Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.440
Filter
1.
Food Chem ; 462: 141026, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216373

ABSTRACT

Quantitative monitoring of the concentrations of epigallocatechin gallate (EGCG) and cysteine (Cys) is of great significance for promoting human health. In this study, iron/aluminum bimetallic MOF material MIL-53 (Fe, Al) was rapidly prepared under room temperature using a co-precipitation method, followed by investigating the peroxidase-like (POD-like) activity of MIL-53(Fe, Al) using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate. The results showed that the Michaelis -Menten constants of TMB and H2O2 as substrates were 0.167 mM and 0.108 mM, respectively. A colorimetric sensing platform for detecting EGCG and Cys was developed and successfully applied for analysis and quantitative detection using a smartphone. The linear detection range for EGCG was 15∼80 µM (R2=0.994) and for Cys was 7∼95 µM (R2=0.998). The limits of detection (LOD) were 0.719 µM and 0.363 µM for EGCG and Cys, respectively. This work provides a new and cost-effective approach for the real-time analysis of catechins and amino acids.


Subject(s)
Antioxidants , Biosensing Techniques , Catechin , Colorimetry , Smartphone , Colorimetry/methods , Colorimetry/instrumentation , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Antioxidants/analysis , Antioxidants/chemistry , Catechin/analysis , Catechin/analogs & derivatives , Catechin/chemistry , Cysteine/analysis , Cysteine/analogs & derivatives , Limit of Detection , Food Analysis/methods , Food Analysis/instrumentation
2.
Mikrochim Acta ; 191(10): 603, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39284926

ABSTRACT

A simple method has been developed for semi-quantitative analysis of the colorimetric output of loop-mediated isothermal amplification (LAMP) using a 3D-printed tube holder with a smartphone and notebook for the detection of Raillietina, which is the cause of Raillietiniasis affecting free-range chicken farming. In this method, a light is directed from a notebook screen to the LAMP products in the tube holder and the color absorption of the LAMP products is measured by using the appropriate smartphone application. It was found that the malachite green dye-coupled LAMP (MaG-LAMP) assay showed the highest sensitivity and specificity for detecting Raillietina without any cross-reaction with other related parasites and hosts. The limit of detection was 10 fg/µL of DNA. A total of 60 fecal samples were infectively confirmed by microscopic examination and the results of microscopy compared with those of MaG-LAMP and triplex PCR assays. Microscopy and MaG-LAMP based on the color absorption demonstrated high agreement in Raillietina detection with kappa = 1. Rapid, simple, cost-effective, and easy interpretation of colorimetric LAMP assays and their high sensitivity make them superior to PCR and morphological investigation, demonstrating the feasibility of this assay in point-of-care screening to support farm management and solve chicken health problems. Our study presents is an alternative diagnostic method using semi-quantitative analysis of colorimetric LAMP based on the differing solution color absorptions between positive and negative reactions for infectious disease diagnosis.


Subject(s)
Chickens , Colorimetry , Nucleic Acid Amplification Techniques , Printing, Three-Dimensional , Smartphone , Colorimetry/methods , Colorimetry/instrumentation , Nucleic Acid Amplification Techniques/methods , Animals , Limit of Detection , Rosaniline Dyes/chemistry , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Feces/chemistry , Feces/microbiology
3.
Biosens Bioelectron ; 266: 116682, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39241339

ABSTRACT

The development of an affordable, portable, and instrument-free colorimetric biosensor holds significant importance for routine monitoring and clinical diagnosis. To overcome the limitations that traditional monochromatic colorimetric kits struggle to distinguish subtle color changes with the naked eye, we designed and constructed a portable hydrogel kit for polychromatic semi-quantitative and quantitative sensing analysis. When the actual samples and I- were introduced into a gelatin hydrogel encapsulated with MIL-88A(Fe), Au NRs and oxidase (Au@GM88A/I), a noticeable color change occurred. Additionally, a mathematic model between Hue and multicolor signal was set up for the first time by mobile phone photo technology, successfully applied to the glucose detection in serum. The visual detection had a wide concentration range of 0.02-0.80 mM with a limit of detection down to 0.02 mM. Above all, hydrogel kit prepared with gelatin as a carrier addressed the issues of uneven color and slow response rate commonly seen in gels like sodium alginate and agarose. This improvement would be beneficial for enhancing the accuracy of color captured by mobile phone assisted hydrogel kits, making it a valuable tool for biomarker analysis.


Subject(s)
Biosensing Techniques , Cell Phone , Colorimetry , Gold , Hydrogels , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Colorimetry/instrumentation , Hydrogels/chemistry , Humans , Gold/chemistry , Limit of Detection , Blood Glucose/analysis , Gelatin/chemistry
4.
Mikrochim Acta ; 191(10): 587, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39251452

ABSTRACT

Deferiprone (DFP) is one of the iron-chelating agents used in iron overload therapy for patients with ß-thalassemia major (ß-TM). However, the use of DFP is limited as it experiences a first-pass effect and can potentially cause iron deficiency due to uncontrolled release. Therefore, iron-responsive (NP-IR) DFP nanoparticle innovation was developed to control DFP release. A dissolving microneedle system (NP-IR-DMNs) was used to maximize DFP release. However, in support of this development, validation of analytical methods using spectrophotometry and colorimetrics was carried out. UV-Vis spectrophotometry is an approach that is easy to use, practical, and more cost-effective than others. The DFP levels were determined in normal and iron-overloaded medium solutions with 1%, 2%, and 4% concentrations. In addition, DFP levels were also measured in rat plasma using the colorimetric method with the addition of FeCl3 reagent to increase sensitivity for the detection of the analyte. The procedures used as guidelines in the validation procedure are The International Council for Harmonization (ICH). As a result, all linear correlation values of medium and plasma ≥ 0.999 were obtained. The LOQ levels obtained were 0.55 µg/mL, 0.44 µg/mL, 0.42 µg/mL, 0.52 µg/mL, and 1.01 µg/mL in plasma, 1% FeSO4, 2% FeSO4, 4% FeSO4, and normal media, respectively. The accuracy and precision were confirmed valid, as all values were within the requirements and did not change during dilution. Then, this approach was successfully applied to determine the levels of DFP in NP-IR integrated into DMNs.


Subject(s)
Colorimetry , Deferiprone , Iron , Nanoparticles , Needles , Spectrophotometry, Ultraviolet , Deferiprone/blood , Deferiprone/chemistry , Animals , Colorimetry/methods , Colorimetry/instrumentation , Nanoparticles/chemistry , Iron/chemistry , Rats , Iron Chelating Agents/chemistry , Male
5.
Sci Rep ; 14(1): 19441, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169064

ABSTRACT

Chronic kidney disease (CKD) is a widespread condition with considerable health and economic impacts globally. However, existing methodologies for serum creatinine assessment often involve prolonged wait times and sophisticated equipment, such as spectrometers, hindering real-time diagnosis and care. Innovative solutions like point-of-care (POC) devices are emerging to address these challenges. In this context, there is a recognized need for remote, regular, automated, and low-cost analysis of serum creatinine levels, given its role as a critical parameter for CKD diagnosis and management. This study introduces a miniaturized system with integrated heater elements designed for precise serum creatinine measurement. The system operates based on the Jaffe method and accurate serum creatinine measurement within a microreservoir chip. Smartphone-based image processing using the hue-saturation-value (HSV) color space was applied to captured images of microreservoirs. The creatinine analyses were conducted in serum with a limit of detection of ~ 0.4 mg/dL and limit of quantification of ~ 1.3 mg/dL. Smartphone-based image processing employing the HSV color space outperformed spectrometric analysis for creatinine measurement conducted in serum. This pioneering technology and smartphone-based processing offer the potential for decentralized renal function testing, which could significantly contribute to improved patient care. The miniaturized system offers a low-cost alternative ($87 per device), potentially reducing healthcare expenditures (~ $0.5 per test) associated with CKD diagnosis and management. This innovation could greatly improve access to diagnosis and monitoring of CKD, especially in regions where access to sophisticated laboratory equipment is limited.


Subject(s)
Colorimetry , Creatinine , Smartphone , Creatinine/blood , Colorimetry/instrumentation , Colorimetry/methods , Humans , Point-of-Care Systems/economics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/blood , Miniaturization
6.
ACS Sens ; 9(8): 4143-4153, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39086324

ABSTRACT

One challenge for gas sensors is humidity interference, as dynamic humidity conditions can cause unpredictable fluctuations in the response signal to analytes, increasing quantitative detection errors. Here, we introduce a concept: Select humidity sensors from a pool to compensate for the humidity signal for each gas sensor. In contrast to traditional methods that extremely suppress the humidity response, the sensor pool allows for more accurate gas quantification across a broader range of application scenarios by supplying customized, high-dimensional humidity response data as extrinsic compensation. As a proof-of-concept, mitigation of humidity interference in colorimetric gas quantification was achieved in three steps. First, across a ten-dimensional variable space, an algorithm-driven high-throughput experimental robot discovered multiple local optimum regions where colorimetric humidity sensing formulations exhibited high evaluations on sensitivity, reversibility, response time, and color change extent for 10-90% relative humidity (RH) in room temperature (25 °C). Second, from the local optimum regions, 91 sensing formulations with diverse variables were selected to construct a parent colorimetric humidity sensor array as the sensor pool for humidity signal compensation. Third, the quasi-optimal sensor subarrays were identified as customized humidity signal compensation solutions for different gas sensing scenarios across an approximately full dynamic range of humidity (10-90% RH) using an ingenious combination optimization strategy, and two accurate quantitative detections were attained: one with a mean absolute percentage error (MAPE) reduction from 4.4 to 0.75% and the other from 5.48 to 1.37%. Moreover, the parent sensor array's excellent humidity selectivity was validated against 10 gases. This work demonstrates the feasibility and superiority of robot-assisted construction of a customizable parent colorimetric sensor array to mitigate humidity interference in gas quantification.


Subject(s)
Colorimetry , Gases , Humidity , Robotics , Colorimetry/instrumentation , Colorimetry/methods , Robotics/instrumentation , Gases/analysis , Gases/chemistry , Algorithms
7.
Anal Methods ; 16(33): 5676-5683, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39118596

ABSTRACT

In this study, we describe a rapid and high-throughput smartphone-based digital colorimetric method for determining urea in milk. A compact and cost-effective 3D-printed image box microplate-based system was designed to measure multiple samples simultaneously, using minimal sample and reagent volumes. The apparatus was applied for the quantification of urea in milk based on its reaction with p-dimethylaminobenzaldehyde (DMAB). The predictive performance of calibration was evaluated using RGB and different colour models (CMYK, HSV, and CIELAB), with the average blue (B) values of the RGB selected as the analytical signal for urea quantification. Under optimized conditions, a urea concentration linear range from 50 to 400 mg L-1 was observed, with a limit of detection (LOD) of 15 mg L-1. The values found with the smartphone-based DIC procedure are in good agreement with spectrophotometric (spectrophotometer and microplate treader) and reference method (mid-infrared spectroscopy) values. This proposed approach offers an accessible and efficient solution for digital image colorimetry, with potential applications for various target analytes in milk and other fields requiring high-throughput colorimetric analysis.


Subject(s)
Colorimetry , Milk , Printing, Three-Dimensional , Smartphone , Urea , Milk/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Animals , Urea/analysis , Urea/chemistry , Limit of Detection , Benzaldehydes/chemistry , Benzaldehydes/analysis
8.
Biosens Bioelectron ; 263: 116604, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094293

ABSTRACT

Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.


Subject(s)
Biosensing Techniques , Colorimetry , Deep Learning , Flavonoids , Smartphone , Colorimetry/instrumentation , Colorimetry/methods , Flavonoids/analysis , Flavonoids/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Citrus/chemistry , Electronic Nose , Cerium/chemistry , Limit of Detection , Benzidines/chemistry
9.
Mikrochim Acta ; 191(9): 559, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39177690

ABSTRACT

Lateral flow assay (LFA) color signal quantification methods were developed by utilizing both International Commission on Illumination (CIE) LAB (CIELAB) color space and grayscale intensity differences. The CIELAB image processing procedure included calibration, test, control band detection, and color difference calculation, which can minimize the noise from the background. The LFA platform showcases its ability to accurately discern relevant colorimetric signals. The rising occurrence of infectious outbreaks from foodborne pathogens like Salmonella typhimurium presents significant economic, healthcare, and public health risks. The study introduces an aptamer-based lateral flow (ABLF) platform by using inkjet printing for specially detecting S. typhimurium. The ABLF utilized gold-decorated polystyrene microparticles, functionalized with specific S. typhimurium aptamers (Ps-AuNPs-ssDNA). The platform demonstrates a detection limit of 102 CFU mL-1 in buffer solutions and 103 CFU mL-1 in romaine lettuce tests. Furthermore, it sustained performance for over 8 weeks at room temperature. The ABLF platform and analysis methods are expected to effectively resolve the low-sensitivity problems of the former LFA systems and to bridge the gap between lab-scale platforms to market-ready solutions by offering a simple, cost-effective, and consistent approach to detecting foodborne pathogens in real samples.


Subject(s)
Aptamers, Nucleotide , Colorimetry , Gold , Metal Nanoparticles , Salmonella typhimurium , Salmonella typhimurium/isolation & purification , Colorimetry/methods , Colorimetry/instrumentation , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Food Microbiology , Lactuca/microbiology , Lactuca/chemistry , Printing , Polystyrenes/chemistry , Biosensing Techniques/methods
10.
Food Chem ; 461: 140938, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39197323

ABSTRACT

At present, the combination of fingerprint recognition methods and environmentally friendly and economical analytical instruments is becoming increasingly important in the food industry. Herein, a dithiothreitol (DTT)-functionalized CsPbBr3-based colorimetric sensor array is developed for qualitatively differentiating multiple food oils. In this sensor array composition, two types of iodides (octadecylammonium iodide (ODAI) and ZnI2) are used as recognition elements, and CsPbBr3 is used as a signal probe for the sensor array. Different food oils oxidize iodides differently, resulting in different amounts of remaining iodides. Halogen ion exchange occurs between the remaining iodides and CsPbBr3, leading to different colors observed under ultraviolet light, enabling a unique fingerprint for each food oil. A total of five food oils exhibit their unique colorimetric array's response patterns and were successfully differentiated by linear discriminant analysis (LDA), realizing 100% classification accuracy.


Subject(s)
Calcium Compounds , Colorimetry , Dithiothreitol , Oxides , Titanium , Titanium/chemistry , Colorimetry/instrumentation , Oxides/chemistry , Calcium Compounds/chemistry , Dithiothreitol/chemistry , Plant Oils/chemistry , Discriminant Analysis
11.
Talanta ; 280: 126770, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39208678

ABSTRACT

Monitoring various biomarkers in saliva samples emerges as a dynamic and non-invasive method. However, the high viscosity of saliva presents a distinct challenge when integrating paper-based platforms for on-site analysis. In addressing this challenge, we introduced the capillary-driven microfluidic paper-based analytical devices (µCD-PAD) designed for user-friendly and simultaneous detection of ethanol and tetrahydrocannabinol (THC) in saliva without a sample preparation step. Employing a colorimetric approach, we quantified both analytes. Synthetic salivas of varying viscosity flowed seamlessly to the detection zone without needing a sample preparation step, and no impact on colorimetric detection due to viscosity was observed (RSD <5 %). Within 10 min after the solution reached the detection zone, the device produced a homogeneous color signal, easily analyzed by a smartphone camera. To extend the application for determination to cover a legal limit concentration of ethanol and concentration of salivary THC even 24 h after marijuana consumption, the detection time of 30 min was optimized. Moreover, a saliva sample containing both analytes was used to demonstrate the capability of the developed device to detect ethanol and THC simultaneously. No cross-talk between ethanol and THC occurred and showed recovery in the 98-102 % for ethanol and 95-105 % for THC with acceptable accuracy. This developed device exhibits excellent potential for forensic applications, providing a user-friendly, cost-effective, and real-time screening tool for detecting ethanol and THC in saliva.


Subject(s)
Colorimetry , Dronabinol , Ethanol , Paper , Saliva , Smartphone , Dronabinol/analysis , Saliva/chemistry , Ethanol/analysis , Colorimetry/methods , Colorimetry/instrumentation , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Substance Abuse Detection/methods , Substance Abuse Detection/instrumentation
12.
ACS Appl Mater Interfaces ; 16(34): 45632-45639, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39146238

ABSTRACT

Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte's concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.


Subject(s)
Ammonia , Colorimetry , Smartphone , Ammonia/analysis , Colorimetry/instrumentation , Colorimetry/methods , Water Pollutants, Chemical/analysis , Point-of-Care Systems , Limit of Detection , Water/chemistry
13.
Lab Chip ; 24(17): 4039-4049, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39108250

ABSTRACT

Point-of-care testing of pathogens is becoming more and more important for the prevention and control of food poisoning. Herein, a power-free colorimetric biosensor was presented for rapid detection of Salmonella using a microfluidic SlipChip for fluidic control and Au@PtPd nanocatalysts for signal amplification. All the procedures, including solution mixing, immune reaction, magnetic separation, residual washing, mimicking catalysis and colorimetric detection, were integrated on this SlipChip. First, the mixture of the bacterial sample, immune magnetic nanobeads (IMBs) and immune Au@PtPd nanocatalysts (INCs), washing buffer and H2O2-TMB chromogenic substrate were preloaded into the sample, washing and catalysis chambers, respectively. After the top layer of this SlipChip was slid to connect the sample chamber with the separation chamber, the mixture was moved back and forth through the asymmetrical split-and-recombine micromixer by using a disposable syringe to form the IMB-Salmonella-INC sandwich conjugates. Then, the conjugates were captured in the separation chamber using a magnetic field, and the top layer was slid to connect the washing chamber with the separation chamber for washing away excessive INCs. Finally, the top layer was slid to connect the catalysis chamber with the separation chamber, and the colorless substrate was catalyzed by the INCs with peroxidase-mimic activity to generate color change, followed by using a smartphone app to collect and analyze the image to determine the bacterial concentration. This all-in-one microfluidic biosensor enabled simple detection of Salmonella as low as 101.2 CFU mL-1 within 30 min and was featured with low cost, straightforward operation, and compact design.


Subject(s)
Biosensing Techniques , Gold , Lab-On-A-Chip Devices , Salmonella , Biosensing Techniques/instrumentation , Salmonella/isolation & purification , Gold/chemistry , Colorimetry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Platinum/chemistry , Palladium/chemistry , Limit of Detection , Equipment Design , Hydrogen Peroxide/chemistry
14.
Lab Chip ; 24(18): 4253-4263, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39118539

ABSTRACT

A novel microfluidic paper-based analytical device with dual colorimetric and electrochemical detection (dual µPAD) was developed for the assessment of transferrin saturation (TSAT) in samples from ischemic stroke patients. TSAT was calculated from the ratio between transferrin-bound iron, which was colorimetrically measured, and the total iron-binding capacity, which was electrochemically measured. To this end, a µPAD was smartly designed, which integrated both colorimetric and electrochemical detection reservoirs, communicating via a microchannel acting as a chemical reactor, and with preloading/storing capabilities (reagent-free device). This approach allowed the dual and simultaneous determination of both parameters, providing an improvement in the reliability of the results due to an independent signal principle and processing. The µPADs were validated by analyzing a certified reference material, showing excellent accuracy (Er ≤ 5%) and precision (RSD ≤ 2%). Then they were applied to the analysis of diagnosed serum samples from ischemic stroke patients. The results were compared to those provided by a free-interference method (urea-PAGE). Impressively, both methods exhibited a good correlation (r = 0.96, p < 0.05) and no significant differences were found between them (slope 1.0 ± 0.1 and the intercept 1 ± 4, p < 0.05), demonstrating the excellent accuracy of our approach during the analysis of complex samples from ischemic stroke patients, using just 90 µL of clinical samples and taking less than 90 min in comparison with the 18 hours required by the urea-PAGE approach. The developed fully integrated colorimetric-electrochemical µPAD is a promising ready to use reagent-free device for the point-of-care testing of TSAT, which can be used to assist physicians in the fast diagnosis and prognosis of ischemic strokes, where the decision-time is crucial for the patient's survival.


Subject(s)
Colorimetry , Electrochemical Techniques , Ischemic Stroke , Microfluidic Analytical Techniques , Paper , Point-of-Care Testing , Colorimetry/instrumentation , Humans , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Transferrin/analysis , Lab-On-A-Chip Devices , Iron/blood , Equipment Design
15.
Food Chem ; 461: 140856, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39173253

ABSTRACT

A rapid user-friendly paper-based test strip using zinc microparticles in conjugation with Griess reagent was developed for nitrite and nitrate detection. Test strips were fabricated using a simple and fast method of step-by-step immersion into reagents so that each strip contained a single detection pad for nitrite detection and another separate pad for nitrate detection. To reduce nitrate to nitrite, zinc microparticles suspended in ethanolic solution of polyvinylpyrrolidone (PVP) were uniformly immobilized on the paper strips that were previously impregnated in the Griess reagent and dried. The Griess reagent components were optimized to reach the highest color intensity. The optimized test strip was able to determine both nitrite and nitrate with respective detection limits of 0.43 and 9.43 mg/kg and a detection time of 60 s. The performance of the new test strips was evaluated for the simultaneous colorimetric detection of nitrite and nitrate in water and different food samples.


Subject(s)
Colorimetry , Nitrates , Nitrites , Paper , Reagent Strips , Nitrites/analysis , Nitrates/analysis , Colorimetry/methods , Colorimetry/instrumentation , Reagent Strips/analysis , Reagent Strips/chemistry , Limit of Detection , Food Analysis/methods , Food Analysis/instrumentation , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
16.
Sensors (Basel) ; 24(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39123836

ABSTRACT

This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic paper-based analytical device (µPAD) for plasma separation, filtration, and reaction functions and a 3D-printed cassette for hematocrit and blood glucose detection using a smartphone. The origami µPAD is patterned using a cost-effective label printing technique instead of the conventional wax printing method. The 3D-printed cassette incorporates an array of LED lights, which mitigates the effects of intensity variations in the ambient light and hence improves the accuracy of the blood glucose and hematocrit concentration measurements. The hematocrit concentration is determined quantitatively by measuring the distance of plasma wicking along the upper layer of the origami µPAD, which is pretreated with sodium chloride and Tween 20 to induce dehydration and aggregation of the red blood cells. The filtered plasma also penetrates to the lower layer of the origami µPAD, where it reacts with embedded colorimetric assay reagents to produce a yellowish-brown complex. A color image of the reaction complex is captured using a smartphone inserted into the 3D-printed cassette. The image is analyzed using self-written RGB software to quantify the blood glucose concentration. The calibration results indicate that the proposed detection platform provides an accurate assessment of the blood glucose level over the range of 45-630 mg/dL (R2 = 0.9958). The practical feasibility of the proposed platform is demonstrated by measuring the blood glucose and hematocrit concentrations in 13 human whole blood samples. Taking the measurements obtained from commercial glucose and hematocrit meters as a benchmark, the proposed system has a differential of no more than 6.4% for blood glucose detection and 9.1% for hematocrit detection. Overall, the results confirm that the proposed µPAD is a promising solution for cost-effective and reliable POC health monitoring.


Subject(s)
Blood Glucose , Paper , Point-of-Care Systems , Printing, Three-Dimensional , Smartphone , Hematocrit , Humans , Blood Glucose/analysis , Colorimetry/instrumentation , Colorimetry/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
17.
Food Chem ; 460(Pt 3): 140690, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39106752

ABSTRACT

The misuse of tetracyclines in livestock production poses significant health risks. Thus, establishing convenient detection methods to replace complex laboratory tests for food safety is crucial. In this study, a heterostructure Zn-BTC/IRMOF-3 (denoted as ZBI) asynchronous response fluorescence sensor was developed for the qualitative and quantitative detection of tetracyclines in foods. The ZBI solution exhibited blue fluorescence under UV excitation; upon the introduction of tetracyclines, ZBI selectively recognized the tetracycline molecules through electron transfer, π-π stacking, and chelation, resulting in blue fluorescence quenching and green fluorescence enhancement. The ZBI sensor for tetracycline detection achieved recovery rates ranging from 93.91 to 111.91% in food samples, with a detection limit of as low as 0.086 µmol/L. Lastly, a portable sensing device using support vector classifier was constructed for detecting tetracyclines in real-life scenarios. Our findings introduce a new approach for fabricating fluorescence sensors and offer a novel method for detecting tetracyclines.


Subject(s)
Food Contamination , Metal-Organic Frameworks , Support Vector Machine , Tetracyclines , Tetracyclines/analysis , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Animals , Colorimetry/instrumentation , Colorimetry/methods , Fluorescence , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/instrumentation , Limit of Detection , Anti-Bacterial Agents/analysis
18.
ACS Appl Mater Interfaces ; 16(36): 47242-47256, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39189838

ABSTRACT

The detection of ammonia levels in blood is critical for diagnosing and monitoring various medical conditions, including liver dysfunction and metabolic disorders. However, traditional diagnostic methods are slow and cumbersome, often involving multiple contact-based steps such as ammonia separation in alkali conditions followed by distillation or microdiffusion, leading to delays in diagnosis and treatment. Herein, we developed a colorimetric assay capable of rapid detection of ammonia in whole blood or plasma samples, utilizing 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-oxidized cellulose nanocrystals (TCNC) coupled with gold nanoparticles (AuNPs). The basis of our assay relies on either (i) the interaction between the carboxylate group (-COO) of TEMPO and ammonium ions or (ii) the manipulation of AuNPs surface plasmon resonance (SPR) through the formation of Au(NH3)43+, which displaces a redox mediator, resazurin, resulting in observable multicolor displays at various concentrations of ammonia. The colorimetric assay exhibits a wide linear detection range for dissolved NH4+ (0.1-37 µM) with a low limit of detection (LOD) of 0.1 µM. Additionally, it effectively measures NH3(g) concentrations in the range of 0.5-144 µM. The fabricated electrochemical nose (E-nose) device demonstrates excellent analytical performance for plasma ammonia sensing (0.05-256 µM). Experimental results demonstrate a linear detection range suitable for clinical applications, with excellent correlation to standard laboratory methods, offering a practical solution for point-of-care (PoC) testing. We anticipate that this approach can be applied broadly to improve patient monitoring and treatment by providing immediate and accurate ammonia measurements in a clinical setting.


Subject(s)
Ammonia , Colorimetry , Gold , Metal Nanoparticles , Ammonia/blood , Colorimetry/methods , Colorimetry/instrumentation , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Surface Plasmon Resonance/methods , Cellulose/chemistry , Electronic Nose
19.
Lab Chip ; 24(18): 4288-4295, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39193649

ABSTRACT

Ketones, such as beta-hydroxybutyrate (BHB), are important metabolites that can be used to monitor for conditions such as diabetic ketoacidosis (DKA) and ketosis. Compared to conventional approaches that rely on samples of urine or blood evaluated using laboratory techniques, processes for monitoring of ketones in sweat using on-body sensors offer significant advantages. Here, we report a class of soft, skin-interfaced microfluidic devices that can quantify the concentrations of BHB in sweat based on simple and low-cost colorimetric schemes. These devices combine microfluidic structures and enzymatic colorimetric BHB assays for selective and accurate analysis. Human trials demonstrate the broad applicability of this technology in practical scenarios, and they also establish quantitative correlations between the concentration of BHB in sweat and in blood. The results represent a convenient means for managing DKA and aspects of personal nutrition/wellness.


Subject(s)
3-Hydroxybutyric Acid , Biosensing Techniques , Colorimetry , Sweat , Humans , Sweat/chemistry , Colorimetry/instrumentation , Biosensing Techniques/instrumentation , 3-Hydroxybutyric Acid/analysis , Ketones/urine , Skin/chemistry , Skin/metabolism , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Equipment Design
20.
Food Chem ; 459: 140380, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39003862

ABSTRACT

As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.


Subject(s)
Biosensing Techniques , Cadmium , Food Contamination , Cadmium/analysis , Cadmium/chemistry , Biosensing Techniques/instrumentation , Food Contamination/analysis , Colorimetry/instrumentation , Limit of Detection , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Bioelectric Energy Sources
SELECTION OF CITATIONS
SEARCH DETAIL