Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
1.
Nat Commun ; 13(1): 136, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013263

ABSTRACT

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Carcinogens/antagonists & inhibitors , Colitis/prevention & control , Colorectal Neoplasms/prevention & control , Glucuronidase/antagonists & inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Triclosan/antagonists & inhibitors , Animals , Anti-Infective Agents, Local/chemistry , Anti-Infective Agents, Local/metabolism , Anti-Infective Agents, Local/toxicity , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biotransformation , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogens/chemistry , Carcinogens/metabolism , Carcinogens/toxicity , Colitis/chemically induced , Colitis/enzymology , Colitis/microbiology , Colon/drug effects , Colon/microbiology , Colon/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Gene Expression , Glucuronidase/chemistry , Glucuronidase/genetics , Glucuronidase/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Triclosan/chemistry , Triclosan/metabolism , Triclosan/toxicity
2.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Article in English | MEDLINE | ID: mdl-34767785

ABSTRACT

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Subject(s)
Carcinogenesis/drug effects , Carcinogenesis/genetics , Colitis/genetics , Colonic Neoplasms/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Spermidine/therapeutic use , Adenomatous Polyposis Coli Protein/genetics , Animals , Azoxymethane , Colitis/chemically induced , Colitis/enzymology , Colitis/prevention & control , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colon/enzymology , Colon/pathology , Colonic Neoplasms/prevention & control , Dextran Sulfate , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Male , Mice , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Precancerous Conditions/enzymology , Protective Factors , RNA, Messenger/metabolism , Severity of Illness Index , Spermidine/metabolism , Spermidine/pharmacology , Weight Loss/drug effects , alpha-Defensins/genetics , alpha-Defensins/metabolism , Polyamine Oxidase
3.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948082

ABSTRACT

Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are regarded as important clinical targets due to their nodal-point role in inflammatory and oncological diseases. Here, we aimed at isolating and characterizing am MMP-2 and-9 inhibitor (MMPI) from Lupinus albus and at assessing its efficacy in vitro and in vivo. The protein was isolated using chromatographic and 2-D electrophoretic procedures and sequenced by using MALDI-TOF TOF and MS/MS analysis. In vitro MMP-2 and 9 inhibitions were determined on colon adenocarcinoma (HT29) cells, as well as by measuring the expression levels of genes related to these enzymes. Inhibitory activities were also confirmed in vivo using a model of experimental TNBS-induced colitis in mice, with oral administrations of 15 mg·kg-1. After chromatographic and electrophoretic isolation, the L. albus MMP-9 inhibitor was found to comprise a large fragment from δ-conglutin and, to a lower extent, small fragments of ß-conglutin. In vitro studies showed that the MMPI successfully inhibited MMP-9 activity in a dose-dependent manner in colon cancer cells, with an IC50 of 10 µg·mL-1 without impairing gene expression nor cell growth. In vivo studies showed that the MMPI maintained its bioactivities when administered orally and significantly reduced colitis symptoms, along with a very significant inhibition of MMP-2 and -9 activities. Overall, results reveal a novel type of MMPI in lupine that is edible, proteinaceous in nature and soluble in water, and effective in vivo, suggesting a high potential application as a nutraceutical or a functional food in pathologies related to abnormally high MMP-9 activity in the digestive system.


Subject(s)
Colitis/diet therapy , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 9/drug effects , Plant Proteins/pharmacology , Animals , Colitis/drug therapy , Colitis/enzymology , Female , HT29 Cells , Humans , Lupinus/chemistry , Lupinus/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/isolation & purification , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Plant Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
4.
Cells ; 10(10)2021 10 05.
Article in English | MEDLINE | ID: mdl-34685638

ABSTRACT

Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease.


Subject(s)
Colitis/enzymology , Colitis/microbiology , Dysbiosis/enzymology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Intestines/pathology , Serine Proteases/metabolism , Amino Acid Sequence , Animals , Colitis/chemically induced , Conserved Sequence , Dextran Sulfate , Feces/enzymology , Inflammation/pathology , Intestinal Mucosa/pathology , Kinetics , Lactobacillus/enzymology , Male , Mice, Inbred C57BL , Phylogeny , Serine Proteases/administration & dosage , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Substrate Specificity , Subtilisin/chemistry
5.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Article in English | MEDLINE | ID: mdl-34686860

ABSTRACT

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Subject(s)
Colitis/enzymology , Colon/enzymology , Cytotoxicity, Immunologic , Electron Transport Complex II/metabolism , Epithelial Cells/enzymology , Graft vs Host Disease/enzymology , Intestinal Mucosa/enzymology , Mitochondria/enzymology , T-Lymphocytes/immunology , Animals , Case-Control Studies , Cell Communication , Cells, Cultured , Colitis/genetics , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/ultrastructure , Disease Models, Animal , Electron Transport Complex II/genetics , Epithelial Cells/immunology , Epithelial Cells/ultrastructure , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/ultrastructure , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/immunology , Mitochondria/ultrastructure , Oxidative Phosphorylation , Succinic Acid/metabolism , T-Lymphocytes/metabolism
6.
J Biochem Mol Toxicol ; 35(9): e22838, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273909

ABSTRACT

Colorectal cancer (CRC) is the third most common type of cancer. Here, we studied the inhibitory effect of IRAK1 and IRAK4 as a preventive strategy using a colitis-induced tumorigenesis mouse model. CRC clinical data were obtained from the Gene Expression Omnibus (GEO). An experimental inflammation-dependent CRC model was induced by treatment with azoxymethane (AOM) and then dextran sodium sulfate (DSS) in C57BL/6 mice. Mice were administered an IRAK1/4 inhibitor by intraperitoneal injection at 3 mg/kg twice each week for 9 weeks. The IRAK1/4 inhibitor attenuated histological changes and prevented tumor growth. Tumor-associated proteins, including p65 and Ki-67, were downregulated by the IRAK1/4 inhibitor in AOM/DSS-treated mice. Additionally, IRAK1/4 inhibitor administration effectively decreased the expression of inflammatory cytokines. Furthermore, we observed that IRAK1/4 inhibitor treatment attenuated colitis-induced tumorigenesis by inhibiting epithelial-mesenchymal transition. These observations indicate that inhibition of IRAK1 and IRAK4 may suppress experimental colitis-induced tumorigenesis by inhibiting inflammatory responses and epithelial-mesenchymal transition.


Subject(s)
Carcinogenesis/drug effects , Colitis-Associated Neoplasms/drug therapy , Colitis/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Carcinogenesis/chemically induced , Carcinogenesis/metabolism , Colitis/chemically induced , Colitis/enzymology , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/enzymology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/enzymology , Interleukin-1 Receptor-Associated Kinases/metabolism , Male , Mice , Neoplasm Proteins/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/enzymology
7.
Cells ; 10(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067858

ABSTRACT

Inflammatory bowel diseases (IBDs) are serious disorders of which the etiologies are not, as yet, fully understood. In this study, Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein was shown to be dramatically upregulated in the colons of dextran sodium sulfate (DSS)-induced ulcerative colitis model mice. Interestingly, Pin1 knockout (KO) mice exhibited significant attenuation of DSS-induced colitis compared to wild-type (WT) mice, based on various parameters, including body weight, colon length, microscopic observation of the intestinal mucosa, inflammatory cytokine expression, and cleaved caspase-3. In addition, a role of Pin1 in inflammation was suggested because the percentage of M1-type macrophages in the colon was decreased in the Pin1 KO mice while that of M2-type macrophages was increased. Moreover, Pin1 KO mice showed downregulation of both Il17 and Il23a expression in the colon, both of which have been implicated in the development of colitis. Finally, oral administration of Pin1 inhibitor partially but significantly prevented DSS-induced colitis in mice, raising the possibility of Pin1 inhibitors serving as therapeutic agents for IBD.


Subject(s)
Colitis/enzymology , Colon/enzymology , Intestinal Mucosa/enzymology , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/pathology , Colitis/prevention & control , Colon/drug effects , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Inflammation Mediators/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Naphthoquinones/pharmacology
8.
Nature ; 593(7858): 261-265, 2021 05.
Article in English | MEDLINE | ID: mdl-33911281

ABSTRACT

Several enteric pathogens can gain specific metabolic advantages over other members of the microbiota by inducing host pathology and inflammation. The pathogen Clostridium difficile is responsible for a toxin-mediated colitis that causes 450,000 infections and 15,000 deaths in the United States each year1; however, the molecular mechanisms by which C. difficile benefits from this pathology remain unclear. To understand how the metabolism of C. difficile adapts to the inflammatory conditions that its toxins induce, here we use RNA sequencing to define, in a mouse model, the metabolic states of wild-type C. difficile and of an isogenic mutant that lacks toxins. By combining bacterial and mouse genetics, we demonstrate that C. difficile uses sorbitol derived from both diet and host. Host-derived sorbitol is produced by the enzyme aldose reductase, which is expressed by diverse immune cells and is upregulated during inflammation-including during toxin-mediated disease induced by C. difficile. This work highlights a mechanism by which C. difficile can use a host-derived nutrient that is generated during toxin-induced disease by an enzyme that has not previously been associated with infection.


Subject(s)
Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Clostridium Infections/metabolism , Clostridium Infections/microbiology , Host-Pathogen Interactions , Sorbitol/metabolism , Aldehyde Reductase/metabolism , Animals , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Clostridium Infections/enzymology , Colitis/enzymology , Colitis/metabolism , Colitis/microbiology , Female , Gene Expression Regulation, Bacterial , Male , Mice , Mice, Inbred C57BL , Mutation
9.
Gastroenterology ; 161(1): 271-286.e11, 2021 07.
Article in English | MEDLINE | ID: mdl-33819483

ABSTRACT

BACKGROUND & AIMS: Sulfation is a conjugation reaction essential for numerous biochemical and cellular functions in mammals. The 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the key enzyme to generate PAPS, which is the universal sulfonate donor for all sulfation reactions. The goal of this study was to determine whether and how PAPSS2 plays a role in colitis and colonic carcinogenesis. METHODS: Tissue arrays of human colon cancer specimens, gene expression data, and clinical features of cancer patients were analyzed. Intestinal-specific Papss2 knockout mice (Papss2ΔIE) were created and subjected to dextran sodium sulfate-induced colitis and colonic carcinogenesis induced by a combined treatment of azoxymethane and dextran sodium sulfate or azoxymethane alone. RESULTS: The expression of PAPSS2 is decreased in the colon cancers of mice and humans. The lower expression of PAPSS2 in colon cancer patients is correlated with worse survival. Papss2ΔIE mice showed heightened sensitivity to colitis and colon cancer by damaging the intestinal mucosal barrier, increasing intestinal permeability and bacteria infiltration, and worsening the intestinal tumor microenvironment. Mechanistically, the Papss2ΔIE mice exhibited reduced intestinal sulfomucin content. Metabolomic analyses revealed the accumulation of bile acids, including the Farnesoid X receptor antagonist bile acid tauro-ß-muricholic acid, and deficiency in the formation of bile acid sulfates in the colon of Papss2ΔIE mice. CONCLUSIONS: We have uncovered an important role of PAPSS2-mediated sulfation in colitis and colonic carcinogenesis. Intestinal sulfation may represent a potential diagnostic marker and PAPSS2 may serve as a potential therapeutic target for inflammatory bowel disease and colon cancer.


Subject(s)
Colitis-Associated Neoplasms/prevention & control , Colitis/prevention & control , Colon/enzymology , Intestinal Mucosa/enzymology , Mucins/metabolism , Multienzyme Complexes/metabolism , Sulfate Adenylyltransferase/metabolism , Animals , Bile Acids and Salts/metabolism , Colitis/enzymology , Colitis/genetics , Colitis/pathology , Colitis-Associated Neoplasms/enzymology , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/pathology , Colon/pathology , Databases, Genetic , Disease Models, Animal , Humans , Intestinal Mucosa/pathology , Metabolome , Metabolomics , Mice, Inbred C57BL , Mice, Knockout , Multienzyme Complexes/genetics , Prognosis , Receptors, Cytoplasmic and Nuclear/metabolism , Sulfate Adenylyltransferase/genetics
10.
Int Immunopharmacol ; 90: 107212, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310666

ABSTRACT

BACKGROUND: The pathogenesis of inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC) has not been fully elucidated. However, a strong correlation between IBD and high T helper 17 (Th17) levels has been found. Sirtuin 2 (SIRT2) has recently been found to play an important role in metabolic reprogramming, but its potential anti-inflammatory properties remain unclear. METHODS: The expression levels of SIRT2 and glucose metabolism-related proteins in peripheral blood mononuclear cells (PBMCs) of IBD patients and healthy volunteers were detected. Human PBMCs were differentiated into Th17 cells in vitro and were treated with TM simultaneously. The ratio of Th17 cells and apoptotic cells and the production of Interleukin (IL)-17A and the expression levels of transcription factors of classical signaling pathway related to Th17 differentiation were determined. The acetylation of LDHA and glucose metabolism was assessed. Subsequently, C57BL/6J colitis mice induced by 2.5% dextran sulfatesodiumsalt (DSS) were treated with or without TM, Disease activity index, T cell subsets in the mice spleen, relevant inflammatory cytokines in serum, specific mRNA, and proteins in mice colon were evaluated respectively. RESULTS: SIRT2 and glucose metabolism-related proteins in PBMCs of patients were overexpressed. Compared with the positive control group, human PBMCs treated with TM had lower levels of IL-17A, percentage of Th17 cells, levels of phospho-signal transducer and activator of transcription (p-STAT) 3 and phospho-nuclear transcription factor-κB (p-NF-κB), but higher levels of acetylated LDHA. Compared with colitis mice, TM-treated colitis mice had longer colons, reduced weight-losses, and lower disease activity index and histopathologic scores. Interestingly, although the expression levels of interferon (IFN)-γ, IL-17A, and retinoic acid receptor-related orphan receptor (ROR)-γt were inhibited in the colons of TM-treated colitis mice, the expression of forkhead box protein P3 (FOXP3) didn't change. Consistently, relative to the high percentage of splenic Th17 cells in colitis mice, the percentage of splenic Th17 cells in TM-treated colitis mice was as normal as PBS-treated mice, while the percentage of Treg cells was not affected. Additionally, the TM group had reduced levels of IL-23 and hypoxiainduciblefactor-1α (HIF-1α), and an increased level of IL-10 in the colon, compared with the colitis group. CONCLUSION: Our results indicate that TM reduces UC progression by reducing metabolic reprogramming and T cell differentiation. Specifically, TM prevented Th17 differentiation by reducing the expression of related transcription factors and promoting acetylation of LDHA (weakening glycolysis). SIRT2 may be a potential target for IBD treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Differentiation/drug effects , Cellular Reprogramming/drug effects , Colitis/prevention & control , Colon/drug effects , Energy Metabolism/drug effects , Sirtuin 2/metabolism , Th17 Cells/drug effects , Acetylation , Animals , Apoptosis/drug effects , Case-Control Studies , Cells, Cultured , Colitis/enzymology , Colitis/immunology , Colitis/pathology , Colon/enzymology , Colon/immunology , Colon/pathology , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Sirtuin 2/genetics , Th17 Cells/enzymology , Th17 Cells/immunology
11.
Arch Biochem Biophys ; 692: 108490, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32721434

ABSTRACT

Ulcerative colitis is a condition characterised by the infiltration of leukocytes into the gastrointestinal wall. Leukocyte-MPO catalyses hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) formation from chloride (Cl-) and thiocyanous (SCN-) anions, respectively. While HOCl indiscriminately oxidises biomolecules, HOSCN primarily targets low-molecular weight protein thiols. Oxidative damage mediated by HOSCN may be reversible, potentially decreasing MPO-associated host tissue destruction. This study investigated the effect of SCN- supplementation in a model of acute colitis. Female mice were supplemented dextran sodium sulphate (DSS, 3% w/v) in the presence of 10 mM Cl- or SCN- in drinking water ad libitum, or with salts (NaCl and NaSCN only) or water only (controls). Behavioural studies showed mice tolerated NaSCN and NaCl-treated water with water-seeking frequency. Ion-exchange chromatography showed increased fecal and plasma SCN- levels in thiocyanate supplemented mice; plasma SCN- reached similar fold-increase for smokers. Overall there was no difference in weight loss and clinical score, mucin levels, crypt integrity and extent of cellular infiltration between DSS/SCN- and DSS/Cl- groups. Neutrophil recruitment remained unchanged in DSS-treated mice, as assessed by fecal calprotectin levels. Total thiol and tyrosine phosphatase activity remained unchanged between DSS/Cl- and DSS/SCN- groups, however, colonic tissue showed a trend in decreased 3-chlorotyrosine (1.5-fold reduction, p < 0.051) and marked increase in colonic GCLC, the rate-limiting enzyme in glutathione synthesis. These data suggest that SCN- administration can modulate MPO activity towards a HOSCN-specific pathway, however, this does not alter the development of colitis within a DSS murine model.


Subject(s)
Colitis , Colon , Dextran Sulfate/toxicity , Peroxidase/metabolism , Thiocyanates/pharmacology , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/enzymology , Colitis/pathology , Colon/enzymology , Colon/pathology , Disease Models, Animal , Female , Mice
12.
Eur J Pharmacol ; 881: 173234, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32497625

ABSTRACT

The phosphodiesterase-3 inhibitor, cilostazol has been recently shown to protect against chemically induced colitis in animal models. However, whether cyclic adenosine monophosphate (cAMP) contributes to the anti-inflammatory activity of cilostazol in colitis is still unknown. In the current study, we investigated the role of cAMP/silent information regulator-1 (SIRT-1) pathway in the protective effect of cilostazol using rat model of acetic acid-induced colitis. Upregulation of SIRT1 activity and expression has been recently shown to protect against chemically induced colitis. Our results demonstrated that cilostazol alleviated the histopathological changes associated with acetic acid-induced colitis. Interestingly, pre-administration of cilostazol increased cAMP concentration and SIRT1 expression in colonic mucosa to levels similar to that observed in control animals without induction of colitis. In addition, cilostazol inhibited the SIRT1 targets; NF-κB, Akt and MAPK inflammatory pathways as demonstrated by suppression of acetic acid-induced upregulation of NF-κB activity, p-AKT levels and the expression of p38 MAPK. NF-κB activity and the levels of p-AKT, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß) were similar in rats pretreated with cilostazol prior to induction of colitis and the control rats without colitis. Furthermore, cilostazol reduced acetic acid-induced oxidative stress and apoptosis. In conclusion, the protective effect of cilostazol against acetic acid-induced colitis may be attributed to activation of SIRT1 expression by cAMP. SIRT1 is suggested to contribute to cilostazol-induced suppression of NF-κB, Akt and MAPK inflammatory pathways, oxidative stress and apoptosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cilostazol/pharmacology , Colitis/prevention & control , Colon/drug effects , Cyclic AMP/metabolism , Sirtuin 1/metabolism , Acetic Acid , Animals , Colitis/chemically induced , Colitis/enzymology , Colitis/pathology , Colon/enzymology , Colon/pathology , Cytoprotection , Disease Models, Animal , Inflammation Mediators/metabolism , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction , Sirtuin 1/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Cell Biol Int ; 44(8): 1681-1690, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32281710

ABSTRACT

Ghrelin-O-acyltransferase (GOAT) is a membrane-bound enzyme that attaches eight-carbon octanoate to a serine residue in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin. In this study, we investigated the function of GOAT in the intestinal mucosal barrier. The intestinal mucosal barrier prevents harmful substances such as bacteria and endotoxin from entering the other tissues, organs, and blood circulation through the intestinal mucosa. Here, we established 5% dextran sodium sulfate (DSS)-induced colitis in mice and found that the body weight and colon weight were significantly decreased in these mice. Furthermore, increased inflammation and apoptosis were observed in the tissues of DSS-induced colitis mice, with increased expression of tumor necrosis factor-α, interleukin-6, phosphorylation of nuclear factor kappa B-p65 (p-NF-κB-p65), and cleaved caspase-3, and decreased expression of tight junction (TJ) proteins such as zonula occluden-1 and occludin. The knockdown of GOAT significantly attenuated colitis-induced inflammation responses and apoptosis, while GOAT overexpression significantly enhanced the induction of colitis. These results suggest that knockdown of GOAT may attenuate colitis-induced inflammation, ulcers, and fecal occult blood by decreasing the intestinal mucosal permeability via the modulation of inflammatory factors and TJ proteins.


Subject(s)
Acyltransferases/physiology , Colitis/enzymology , Intestinal Mucosa/metabolism , Membrane Proteins/physiology , Acyltransferases/genetics , Animals , Apoptosis , Cell Membrane Permeability , Colitis/metabolism , Colitis/pathology , Gastroenteritis/enzymology , Gastroenteritis/pathology , Gene Knockdown Techniques , Inflammation Mediators/metabolism , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Occult Blood , Tight Junction Proteins/metabolism , Weight Loss
14.
Sci Rep ; 10(1): 3074, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080277

ABSTRACT

The proteolytic fraction (P1G10) from Vasconcellea cundinamarcensis, displays gastric protective and healing activities in different skin lesions in mice and human. In an excisional model, this fraction accelerates resolution of lesions and modulates inflammatory mediators. Based on these data, we assessed its anti-inflammatory activity in murine colitis model, induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) adopted by its physiopathological similarity with human colitis. Twenty four hours after colitis induction followed by three days of treatment, P1G10 at 0.3 and 3.0 mg/Kg induced 30% increase in body weight (p < 0.0001) and ~80% reduction in colon macroscopic damage score (p < 0.05) compared to the untreated TNBS-induced colitis group. Histological analyses showed that 0.3 mg/Kg P1G10 reduced the inflammatory profile and tissue damage (47%, p < 0.05) when it was proteolytically active. Compared to TNBS group, 0.3 mg/Kg P1G10 reduced MPO activity (80%, p < 0.01), MCP-1 (47%, p < 0.05) and TNF-α (50%, no significant) and increased IL-10 (330%, p < 0.001) levels in the supernatant of colonic tissue homogenate. P1G10 treatment also reduced COX-2 expression (60%, p < 0.05) and metalloprotease-2 activity (39%, p < 0.05) while increased globet cell density (140%, p < 0.01), that contributes to mucus layer protection in colonic tissue. Taken together, these findings suggest that low doses of active P1G10 promotes lesion resolution, at least in part by its anti-inflammatory activity, in TNBS-colitis model.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/pathology , Latex/chemistry , Proteolysis , Animals , Caricaceae/chemistry , Colitis/enzymology , Colon/drug effects , Colon/pathology , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Disease Models, Animal , Hexosaminidases/metabolism , Humans , Inflammation Mediators/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Peroxidase/metabolism , Trinitrobenzenesulfonic Acid , Weight Loss/drug effects
15.
Am J Pathol ; 190(3): 674-688, 2020 03.
Article in English | MEDLINE | ID: mdl-31972160

ABSTRACT

miRNAs, a well-known group of noncoding RNAs, contribute to the pathogenesis of multiple diseases, including colitis-associated cancer (CAC). Our recent findings indicate that proinflammatory cytokines up-regulate c-MYC level, which subsequently activates cullin 4A and 4B (CUL4A/4B) and CRL4DCAF4 E3 ligases and promotes ubiquitination of suppression of tumorigenicity 7 in CAC. Herein, we identified and proved that miR-34b-5p can directly target c-MYC. In vitro oncogenic phenotype analyses and in vivo tumor formation assay indicated that miR-34b-5p overexpression could markedly decrease cell proliferation, colony formation, cell invasion, and tumor volumes. Overexpression of c-MYC in vitro could reverse the oncogenic phenotypes caused by miR-34b-5p up-regulation. In addition, the down-regulation of miR-34b-5p in CAC was dependent on the coregulation of the inflammatory microenvironment and DNA methylation. Collectively, our findings demonstrate that intracellular inflammation and DNA hypermethylation suppress miR-34b-5p expression, which limits its inhibitory effect on c-MYC and initiates the downstream events, including the induction of CRL4DCAF4 E3 ligase activity. The activated CRL4DCAF4 E3 ligase ubiquitinates suppression of tumorigenicity 7 and results in its degradation, eventually leading to the CAC tumorigenesis.


Subject(s)
Colitis/complications , Colonic Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Colitis/enzymology , Colitis/pathology , Colon/enzymology , Colon/pathology , Colonic Neoplasms/complications , Colonic Neoplasms/enzymology , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA Methylation , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Inflammation , Proto-Oncogene Proteins c-myc/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
16.
Med Sci Monit ; 25: 10045-10056, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31881016

ABSTRACT

BACKGROUND Barbaloin is one of the main medicinal ingredients of aloe vera, which displays various anti-inflammatory and anti-apoptosis properties in several inflammatory and fibrotic diseases. Our study evaluated its efficacy against dextran sulfate sodium (DSS)-induced colitis in rats. MATERIAL AND METHODS Ulcerative colitis (UC) rat models were established in vivo, and after barbaloin treatment, body weight and inflammation index were measured. Additionally, the signaling mechanism by which barbaloin protects against UC was investigated using LPS-infected Caco-2 cells. RESULTS Barbaloin could significantly reverse UC-induced weight loss and colon injury. Further, it could effectively increase the mRNA expression of IL-4 and IL-10 in colon tissues, while decreasing the expression of IFN-γ, IL-6, IL-1ß, and TNF-alpha. Furthermore, it significantly enhanced UC-inhibited atresia band 1 (ZO-1), occludin, and E-cadherin, and was also found to activate the AMPK signaling pathway. Additionally, si-RAN-induced knockdown, and overexpression assay showed that barbaloin could inhibit the UC-enhanced MLCK signaling pathway by activating the AMPK signaling pathway. CONCLUSIONS Barbaloin can effectively inhibit inflammation and reverse epithelial barrier function to protect against UC, possibly via activation of the AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anthracenes/therapeutic use , Colitis/drug therapy , Colitis/enzymology , Inflammation/pathology , Intestinal Mucosa/pathology , Signal Transduction , Animals , Anthracenes/chemistry , Anthracenes/pharmacology , Caco-2 Cells , Cadherins/metabolism , Colitis/pathology , Colitis/physiopathology , Dextran Sulfate , Dextrans/blood , Disease Models, Animal , Fluorescein-5-isothiocyanate/analogs & derivatives , Humans , Inflammation Mediators/metabolism , Intestinal Mucosa/drug effects , Lipopolysaccharides , Male , Myosin-Light-Chain Kinase/metabolism , Occludin/metabolism , Organ Size/drug effects , Rats, Wistar , Signal Transduction/drug effects , Zonula Occludens-1 Protein/metabolism
17.
Oxid Med Cell Longev ; 2019: 6138723, 2019.
Article in English | MEDLINE | ID: mdl-31687082

ABSTRACT

Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.


Subject(s)
Colitis/drug therapy , Colitis/enzymology , Diterpenes/therapeutic use , MAP Kinase Signaling System , NF-kappa B/metabolism , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colitis/blood , Colitis/chemically induced , Cytokines/blood , Dextran Sulfate , Disease Models, Animal , Diterpenes/pharmacology , Female , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Inflammation Mediators/blood , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Models, Biological , Nitric Oxide/metabolism , Peroxidase/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
18.
Integr Biol (Camb) ; 11(7): 301-314, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31617572

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and debilitating disorder that has few treatment options due to a lack of comprehensive understanding of its molecular pathogenesis. We used multiplexed mass spectrometry to collect high-content information on protein phosphorylation in two different mouse models of IBD. Because the biological function of the vast majority of phosphorylation sites remains unknown, we developed Substrate-based Kinase Activity Inference (SKAI), a methodology to infer kinase activity from phosphoproteomic data. This approach draws upon prior knowledge of kinase-substrate interactions to construct custom lists of kinases and their respective substrate sites, termed kinase-substrate sets that employ prior knowledge across organisms. This expansion as much as triples the amount of prior knowledge available. We then used these sets within the Gene Set Enrichment Analysis framework to infer kinase activity based on increased or decreased phosphorylation of its substrates in a dataset. When applied to the phosphoproteomic datasets from the two mouse models, SKAI predicted largely non-overlapping kinase activation profiles. These results suggest that chronic inflammation may arise through activation of largely divergent signaling networks. However, the one kinase inferred to be activated in both mouse models was mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2 or MK2), a serine/threonine kinase that functions downstream of p38 stress-activated mitogen-activated protein kinase. Treatment of mice with active colitis with ATI450, an orally bioavailable small molecule inhibitor of the MK2 pathway, reduced inflammatory signaling in the colon and alleviated the clinical and histological features of inflammation. These studies establish MK2 as a therapeutic target in IBD and identify ATI450 as a potential therapy for the disease.


Subject(s)
Colitis/enzymology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Administration, Oral , Animals , Cluster Analysis , Disease Models, Animal , Female , Gene Expression Profiling , Inflammation , Mass Spectrometry , Mice , Mice, Inbred C57BL , Phosphorylation , Principal Component Analysis , Proteomics , Rats , Signal Transduction , Terminology as Topic , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Mucosal Immunol ; 12(6): 1336-1347, 2019 11.
Article in English | MEDLINE | ID: mdl-31501515

ABSTRACT

Fecal microbiota transfer (FMT) is a very efficient approach for the treatment of severe and recurring C. difficile infections. However, the beneficial effect of FMT in other disorders such as ulcerative colitis (UC) or Crohn's disease remains unclear. Furthermore, it is currently unknown how disease-associated genetic variants in donors or recipients influence the effect of FMT. We found that bacteria-transfer from wild-type (WT) donors via cohousing was efficient in inducing recovery from colitis in WT mice, but not in mice deficient in protein-tyrosine phosphatase non-receptor type 22 (PTPN22), a known risk gene for several chronic inflammatory diseases. Also cohousing of PTPN22-deficient mice with diseased WT mice failed to induce faster recovery. Our data indicate that the genetic background of the donor and the recipient influences the outcome of microbiota transfer, and offers a potential explanation why transfer of fecal microbes from some, but not all donors is efficient in UC patients.


Subject(s)
Bacteria/growth & development , Colitis/therapy , Colon/enzymology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Housing, Animal , Intestinal Mucosa/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/deficiency , Animals , Bacteria/immunology , Cells, Cultured , Colitis/enzymology , Colitis/genetics , Colitis/microbiology , Colon/immunology , Colon/microbiology , Dextran Sulfate , Disease Models, Animal , Genotype , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/microbiology
20.
Mucosal Immunol ; 12(6): 1316-1326, 2019 11.
Article in English | MEDLINE | ID: mdl-31554901

ABSTRACT

Reactive oxygen species (ROS) generated by NADPH oxidases (NOX/DUOX) provide antimicrobial defense, redox signaling, and gut barrier maintenance. Inactivating NOX variants are associated with comorbid intestinal inflammation in chronic granulomatous disease (CGD; NOX2) and pediatric inflammatory bowel disease (IBD; NOX1); however Nox-deficient mice do not reflect human disease susceptibility. Here we assessed if a hypomorphic patient-relevant CGD mutation will increase the risk for intestinal inflammation in mice. Cyba (p22phox) mutant mice generated low intestinal ROS, while maintaining Nox4 function. The Cyba variant caused profound mucus layer disruption with bacterial penetration into crypts, dysbiosis, and a compromised innate immune response to invading microbes, leading to mortality. Approaches used in treatment-resistant CGD or pediatric IBD such as bone marrow transplantation or oral antibiotic treatment ameliorated or prevented disease in mice. The Cyba mutant mouse phenotype implicates loss of both mucus barrier and efficient innate immune defense in the pathogenesis of intestinal inflammation due to ROS deficiency, supporting a combined-hit model where a single disease variant compromises different cellular functions in interdependent compartments.


Subject(s)
Colitis/enzymology , Colon/enzymology , Cytochrome b Group/metabolism , Intestinal Mucosa/enzymology , Mucus/enzymology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Colitis/immunology , Colitis/microbiology , Colitis/prevention & control , Colon/drug effects , Colon/immunology , Colon/microbiology , Cytochrome b Group/deficiency , Cytochrome b Group/genetics , Disease Models, Animal , Dysbiosis , Female , Gastrointestinal Microbiome , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Mucus/immunology , Mucus/microbiology , Mutation, Missense , NADPH Oxidases/deficiency , NADPH Oxidases/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL