Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.485
1.
PLoS One ; 19(6): e0304614, 2024.
Article En | MEDLINE | ID: mdl-38870218

Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.


Fruiting Bodies, Fungal , Fruiting Bodies, Fungal/chemistry , Chitin/chemistry , Chitin/metabolism , Cell Wall/chemistry , Coriolaceae/metabolism , Coriolaceae/chemistry , Chitosan/chemistry , Compressive Strength , Glucans/chemistry , Glucans/metabolism , Porosity
2.
Int J Nanomedicine ; 19: 5109-5123, 2024.
Article En | MEDLINE | ID: mdl-38846643

Introduction: Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. Methods: In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. Results: The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. Conclusion: The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.


Spinal Fusion , Spinal Fusion/instrumentation , Spinal Fusion/methods , Animals , Mice , Rats , Calcium Phosphates/chemistry , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Lumbar Vertebrae/surgery , Rats, Sprague-Dawley , Male , Compressive Strength , Cell Proliferation/drug effects , Bone Cements/chemistry , Smart Materials/chemistry , Cell Adhesion/drug effects
3.
J Orthop Trauma ; 38(7): e252-e256, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38837213

OBJECTIVES: This study compared the maximal compression force before thread stripping of the novel bone-screw-fastener (BSF) with the traditional buttress screw (TBS) in synthetic osteoporotic and cadaveric bone models. METHODS: The maximum compression force of the plate-bone interface before loss of screw purchase during screw tightening was measured between self-tapping 3.5-mm BSF and 3.5-mm TBS using calibrated load cells. Three synthetic biomechanical models were used: a synthetic osteoporotic diaphysis (model 1), a 3-layer biomechanical polyurethane foam with 50-10-50 pounds-per-cubic-foot layering (model 2), and a 3-layer polyurethane foam with 50-15-50 pounds-per-cubic-foot layering (model 3). For the cadaveric metaphyseal model, 3 sets of cadaveric tibial plafonds and 3 sets of cadaveric tibial plateaus were used. A plate with sensors between the bone and plate interface was used to measure compression force during screw tightening in the synthetic bone models, while an annular load cell that measured screw compression as it slid through a guide was used to measure compression in the cadaver models. RESULTS: Across all synthetic osteoporotic bone models, the BSF demonstrated greater maximal compression force before stripping compared with the TBS [model 1, 155.51 N (SD = 7.77 N) versus 138.78 N (SD = 12.74 N), P = 0.036; model 2, 218.14 N (SD = 14.15 N) versus 110.23 N (SD = 8.00 N), P < 0.001; model 3, 382.72 N (SD = 20.15) versus 341.09 N (SD = 15.57 N), P = 0.003]. The BSF had greater maximal compression force for the overall cadaver trials, the tibial plafond trials, and the tibial plateau trials [overall, 111.27 N vs. 97.54 N (SD 32.32 N), P = 0.002; plafond, 149.6 N versus 132.92 N (SD 31.32 N), P = 0.006; plateau, 81.33 N versus 69.89 N (SD 33.38 N), P = 0.03]. CONCLUSIONS: The novel bone-screw-fastener generated 11%-65% greater maximal compression force than the TBS in synthetic osteoporotic and cadaveric metaphyseal bone models. A greater compression force may increase construct stability, facilitate early weight-bearing, and reduce construct failure.


Bone Screws , Cadaver , Compressive Strength , Humans , Materials Testing , Equipment Failure Analysis , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Stress, Mechanical , Biomechanical Phenomena , Bone Plates
4.
PLoS One ; 19(6): e0304797, 2024.
Article En | MEDLINE | ID: mdl-38829883

Partially encased concrete (PEC) has better mechanical properties as a structure where steel and concrete work together. Due to the increasing amount of construction waste, recycled aggregate concrete (RAC) is being considered by more people. However, although RAC has more points, the performance is inferior to natural aggregate concrete (NAC). To narrow or address this gap, lightweight, high-strength and corrosion-resistant CFRP can be used, also protecting the steel flange of the PEC structure. Therefore, carbon fiber reinforced polymer (CFRP) confined partially encased recycled coarse aggregate concrete columns were studied in this paper. With respect to different slenderness ratios, recycled coarse aggregate(RCA) replacement ratios, and number of CFRP layers, the performance of the proposed CFRP restrained columns are reported. The RCA replacement ratio is analyzed to be limited negative impact on the bearing capacity, generally within 6%. As for the slenderness ratio, the bearing capacity increased with it. However, wrapping CFRP significantly increased the bearing capacity. Considering the arch factor, a simple formula for calculating the ultimate strength of CFRP-confined partially encased RAC columns is developed based on EC4 and GB50017-2017. By comparison with the experimental values, the error is within 10%.


Carbon Fiber , Compressive Strength , Construction Materials , Polymers , Recycling , Carbon Fiber/chemistry , Construction Materials/analysis , Polymers/chemistry , Materials Testing , Steel/chemistry
5.
J Morphol ; 285(7): e21745, 2024 Jul.
Article En | MEDLINE | ID: mdl-38877975

The jaws and their supporting cartilages are tessellated in elasmobranchs and exhibit an abrupt increase in stiffness under compression. The major jaw-supporting cartilage, the hyomandibula, varies widely by shape and size and the extent of the load-bearing role is hypothesized to be inversely related to the number of craniopalatine articulations. Here, we test this hypothesis by evaluating the strength of the hyomandibular cartilage under compression in 13 species that represent all four jaw suspension systems in elasmobranchs (amphistyly, orbitostyly, hyostyly, and euhyostyly). The strength of the hyomandibular cartilages was measured directly using a material testing machine under compressive load, and indirectly by measuring morphological variables putatively associated with strength. The first measure of strength is force to yield (Fy), which was the peak force (N) exerted on the hyomandibula before plastic deformation. The second measure was compressive yield strength (σy, also called yield stress), which is calculated as peak force (N) before plastic deformation/cross-sectional area (mm2) of the specimen. Our results show that the load-bearing role of the hyomandibular cartilage, as measured by yield strength, is inversely related to the number of craniopalatine articulations, as predicted. Force to yield was lower for euhyostylic jaw suspensions and similar for the others. We also found that mineralization is associated with greater yield strength, while the second moment of area is associated with greater force to yield.


Cartilage , Elasmobranchii , Jaw , Animals , Jaw/anatomy & histology , Jaw/physiology , Elasmobranchii/physiology , Elasmobranchii/anatomy & histology , Cartilage/physiology , Compressive Strength/physiology , Biomechanical Phenomena , Stress, Mechanical
6.
Swiss Dent J ; 134(3): 18-34, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38864504

This study investigated and compared the consistency and compressive strength of two commercially available paraffin wax chewing gums (Aurosan (AU) and GC Europe (GC)), as well as their impact on stimulated salivary flow rate. Instrumental texture analysis was uti-lized to assess the consistency and compressive strength of AU and GC during a 7-min chewing period. Subsequently, stimulated salivary flow rate (sSFR) was evaluated in healthy subjects using AU and GC over a 7-minute period. The compressive strengths from the pre-liminary test were compared over time with the sialometry data. Eighty-one test subjects, comprising 33 men and 48 women, participated. Over the 7-min measurement period, dif-ferences were observed in the total amount of saliva accumulated per minute. Direct com-parison of AU and GC revealed that regardless of age and gender, the amount of saliva formed after 1 min was 0.63 times less with AU than with GC (95% CI: 0.56 - 0.70; P < 0.001). The accumulated saliva volume with AU was also significantly lower than that with GC in the first 4 min (P = 0.016). However, from minute 5 onwards, the two products no longer showed statistical differences in the total amount of saliva. Comparison of the com-pressive strength of AU and GC showed that the values after 1 and 2 min were significantly higher for AU than for GC (P < 0.05); for all other time points, the compressive strength was higher for GC. In the mixed-effects model after log-transformation of compressive strength and saliva volume, GC exhibited decreasing saliva volumes with increasing compressive strength (P <0.001). Conversely, the opposite was observed for AU (P = 0.019). The study suggests that the consistency or compressive strength of paraffin wax chewing gums from different manufacturers could impact sSFR.


Chewing Gum , Paraffin , Saliva , Humans , Female , Male , Adult , Saliva/chemistry , Compressive Strength/physiology , Mastication/physiology , Young Adult , Middle Aged , Secretory Rate/physiology , Secretory Rate/drug effects
7.
Sci Rep ; 14(1): 13569, 2024 06 12.
Article En | MEDLINE | ID: mdl-38866844

Revolutionizing construction, the concrete blend seamlessly integrates human hair (HH) fibers and millet husk ash (MHA) as a sustainable alternative. By repurposing human hair for enhanced tensile strength and utilizing millet husk ash to replace sand, these materials not only reduce waste but also create a durable, eco-friendly solution. This groundbreaking methodology not only adheres to established structural criteria but also advances the concepts of the circular economy, representing a significant advancement towards environmentally sustainable and resilient building practices. The main purpose of the research is to investigate the fresh and mechanical characteristics of concrete blended with 10-40% MHA as a sand substitute and 0.5-2% HH fibers by applying response surface methodology modeling and optimization. A comprehensive study involved preparing 225 concrete specimens using a mix ratio of 1:1.5:3 with a water-to-cement ratio of 0.52, followed by a 28 day curing period. It was found that a blend of 30% MHA and 1% HH fibers gave the best compressive and splitting tensile strengths at 28 days, which were 33.88 MPa and 3.47 MPa, respectively. Additionally, the incorporation of increased proportions of MHA and HH fibers led to reductions in both the dry density and workability of the concrete. In addition, utilizing analysis of variance (ANOVA), response prediction models were created and verified with a significance level of 95%. The models' R2 values ranged from 72 to 99%. The study validated multi-objective optimization, showing 1% HH fiber and 30% MHA in concrete enhances strength, reduces waste, and promotes environmental sustainability, making it recommended for construction.


Construction Materials , Hair , Millets , Tensile Strength , Humans , Construction Materials/analysis , Hair/chemistry , Millets/chemistry , Materials Testing , Compressive Strength
8.
PLoS One ; 19(6): e0302944, 2024.
Article En | MEDLINE | ID: mdl-38857272

The uniaxial compressive strength (UCS) and elasticity modulus (E) of intact rock are two fundamental requirements in engineering applications. These parameters can be measured either directly from the uniaxial compressive strength test or indirectly by using soft computing predictive models. In the present research, the UCS and E of intact carbonate rocks have been predicted by introducing two stacking ensemble learning models from non-destructive simple laboratory test results. For this purpose, dry unit weight, porosity, P-wave velocity, Brinell surface harnesses, UCS, and static E were measured for 70 carbonate rock samples. Then, two stacking ensemble learning models were developed for estimating the UCS and E of the rocks. The applied stacking ensemble learning method integrates the advantages of two base models in the first level, where base models are multi-layer perceptron (MLP) and random forest (RF) for predicting UCS, and support vector regressor (SVR) and extreme gradient boosting (XGBoost) for predicting E. Grid search integrating k-fold cross validation is applied to tune the parameters of both base models and meta-learner. The results demonstrate the generalization ability of the stacking ensemble method in the comparison of base models in the terms of common performance measures. The values of coefficient of determination (R2) obtained from the stacking ensemble are 0.909 and 0.831 for predicting UCS and E, respectively. Similarly, the stacking ensemble yielded Root Mean Squared Error (RMSE) values of 1.967 and 0.621 for the prediction of UCS and E, respectively. Accordingly, the proposed models have superiority in the comparison of SVR and MLP as single models and RF and XGBoost as two representative ensemble models. Furthermore, sensitivity analysis is carried out to investigate the impact of input parameters.


Carbonates , Compressive Strength , Elastic Modulus , Carbonates/chemistry , Carbonates/analysis , Porosity , Models, Theoretical
9.
Carbohydr Polym ; 340: 122241, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38858016

Polyacrylamide (PAM) hydrogels are widely used in wide-ranging applications in biology, medicine, pharmaceuticals and environmental sectors. However, achieving the requisite mechanical properties, fatigue resistance, self-recovery, biocompatibility, and biodegradability remains a challenge. Herein, we present a facile method to construct a nanocomposite hydrogel by integrating short linear glucan (SLG), obtained by debranching waxy corn starch, into a PAM network through self-assembly. The resulting composite hydrogel with 10 % SLG content exhibited satisfactory stretchability (withstanding over 1200 % strain), along with maximum compressive and shear strengths of about 490 kPa and 39 kPa at 90 % deformation, respectively. The hydrogel demonstrated remarkable resilience and could endure repeated compression and stretching. Notably, the nanocomposite hydrogel with 10 % SLG content exhibited full stress recovery at 90 % compression deformation after 20 s, without requiring specific environmental conditions, achieving an energy dissipation recovery rate of 98 %. Meanwhile, these hydrogels exhibited strong adhesion to various soft and hard substrates, including skin, glasses and metals. Furthermore, they maintain solid integrity at both 37 °C and 50 °C after swelling equilibrium, unlike traditional PAM hydrogels, which exhibited softening under similar conditions. We hope that this PAM-SLG hydrogel will open up new avenues for the development of multifunctional electronic devices, offering enhanced performance and versatility.


Acrylic Resins , Glucans , Hydrogels , Nanocomposites , Nanocomposites/chemistry , Hydrogels/chemistry , Glucans/chemistry , Acrylic Resins/chemistry , Elasticity , Biocompatible Materials/chemistry , Compressive Strength
10.
Biomacromolecules ; 25(6): 3464-3474, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38743442

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.


Cryogels , Cryogels/chemistry , Porosity , Peptides/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Polymerization , Polymers/chemistry , Compressive Strength , Extracellular Matrix/chemistry
11.
J Biomech ; 169: 112133, 2024 May.
Article En | MEDLINE | ID: mdl-38744146

Abnormal loading is thought to play a key role in the disease progression of cartilage, but our understanding of how cartilage compositional measurements respond to acute compressive loading in-vivo is limited. Ten healthy subjects were scanned at two timepoints (7 ± 3 days apart) with a 3 T magnetic resonance imaging (MRI) scanner. Scanning sessions included T1ρ and T2* acquisitions of each knee in two conditions: unloaded (traditional MRI setup) and loaded in compression at 40 % bodyweight as applied by an MRI-compatible loading device. T1ρ and T2* parameters were quantified for contacting cartilage (tibial and femoral) and non-contacting cartilage (posterior femoral condyle) regions. Significant effects of load were found in contacting regions for both T1ρ and T2*. The effect of load (loaded minus unloaded) in femoral contacting regions ranged from 4.1 to 6.9 ms for T1ρ, and 3.5 to 13.7 ms for T2*, whereas tibial contacting regions ranged from -5.6 to -1.7 ms for T1ρ, and -2.1 to 0.7 ms for T2*. Notably, the responses to load in the femoral and tibial cartilage revealed opposite effects. No significant differences were found in response to load between the two visits. This is the first study that analyzed the effects of acute loading on T1ρ and T2* measurements in human femoral and tibial cartilage separately. The results suggest the effect of acute compressive loading on T1ρ and T2* was: 1) opposite in the femoral and tibial cartilage; 2) larger in contacting regions than in non-contacting regions of the femoral cartilage; and 3) not different visit-to-visit.


Cartilage, Articular , Femur , Magnetic Resonance Imaging , Tibia , Weight-Bearing , Humans , Cartilage, Articular/physiology , Cartilage, Articular/diagnostic imaging , Femur/diagnostic imaging , Femur/physiology , Male , Adult , Female , Magnetic Resonance Imaging/methods , Tibia/diagnostic imaging , Tibia/physiology , Weight-Bearing/physiology , Knee Joint/physiology , Knee Joint/diagnostic imaging , Compressive Strength/physiology
12.
PLoS One ; 19(5): e0299230, 2024.
Article En | MEDLINE | ID: mdl-38787887

As a basic parameter of rock, the rock bridge angle plays an important role in maintaining the stability of rock masses. To study the size effect of rock bridge angle on the uniaxial compressive strength of rocks, this paper adopts the principle of regression analysis and combines numerical simulation to carry out relevant research. The research results indicate that: (1) the uniaxial compressive strength decreases with the increase of the rock bridge angle, showing a power function relationship; (2) The uniaxial compressive strength decreases with the increase of rock size and tends to stabilize when the rock size is greater than 350 mm, showing a significant size effect. (3) The fluctuation coefficient of compressive strength increases with the increase of rock bridge angle and decreases with the increase of rock size; When the rock size is 350 mm, the fluctuation coefficient is less than 5%; (4) The characteristic compressive strength and characteristic size both increase with the increase of the rock bridge angle.


Compressive Strength , Regression Analysis , Models, Theoretical
13.
Biomed Phys Eng Express ; 10(4)2024 Jun 13.
Article En | MEDLINE | ID: mdl-38772347

This study evaluated the feasibility of the femoral bone after fixation using biphasic calcium phosphate cement-augmentation of the proximal femoral nail antirotation (PFNA) compared with PFNA without cement. This study presented to compare the stiffness, fatigue testing, and compressive strength between stable (AO31-A2.1) and unstable (AO31-A3.3) intertrochanteric fractures treated by cement augmented PFNA of the cadaveric femoral. Biphasic calcium phosphate cement was injected to align and compatible with PFNA and the reconstructive procedure was monitored the cement placement using x-ray imaging during operation. The testing demonstrated that the cement could be injected through a small needle (13 G, 16 cm length, 1.8 mm inner diameter) within a suitable operating time. The feasibility study of the biomechanical testing was divided into three tests: stiffness test, fatigue cyclic load, and compression test. The results showed that the cement-augmented specimens exhibited higher stiffness than the control specimens without cement. The cement-augmented specimens also showed lower strain energy during the fatigue test, resulting in higher compressive strength (4730.7 N) compared to the control specimens (3857.4 N). There is a correlation between BMD and fracture load and the increase in compression load of the cement-augmented femoral compared to the controls as well as an increase in strain energy of fatigue cyclic testing was found. Biphasic calcium phosphate cement-augmented of the PFNA biomechanically enhanced the cut-out resistance in intertrochanteric fracture. This procedure is especially efficient for unstable intertrochanteric fracture suggesting the potential benefits of using biphasic calcium phosphate cement in medical applications.


Bone Cements , Bone Nails , Cadaver , Calcium Phosphates , Compressive Strength , Feasibility Studies , Femur , Humans , Bone Cements/therapeutic use , Calcium Phosphates/chemistry , Biomechanical Phenomena , Hip Fractures/surgery , Materials Testing , Female , Male , Aged , Aged, 80 and over , Injections , Femoral Fractures/surgery , Femoral Fractures/therapy , Stress, Mechanical
14.
J Dent ; 146: 105073, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782176

OBJECTIVES: Evaluate, in vitro, the effect of incorporating nano-sized sodium trimetaphosphate (TMPnano) and phosphorylated chitosan (Chi-Ph) into resin-modified glass ionomer cement (RMGIC) used for orthodontic bracket cementation, on mechanical, fluoride release, antimicrobial and cytotoxic properties. METHODS: RMGIC was combined with Chi-Ph (0.25%/0.5%) and/or TMPnano (14%). The diametral compressive/tensile strength (DCS/TS), surface hardness (SH) and degree of conversion (%DC) were determined. For fluoride (F) release, samples were immersed in des/remineralizing solutions. Antimicrobial/antibiofilm activity was evaluated by the agar diffusion test and biofilm metabolism (XTT). Cytotoxicity in fibroblasts was assessed with the resazurin method. RESULTS: After 24 h, the RMGIC-14%TMPnano group showed a lower TS value (p < 0.001); after 7 days the RMGIC-14%TMPnano-0.25%Chi-Ph group showed the highest value (p < 0.001). For DCS, the RMGIC group (24 h) showed the highest value (p < 0.001); after 7 days, the highest value was observed for the RMGIC-14%TMPnano-0.25%Chi-Ph (p < 0.001). RMGIC-14%TMPnano, RMGIC-14%TMPnano-0.25%Chi-Ph, RMGIC-14%TMPnano-0.5%Chi-Ph showed higher and similar release of F (p > 0.001). In the SH, the RMGIC-0.25%Chi-Ph; RMGIC-0.5%Chi-Ph; RMGIC-14%TMPnano-0.5%Chi-Ph groups showed similar results after 7 days (p > 0.001). The RMGIC-14%TMPnano-0.25%Chi-Ph group showed a better effect on microbial/antibiofilm growth, and the highest efficacy on cell viability (p < 0.001). After 72 h, only the RMGIC-14%TMPnano-0.25%Chi-Ph group showed cell viability (p < 0.001). CONCLUSION: The RMGIC-14%TMPnano-0.25%Chi-Ph did not alter the physical-mechanical properties, was not toxic to fibroblasts and reduced the viability and metabolism of S. mutans. CLINICAL RELEVANCE: The addition of phosphorylated chitosan and organic phosphate to RMGIC could provide an antibiofilm and remineralizing effect on the tooth enamel of orthodontic patients, who are prone to a high cariogenic challenge due to fluctuations in oral pH and progression of carious lesions.


Anti-Bacterial Agents , Biofilms , Chitosan , Fibroblasts , Fluorides , Glass Ionomer Cements , Materials Testing , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Biofilms/drug effects , Fibroblasts/drug effects , Phosphorylation , Fluorides/pharmacology , Hardness , Tensile Strength , Surface Properties , Compressive Strength , Nanoparticles , Resin Cements/chemistry , Polyphosphates/pharmacology , Dental Cements/pharmacology , Dental Cements/chemistry , Cell Survival/drug effects , Streptococcus mutans/drug effects , Animals , Phosphates/pharmacology , Humans , Orthodontic Brackets
15.
PLoS One ; 19(5): e0299001, 2024.
Article En | MEDLINE | ID: mdl-38805439

Polypropylene fiber was equally mixed into alkali-activated slag fly ash geopolymer in order to ensure the filling effect of mine goaf and improve the stability of cemented gangue paste filling material with ecological matrix. Triaxial compression tests were then conducted under various conditions. The mechanical properties and damage characteristics of composite paste filling materials are studied, and the damage evolution model of paste filling materials under triaxial compression is established, based on the deviatoric stress-strain curve generated by the progressive failure behavior of samples. Internal physical and chemical mechanisms of the evolution of structure and characteristics are elucidated and comprehended via the use of SEM-EDS and XRD micro-techniques. The results show that the fiber can effectively improve the ultimate strength and the corresponding effective stress strength index of the sample within the scope of the experimental study. The best strengthening effect is achieved when the amount of NaOH is 3% of the mass of the solid material, the amount of fiber is 5‰ of the mass of the solid material, and the length of the fiber is about 12 mm. The action mode of the fiber in the sample is mainly divided into single-grip anchoring and three-dimensional mesh traction. As the crack initiates and develops, connection occurs in the matrix, where the fiber has an obvious interference and retardation effect on the crack propagation, thereby transforming the brittle failure into a ductile failure and consequently improving the fracture properties of the ecological cementitious coal gangue matrix. The theoretical damage evolution model of a segmented filling body is constructed by taking the initial compaction stage end point as the critical point, and the curve of the damage evolution model of the specimen under different conditions is obtained. The theoretical model is verified by the results from the triaxial compression test. We concluded that the experimental curve is in good agreement with the theoretical curve. Therefore, the established theoretical model has a certain reference value for the analysis and evaluation of the mechanical properties of paste filling materials. The research results can improve the utilization rate of solid waste resources.


Calcium Sulfate , Compressive Strength , Materials Testing , Calcium Sulfate/chemistry , Construction Materials/analysis , Polypropylenes/chemistry , Coal Ash/chemistry , Stress, Mechanical , Cementation/methods
16.
Sci Rep ; 14(1): 12412, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816387

This study introduces microbiologically induced calcium phosphate precipitation (MICPP) as a novel and environmentally sustainable method of soil stabilization. Using Limosilactobacillus sp., especially NBRC 14511 and fish bone solution (FBS) extracted from Tuna fish bones, the study was aimed at testing the feasibility of calcium phosphate compounds (CPCs) deposition and sand stabilization. Dynamic changes in pH and calcium ion (Ca2+) concentration during the precipitation experiments affected the precipitation and sequential conversion of dicalcium phosphate dihydrate (DCPD) to hydroxyapatite (HAp), which was confirmed by XRD and SEM analysis. Sand solidification experiments demonstrated improvements in unconfined compressive strength (UCS), especially at higher Urea/Ca2+ ratios. The UCS values obtained were 10.35 MPa at a ratio of 2.0, 3.34 MPa at a ratio of 1.0, and 0.43 MPa at a ratio of 0.5, highlighting the advantages of MICPP over traditional methods. Microstructural analysis further clarified the mineral composition, demonstrating the potential of MICPP in environmentally friendly soil engineering. The study highlights the promise of MICPP for sustainable soil stabilization, offering improved mechanical properties and reducing environmental impact, paving the way for novel geotechnical practices.


Calcium Phosphates , Chemical Precipitation , Sand , Calcium Phosphates/chemistry , Calcium Phosphates/metabolism , Sand/chemistry , Animals , Hydrogen-Ion Concentration , Durapatite/chemistry , Soil/chemistry , Compressive Strength , X-Ray Diffraction
17.
Biomater Adv ; 161: 213871, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692181

Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.


Ceramics , Durapatite , Magnesium , Durapatite/chemistry , Magnesium/chemistry , Ceramics/chemistry , Animals , Cortical Bone/drug effects , Cancellous Bone , Osteogenesis/drug effects , Materials Testing , Nanotubes, Carbon/chemistry , Porosity , Compressive Strength , Bone Substitutes/chemistry , Biocompatible Materials/chemistry
18.
J Mech Behav Biomed Mater ; 156: 106584, 2024 Aug.
Article En | MEDLINE | ID: mdl-38810544

Biomechanical parameters have the potential to be used as physical markers for prevention and diagnosis. Finite Element Analysis (FEA) is a widely used tool to evaluate these parameters in vivo. However, the development of clinically relevant FEA requires personalisation of the geometry, boundary conditions, and constitutive parameters. This contribution focuses on the characterisation of mechanical properties in vivo which remains a significant challenge for the community. The aim of this retrospective study is to evaluate the sensitivity of the computed elastic parameters (shear modulus of fat and muscle tissues) derived by inverse analysis as a function of the geometrical modelling assumption (homogenised monolayer vs bilayer) and the formulation of the cost function. The methodology presented here proposes to extract the experimental force-displacement response for each tissue layer (muscle and fat) and construct the associated Finite Element Model for each volunteer, based on data previously collected in our group (N = 7 volunteers) as reported in (Fougeron et al., 2020). The sensitivity analysis indicates that the choice of the cost function has minimal impact on the topology of the response surface in the parametric space. Each surface displays a valley of parameters that minimises the cost function. The constitutive properties of the thigh (reported as median ± interquartile range) were determined to be (µ=198±322Pa,α=37) for the monolayer and (µmuscle=1675±1127Pa,αmuscle=22±14,µfat=537±1131Pa,αfat=32±7) for the bilayer. A comparison of the homogenised monolayer and bilayer models showed that adding a layer reduces the error on the local force displacement curves, increasing the accuracy of the local kinematics of soft tissues during indentation. This allows for an increased understanding of load transmission in soft tissue. The comparison of the two models in terms of strains indicates that the modelling choice significantly influences the localization of maximal compressive strains. These results support the idea that the biomechanical community should conduct further work to develop reliable methodologies for estimating in vivo strain in soft tissue.


Finite Element Analysis , Thigh , Biomechanical Phenomena , Thigh/physiology , Humans , Compressive Strength , Male , Models, Biological , Adult , Stress, Mechanical , Adipose Tissue
19.
PLoS One ; 19(5): e0303645, 2024.
Article En | MEDLINE | ID: mdl-38771843

The corrosion resistance of FRP-reinforced ordinary concrete members under the combined action of harsh environments (i.e., alkaline or acidic solutions, salt solutions) and freeze-thaw cycles is still unclear. To study the mechanical and apparent deterioration of carbon/basalt/glass/aramid fiber cloth reinforced concrete under chemical and freeze-thaw coupling. Plain concrete blocks and FRP-bonded concrete blocks were fabricated. The tensile properties of the FRP sheet and epoxy resin sheet before and after chemical freezing, the compressive strength of the FRP reinforced test block, and the bending capacity of the prismatic test block pasted with FRP on the prefabricated crack side were tested. The deterioration mechanism of the test block was analyzed through the change of surface photos. Based on the experimental data, the Lam-Teng constitutive model of concrete reinforced by alkali-freeze coupling FRP is modified. The results indicate that, in terms of apparent properties, with the increase in the duration of chemical freeze-thaw erosion, the surface of epoxy resin sheets exhibits an increase in pores, along with the emergence of small cracks and wrinkles. The texture of FRP sheets becomes blurred, and cracks and wrinkles appear on the surface. In terms of failure modes, as the number of chemical coupling erosion cycles increases, the location of failure in epoxy resin sheets becomes uncertain, and the failure plane tilts towards the direction of the applied load. The failure mode of FRP sheets remains unchanged. However, the bonding strength between FRP sheets and concrete decreases, resulting in a weakened reinforcement effect. In terms of mechanical properties, FRP sheets undergo the most severe degradation in the coupled environment of acid freeze-thaw cycles. Among them, GFRP experiences the largest degradation in tensile strength, reaching up to 30.17%. In terms of tensile performance, the sheets rank from highest to lowest as follows: CFRP, BFRP, AFRP, and GFRP.As the duration of chemical freeze-coupled erosion increases, the loss rate of compressive strength for specimens bonded with CFRP is the smallest (9.62% in salt freeze-thaw environment), while the loss rate of bearing capacity is higher for specimens reinforced with GFRP (33.8% in acid freeze-thaw environment). In contrast, the loss rate of bearing capacity is lower for specimens reinforced with CFRP (13.6% in salt freeze-thaw environment), but still higher for specimens reinforced with GFRP (25.8% in acid freeze-thaw environment).


Construction Materials , Freezing , Materials Testing , Tensile Strength , Construction Materials/analysis , Compressive Strength
20.
Biomater Sci ; 12(12): 3193-3201, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38747322

Considering the shortcomings of known medical hemostatic materials such as bone wax for bleeding bone management, it is essential to develop alternative bone materials capable of efficient hemostasis and bone regeneration and adaptable to clinical surgical needs. Thus, in the current work, a calcium sulfate hemihydrate and starch-based composite paste was developed and optimized. Firstly, it was found that the use of hydroxypropyl distarch phosphate (HDP) coupled with pregelatinization could generate an injectable, malleable and self-hardening paste with impressive anti-collapse ability in a dynamic aqueous environment, suggesting its potential applicability in both open and minimally invasive clinical practice. The as-hardened matrix exhibited a compressive strength of up to 61.68 ± 5.13 MPa compared to calcium sulfate cement with a compressive strength of 15.16 ± 2.42 MPa, making it a promising candidate for the temporary mechanical stabilization of bone defects. Secondly, the as-prepared paste revealed superior hemostasis and bone regenerative capabilities compared to calcium sulfate cement and bone wax, with greatly enhanced bleeding management and bone healing outcomes when subjected to testing in in vitro and in vivo models. In summary, our results confirmed that calcium sulfate bone cement reinforced with the selected starch can act as a reliable platform for bleeding bone treatment, overcoming the limitations of traditional bone hemostatic agents.


Bone Cements , Calcium Sulfate , Bone Cements/chemistry , Bone Cements/pharmacology , Calcium Sulfate/chemistry , Calcium Sulfate/pharmacology , Animals , Bone Regeneration/drug effects , Hemorrhage/drug therapy , Starch/chemistry , Starch/analogs & derivatives , Starch/pharmacology , Mice , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/administration & dosage , Compressive Strength , Phosphates/chemistry , Male , Gelatin/chemistry , Rats , Rabbits
...