDLINE | ID: mdl-38764152

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Colitis, Ulcerative , Genistein , Transcription Factor RelA , Animals , Genistein/pharmacology , Mice , RAW 264.7 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Transcription Factor RelA/metabolism , Male , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Dextran Sulfate/toxicity
20.
BMC Gastroenterol ; 24(1): 135, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622545

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the gastrointestinal tract (GIT).It results in progressive intestinal epithelium structural and functional damage that necessitates lifetime medication.Thereis imbalance in the production of T helper 1 (Th1), Th2 and Th17 cytokines. This plays a crucial role in the chronic inflammatory process and the defective immune response to pathogenic agents; thus promoting the recurrence of the disease.Our aim of this study was to detect serum IL-17 levels in IBD patients and its relation with disease activity. METHODS: This was a single center case control study, conducted at hepatology and gastroenterology unit, Mansoura specialized Medical Hospital, Egypt.Patients who were included were aged 18-65 years, diagnosed either Ulcerative Colitis (UC)or Crohn's Disease (CD) based on previous colonoscopy.IBD activity was measured for UC using the MAYO score and CD using the CD activity index (CDAI). Fifty five patients were UC, 24 patients were CD, 21 patients were control.Patients who were excluded were under 15 years old, with history of GIT malignancy, or any serious comorbidities. Study protocol was approved by Institution Research Board (IRB) of Mansoura Medical College.All patients were subjected to full history taking, routine physical examination, colonoscopy and laboratory investigations including serum IL-17 levels by ELISA besides CBC, CRP, ESR and fecal calprotectin. RESULTS: Serum IL-17 level was increased significantly among UC; median (min-max) = 72(21-502)pg/ml, in CD 54.5(25-260) versus control 19 (14-35), P < 0.001.However, it was not correlated to the disease activity either Mayo score of UC or CDAI of CD.There was significant correlation to the extent of inflammation in UC affecting the colon (either proctosigmoiditis, left sided colitis or pan colitis), also to the type of CD (either inflammatory, stricturing or fistulizing) by P < 0.05.It was not correlated significantly with any of the IBD activity markers (CRP, ESR, or fecal calprotectin).Yet there was negative significant correlation with Hb level (r =-0.28, p = 0.005).There was not significant association between median serum level of IL-17 & duration of disease (P = 0.6).However, median IL-17 was higher among hospitalized cases than non-hospitalized (73 & 55, pg/ml respectively; p < 0.002). AUC was significantly differentiating between IBD and control group = 0.993 with the best-detected cut off point from curve 32 pg/ml yielding sensitivity of 97.5% and specificity of 95.2%. CONCLUSION: Serum IL-17 increases in colonic inflammation significantly more than in control group, however its increase is not correlated to IBD activity.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Adolescent , Interleukin-17 , Case-Control Studies , Biomarkers , Inflammatory Bowel Diseases/pathology , Colitis, Ulcerative/pathology , Crohn Disease/pathology , Inflammation , Leukocyte L1 Antigen Complex/analysis
...