Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.522
1.
Mol Med ; 30(1): 68, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778274

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterized by alveolar edema that can progress to septal fibrosis. Mechanical ventilation can augment lung injury, termed ventilator-induced lung injury (VILI). Connective tissue growth factor (CTGF), a mediator of fibrosis, is increased in ARDS patients. Blocking CTGF inhibits fibrosis and possibly vascular leakage. This study investigated whether neutralizing CTGF reduces pulmonary edema in VILI. METHODS: Following LPS administration, rats were mechanically ventilated for 6 h with low (6 mL/kg; low VT) or moderate (10 mL/kg; mod VT) tidal volume and treated with a neutralizing CTGF antibody (FG-3154) or placebo lgG (vehicle). Control rats without LPS were ventilated for 6 h with low VT. Lung wet-to-dry weight ratio, FITC-labeled dextran permeability, histopathology, and soluble RAGE were determined. RESULTS: VILI was characterized by reduced PaO2/FiO2 ratio (low VT: 540 [381-661] vs. control: 693 [620-754], p < 0.05), increased wet-to-dry weight ratio (low VT: 4.8 [4.6-4.9] vs. control: 4.5 [4.4-4.6], p < 0.05), pneumonia (low VT: 30 [0-58] vs. control: 0 [0-0]%, p < 0.05) and interstitial inflammation (low VT: 2 [1-3] vs. control: 1 [0-1], p < 0.05). FG-3154 did not affect wet-to-dry weight ratio (mod VT + FG-3154: 4.8 [4.7-5.0] vs. mod VT + vehicle: 4.8 [4.8-5.0], p > 0.99), extravasated dextrans (mod VT + FG-3154: 0.06 [0.04-0.09] vs. mod VT + vehicle: 0.04 [0.03-0.09] µg/mg tissue, p > 0.99), sRAGE (mod VT + FG-3154: 1865 [1628-2252] vs. mod VT + vehicle: 1885 [1695-2159] pg/mL, p > 0.99) or histopathology. CONCLUSIONS: 'Double hit' VILI was characterized by inflammation, impaired oxygenation, pulmonary edema and histopathological lung injury. Blocking CTGF does not improve oxygenation nor reduce pulmonary edema in rats with VILI.


Connective Tissue Growth Factor , Pulmonary Edema , Ventilator-Induced Lung Injury , Animals , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/antagonists & inhibitors , Rats , Male , Pulmonary Edema/etiology , Pulmonary Edema/metabolism , Antibodies, Neutralizing/pharmacology , Rats, Sprague-Dawley , Lung/pathology , Lung/metabolism , Disease Models, Animal , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/antagonists & inhibitors
2.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Article En | MEDLINE | ID: mdl-38695335

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Cobalt , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Kidney Tubules/pathology , Kidney Tubules/metabolism , Transforming Growth Factor beta1/metabolism , Indazoles/pharmacology , Humans , Connective Tissue Growth Factor/metabolism , Lipid Metabolism/drug effects , Cell Line
3.
J Cell Mol Med ; 28(10): e18448, 2024 May.
Article En | MEDLINE | ID: mdl-38774993

Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.


Connective Tissue Growth Factor , Pulmonary Fibrosis , Connective Tissue Growth Factor/metabolism , Humans , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Molecular Targeted Therapy , Extracellular Matrix/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731911

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Connective Tissue Growth Factor , Drug Discovery , Humans , Connective Tissue Growth Factor/metabolism , Drug Discovery/methods , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Eye Diseases/drug therapy , Eye Diseases/metabolism , Fibrosis , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Gene Expression Regulation/drug effects
5.
Zhen Ci Yan Jiu ; 49(5): 487-498, 2024 May 25.
Article En, Zh | MEDLINE | ID: mdl-38764120

OBJECTIVES: To observe the effect of electroacupuncture(EA) on endometrial fibrosis and M1-type macrophages in rats with intrauterine adhesions(IUA), so as to explore the possible mechanism of EA in the treatment of IUA. METHODS: Fifteen female SD rats were randomly divided into blank group, model group and EA group, with 5 rats in each group. The IUA rat model was established by double damage method using mechanical scraping combined with lipopolysaccharide infection. Rats in the EA group were treated with acupuncture at "Guanyuan"(CV4), and EA at bilateral "Zusanli"(ST36) and "Sanyinjiao"(SP6)for 20 minutes each time, once a day, for 3 consecutive cycles of estrus. Five rats in each group were sampled during the estrous period, and the endometrial morphology, endometrial thickness and the number of blood vessels and glands were observed after HE staining. The fibrotic area of the uterus was observed after Masson staining. The positive expressions of Runt-related transcription factor(RUNX1), transforming growth factor-ß1(TGF-ß1), connective tissue growth factor(CTGF), α-smooth muscle actin(α-SMA), collagen type I(Col-Ⅰ), cluster of differentiation 86(CD86), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in endometrial tissue were detected by immunohistochemistry. Western blot was used to detect relative protein expressions of RUNX1, TGF-ß1, α-SMA, CD86, and TNF receptor 2 (TNFR2), and real-time fluorescence quantitative PCR was used to detect mRNA expressions of RUNX1, TGF-ß1, α-SMA, CD86, and TNF-α in the endometrium. RESULTS: During the estrous phase, the endometrial layer in the model group was damaged, with reduced folds, disordered arrangement of epithelial cells, loose fibrous connective tissue, significant narrowing and adhesions in the uterine cavity, interstitial congestion, edema, and a significant infiltration of inflammatory cells with sparse glands. While uterine tissue structure of the EA group was basically intact, resembling a normal uterus, with more newly formed glands and a small amount of inflammatory cell infiltration. In comparison with the blank group, the endometrial thickness, the number of blood vessels, and the number of glands were significantly decreased(P<0.001) in the model group, while the ratio of uterine fibrosis area, the positive expressions of RUNX1, TGF-ß1, CTGF, α-SMA, Col-Ⅰ, CD86, IL-1ß, and TNF-α, the protein relative expressions of RUNX1, TGF-ß1, α-SMA, CD86 and TNFR2, and the mRNA relative expression levels of RUNX1, TGF-ß1, α-SMA, CD86 and TNF-α in the endometrium were significantly increased (P<0.001, P<0.01). Compared to the model group, the endometrial thickness, the number of blood vessels, and the number of glands were significantly increased(P<0.01, P<0.05) in the EA group, while the ratio of uterine fibrosis area, the positive expressions of RUNX1, TGF-ß1, CTGF, α-SMA, Col-Ⅰ, CD86, IL-1ß and TNF-α in the endometrial tissue, the protein expressions of RUNX1, TGF-ß1, α-SMA, CD86 and TNFR2, and the mRNA relative expressions of RUNX1, TGF-ß1, α-SMA, CD86 and TNF-α in the endometrium were significantly decreased (P<0.001, P<0.01, P<0.05). CONCLUSIONS: EA can improve endometrial fibrosis in IUA rats, which may be related to its function in decreasing the level of endometrial M1-type macrophages and the secretion of related inflammatory factors.


Electroacupuncture , Endometrium , Macrophages , Rats, Sprague-Dawley , Animals , Female , Rats , Endometrium/metabolism , Tissue Adhesions/therapy , Tissue Adhesions/metabolism , Tissue Adhesions/genetics , Humans , Macrophages/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Acupuncture Points , Uterine Diseases/therapy , Uterine Diseases/metabolism , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics
6.
PeerJ ; 12: e17434, 2024.
Article En | MEDLINE | ID: mdl-38799057

We propose a new mouse (C57Bl6/J) model combining several features of heart failure with preserved ejection fraction encountered in older women, including hypertension from Angiotensin II infusion (AngII), menopause, and advanced age. To mimic menopause, we delayed ovariectomy (Ovx) at 12 months of age. We also studied the effects of AngII infusion for 28 days in younger animals and the impact of losing gonadal steroids earlier in life. We observed that AngII effects on heart morphology were different in younger and adult mice (3- and 12-month-old; 20 and 19% increase in heart weight. P < 0.01 for both) than in older animals (24-month-old; 6%; not significant). Ovariectomy at 12 months restored the hypertrophic response to AngII in elderly females (23%, p = 0.0001). We performed a bulk RNA sequencing study of the left ventricle (LV) and left atrial gene expression in elderly animals, controls, and Ovx. AngII modulated (|Log2 fold change| ≥ 1) the LV expression of 170 genes in control females and 179 in Ovx ones, 64 being shared. In the left atrium, AngII modulated 235 genes in control females and 453 in Ovx, 140 shared. We observed many upregulated genes associated with the extracellular matrix regulation in both heart chambers. Many of these upregulated genes were shared between the ventricle and the atrium as well as in control and Ovx animals, namely for the most expressed Ankrd1, Nppb, Col3a1, Col1a1, Ctgf Col8a1, and Cilp. Several circadian clock LV genes were modulated differently by AngII between control and Ovx females (Clock, Arntl, Per2, Cry2, and Ciart). In conclusion, sex hormones, even in elderly female mice, modulate the heart's hypertrophic response to AngII. Our study identifies potential new markers of hypertensive disease in aging female mice and possible disturbances of their cardiac circadian clock.


Angiotensin II , Disease Models, Animal , Hypertension , Mice, Inbred C57BL , Ovariectomy , Animals , Female , Angiotensin II/pharmacology , Mice , Hypertension/physiopathology , Aging/physiology , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Menopause , Humans , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Heart Atria/physiopathology , Heart Atria/drug effects , Heart Atria/pathology , Collagen Type III
7.
Matrix Biol ; 130: 36-46, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723870

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Adipogenesis , Connective Tissue Growth Factor , Lysophospholipids , Animals , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice , Lysophospholipids/metabolism , Cell Communication , Signal Transduction , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Cell Differentiation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Humans , Actin Cytoskeleton/metabolism
8.
Biomed Pharmacother ; 175: 116750, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749174

Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.


Alginates , Connective Tissue Growth Factor , Nanoparticles , Polyesters , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Polyesters/chemistry , Humans , Connective Tissue Growth Factor/metabolism , Animals , Nanoparticles/chemistry , Mice , HaCaT Cells , Fibroblasts/drug effects , Male , Drug Carriers/chemistry , Cell Line , Drug Delivery Systems/methods , Keratinocytes/drug effects , Particle Size , Sulfates/chemistry , Sulfates/pharmacology
9.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704766

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Acute Kidney Injury , Kidney , Linagliptin , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Male , Rats , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Connective Tissue Growth Factor/drug effects , Connective Tissue Growth Factor/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunosuppressive Agents/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Linagliptin/pharmacology , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Plasminogen Activator Inhibitor 1/drug effects , Plasminogen Activator Inhibitor 1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tacrolimus/pharmacology , Tacrolimus/toxicity , Heme Oxygenase-1/drug effects , Heme Oxygenase-1/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732023

The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-ß1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.


Aging , Collagen Type VIII , Connective Tissue Growth Factor , Fibrosis , Kidney , Animals , Female , Male , Mice , Aging/metabolism , Collagen Type VIII/metabolism , Collagen Type VIII/genetics , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
11.
Virchows Arch ; 484(5): 837-845, 2024 May.
Article En | MEDLINE | ID: mdl-38602559

The classical BCR::ABL1-negative myeloproliferative neoplasms (MPN) form a group of bone marrow (BM) diseases with the potential to progress to acute myeloid leukemia or develop marrow fibrosis and subsequent BM failure. The mechanism by which BM fibrosis develops and the factors that drive stromal activation and fibrosis are not well understood. Cellular Communication Network 2 (CCN2), also known as CTGF (Connective Tissue Growth Factor), is a profibrotic matricellular protein functioning as an important driver and biomarker of fibrosis in a wide range of diseases outside the marrow. CCN2 can promote fibrosis directly or by acting as a factor downstream of TGF-ß, the latter already known to contribute to myelofibrosis in MPN.To study the possible involvement of CCN2 in BM fibrosis in MPN, we assessed CCN2 protein expression by immunohistochemistry in 75 BM biopsies (55 × MPN and 20 × normal controls). We found variable expression of CCN2 in megakaryocytes with significant overexpression in a subgroup of 7 (13%) MPN cases; 4 of them (3 × essential thrombocytemia and 1 × prefibrotic primary myelofibrosis) showed no fibrosis (MF-0), 2 (1 × post-polycythemic myelofibrosis and 1 × primary myelofibrosis) showed moderate fibrosis (MF-2), and 1 (primary myelofibrosis) severe fibrosis (MF-3). Remarkably, CCN2 expression did not correlate with fibrosis or other disease parameters such as platelet count or thrombovascular events, neither in this subgroup nor in the whole study group. This suggests that in BM of MPN patients other, CCN2-independent pathways (such as noncanonical TGF-ß signaling) may be more important for the development of fibrosis.


Connective Tissue Growth Factor , Myeloproliferative Disorders , Primary Myelofibrosis , Signal Transduction , Transforming Growth Factor beta , Humans , Connective Tissue Growth Factor/metabolism , Transforming Growth Factor beta/metabolism , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Middle Aged , Male , Female , Aged , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Adult , Bone Marrow/pathology , Bone Marrow/metabolism , Aged, 80 and over , Immunohistochemistry , Fibrosis/pathology
12.
Biochem Pharmacol ; 224: 116217, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641306

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.


Antineoplastic Agents , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Nude , Cell Line, Tumor , Xenograft Model Antitumor Assays/methods , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice, Inbred BALB C , Apoptosis/drug effects , Female
13.
Lung ; 202(3): 343-356, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678499

BACKGROUND: Severe asthma, characterized by inflammation and airway remodeling, involves fibroblast differentiation into myofibroblasts expressing α-SMA. This process leads to the production of fibronectin and connective tissue growth factor (CTGF), driven by factors such as transforming growth factor (TGF)-ß. Furthermore, the persistent presence of myofibroblasts is associated with resistance to apoptosis and mitochondrial dysfunction. The chemokine (C-X3-C motif) ligand 1 (CX3CL1) plays a role in tissue fibrosis. However, it is currently unknown whether neutralization of CX3CL1 decreases TGF-ß-induced fibroblast differentiation and mitochondrial dysfunction in normal human lung fibroblasts (NHLFs). METHODS: CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1), CX3CL1 was analyzed by immunofluorescence (IF) or immunohistochemical (IHC) staining of ovalbumin-challenged mice. CX3CL1 release was detected by ELISA. TGF-ß-induced CTGF, fibronectin, and α-SMA expression were evaluated in NHLFs following neutralization of CX3CL1 (TP213) treatment for the indicated times by Western blotting or IF staining. Mitochondrion function was detected by a JC-1 assay and seahorse assay. Cell apoptosis was observed by a terminal uridine nick-end labeling (TUNEL) assay. RESULTS: An increase in CX3CL1 expression was observed in lung tissues from mice with ovalbumin-induced asthma by IF staining. CX3CR1 was increased in the subepithelial layer of the airway by IHC staining. Moreover, CX3CR1 small interfering (si)RNA downregulated TGF-ß-induced CTGF and fibronectin expression in NHLFs. CX3CL1 induced CTGF and fibronectin expression in NHLFs. TGF-ß-induced CX3CL1 secretion from NHLFs. Furthermore, TP213 decreased TGF-ß-induced CTGF, fibronectin, and α-SMA expression in NHLFs. Mitochondrion-related differentially expressed genes (DEGs) were examined after CX3CL1 neutralization in TGF-ß-treated NHLFs. TP213 alleviated TGF-ß-induced mitochondrial dysfunction and apoptosis resistance in NHLFs. CX3CL1 induced p65, IκBα, and IKKα phosphorylation in a time-dependent manner. Furthermore, CX3CL1-induced fibronectin expression and JC-1 monomer were decreased by p65 siRNA. TP213 reduced TGF-ß-induced p65 and α-SMA expression in NHLFs. CONCLUSIONS: These findings suggest that neutralizing CX3CL1 attenuates lung fibroblast activation and mitochondrial dysfunction. Understanding the impacts of CX3CL1 neutralization on fibroblast mitochondrial function could contribute to the development of therapeutic strategies for managing airway remodeling in severe asthma.


Apoptosis , CX3C Chemokine Receptor 1 , Cell Differentiation , Chemokine CX3CL1 , Connective Tissue Growth Factor , Fibroblasts , Fibronectins , Mitochondria , Pulmonary Fibrosis , Transforming Growth Factor beta , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Humans , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Cell Differentiation/drug effects , Apoptosis/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Fibronectins/metabolism , Mice , Actins/metabolism , Lung/pathology , Lung/metabolism , NF-kappa B/metabolism , Signal Transduction , Asthma/metabolism , Asthma/pathology , Disease Models, Animal , Cells, Cultured , Myofibroblasts/metabolism , Myofibroblasts/pathology , Myofibroblasts/drug effects , Ovalbumin
14.
J Ocul Pharmacol Ther ; 40(4): 246-252, 2024 May.
Article En | MEDLINE | ID: mdl-38517736

Purpose: To investigate the effect of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) on connective tissue growth factor (CTGF) expression in adult retinal pigment epithelial (ARPE)-19 cells. We also studied the inhibitory effect of K-975, a new pan-transcriptional enhanced associate domain (TEAD) inhibitor, and luteolin, a plant-derived flavonoid on CTGF expression. Methods: ARPE-19 cells were transfected with either YAP or TAZ overexpression plasmid or treated with transforming growth factor (TGF)-ß2. The cells were cultured either with or without K-975 or luteolin. The expression of YAP, TAZ, and CTGF was examined using real-time PCR. Results: ARPE-19 cells overexpressing YAP or TAZ exhibited significantly increased CTGF expression. This increase was attenuated by K-975 or luteolin alone. TGF-ß2 treatment significantly raised the expression of not just YAP and TAZ, but also CTGF in ARPE-19 cells. TGF-ß2 treatment-enhanced CTGF expression was considerably lowered by the addition of K-975 or luteolin. Conclusions: Overexpression of YAP or TAZ and treatment with TGF-ß2 led to an increase in the expression of CTGF in ARPE-19 cells. These increases were attenuated by treatment with K-975 and luteolin. These findings suggest that YAP and TAZ may be related to the expression of CTGF in ARPE-19 cells and that K-975 and luteolin can be explored as potential therapeutic agents for preventing CTGF production in vitreoretinal fibrosis.


Connective Tissue Growth Factor , Luteolin , Retinal Pigment Epithelium , Transcription Factors , Connective Tissue Growth Factor/metabolism , Humans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Luteolin/pharmacology , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Cell Line , Trans-Activators/metabolism , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
15.
Cell Mol Gastroenterol Hepatol ; 17(6): 887-906, 2024.
Article En | MEDLINE | ID: mdl-38311169

BACKGROUND & AIMS: Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS: We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS: MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS: We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.


Autocrine Communication , Hepatic Stellate Cells , Liver Cirrhosis , Paracrine Communication , Ribonucleases , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Ribonucleases/metabolism , Ribonucleases/genetics , Male , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Transforming Growth Factor beta1/metabolism , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Liver/pathology , Liver/metabolism
16.
Arch Oral Biol ; 160: 105910, 2024 Apr.
Article En | MEDLINE | ID: mdl-38364717

OBJECTIVE: To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFß1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN: Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFß1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFß1-induced responses in a human gingival fibroblast cell line. RESULTS: Celastrol impaired the ability of TGFß1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFß1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFß1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFß1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFß1. CONCLUSION: YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFß1 in human gingival fibroblasts.


Connective Tissue Growth Factor , Pentacyclic Triterpenes , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Connective Tissue Growth Factor/metabolism , YAP-Signaling Proteins , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Transcription Factors/metabolism , Fibroblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cells, Cultured
17.
J Oral Biosci ; 66(1): 68-75, 2024 Mar.
Article En | MEDLINE | ID: mdl-38266705

OBJECTIVES: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-ß1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-ß1, on osteogenic differentiation in MSCs. METHODS: UE7T-13 cells were treated with TGF-ß1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS: Co-treatment with TGF-ß1 and CTGF resulted in the suppression of TGF-ß1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-ß1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-ß1. Osteopontin expression was observed only after TGF-ß1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-ß1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS: CTGF enhances TGF-ß1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.


Mesenchymal Stem Cells , Mitogen-Activated Protein Kinase 14 , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Transforming Growth Factor beta1/pharmacology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/pharmacology , Osteogenesis , Cell Differentiation , Mesenchymal Stem Cells/metabolism
18.
Cell Commun Signal ; 22(1): 8, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167009

BACKGROUND: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) that play an important role in cancer progression. Although the mechanism by which CAFs promote tumorigenesis has been well investigated, the underlying mechanism of CAFs activation by neighboring cancer cells remains elusive. In this study, we aim to investigate the signaling pathways involved in CAFs activation by gastric cancer cells (GC) and to provide insights into the therapeutic targeting of CAFs for overcoming GC. METHODS: Alteration of receptor tyrosine kinase (RTK) activity in CAFs was analyzed using phospho-RTK array. The expression of CAFs effector genes was determined by RT-qPCR or ELISA. The migration and invasion of GC cells co-cultured with CAFs were examined by transwell migration/invasion assay. RESULTS: We found that conditioned media (CM) from GC cells could activate multiple receptor tyrosine kinase signaling pathways, including ERK, AKT, and STAT3. Phospho-RTK array analysis showed that CM from GC cells activated PDGFR tyrosine phosphorylation, but only AKT activation was PDGFR-dependent. Furthermore, we found that connective tissue growth factor (CTGF), a member of the CCN family, was the most pronouncedly induced CAFs effector gene by GC cells. Knockdown of CTGF impaired the ability of CAFs to promote GC cell migration and invasion. Although the PDGFR-AKT pathway was pronouncedly activated in CAFs stimulated by GC cells, its pharmacological inhibition affected neither CTGF induction nor CAFs-induced GC cell migration. Unexpectedly, the knockdown of SRC and SRC-family kinase inhibitors, dasatinib and saracatinib, significantly impaired CTGF induction in activated CAFs and the migration of GC cells co-cultured with CAFs. SRC inhibitors restored the reduced expression of epithelial markers, E-cadherin and Zonula Occludens-1 (ZO-1), in GC cells co-cultured with CAFs, as well as CAFs-induced aggregate formation in a 3D tumor spheroid model. CONCLUSIONS: This study provides a characterization of the signaling pathways and effector genes involved in CAFs activation, and strategies that could effectively inhibit it in the context of GC. Video Abstract.


Cancer-Associated Fibroblasts , Connective Tissue Growth Factor , Stomach Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Connective Tissue Growth Factor/metabolism , Fibroblasts/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms/metabolism , Tumor Microenvironment
19.
PLoS One ; 19(1): e0296430, 2024.
Article En | MEDLINE | ID: mdl-38271362

OBJECTIVE: To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS: Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS: Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION: Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.


MicroRNAs , Myocardial Infarction , Rats , Male , Mice , Animals , Caspase 3/metabolism , Down-Regulation , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Hydrogen Peroxide/metabolism , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis/genetics
20.
Cytokine ; 174: 156460, 2024 02.
Article En | MEDLINE | ID: mdl-38134555

OBJECTIVE: Connective tissue growth factor (CTGF) exhibits potent proliferative, differentiated, and mineralizing effects, and is believed to be contribute to cartilage mineralization in Osteoarthritis (OA). However, the underlying mechanism of chondrocyte mineralization induced by CTGF remains obscure. As a key regulator of mineral responses, type III phosphate transporter 1 (Pit-1) has been associated with the pathogenesis of articular mineralization. Therefore, the primary objective of this study was to investigate whether CTGF influences the development of mature chondrocyte mineralization and the underlying mechanisms governing such mineralization. METHODS: The effect of Connective tissue growth factor (CTGF) on human C-28/I2 chondrocytes were investigated. The chondrocytes were treated with CTGF or related inhibitors, and transfected with Overexpression and siRNA transfection of Type III Phosphate Transporter 1(Pit-1). Subsequently, the cells were subjected to Alizarin red S staining, PiPer Phosphate Assay Kit, Alkaline Phosphatase Diethanolamine Activity Kit, ELISA, RT-PCR or Western blot analysis. RESULTS: Stimulation with Connective tissue growth factor (CTGF) significantly upregulated the expression of the Type III Phosphate Transporter 1(Pit-1) and mineralization levels in chondrocytes through activation of α5ß1 integrin and BMP/Samd1/5/8 signaling pathways. Furthermore, treatment with overexpressed Pit-1 markedly increased the expression of Multipass Transmembrane Ankylosis (ANK) transporter in the cells. The inhibitory effect of CTGF receptor blockade using α5ß1 Integrin blocking antibody was demonstrated by significantly suppressed the expression of Pit-1 and ANK transporter, as well as chondrocyte mineralization. CONCLUSIONS: Our data indicate that Connective tissue growth factor (CTGF) plays a critical role inchondrocyte mineralization, which is dependent on the expression of the Type III Phosphate Transporter 1(Pit-1) and Multipass Transmembrane Ankylosis (ANK) transporter. Consequently, inhibition of CTGF activity may represent a novel therapeutic approach for the management of Osteoarthritis (OA).


Ankylosis , Calcinosis , Osteoarthritis , Humans , Ankylosis/metabolism , Ankylosis/pathology , Calcinosis/pathology , Cells, Cultured , Chondrocytes/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Integrins/metabolism , Osteoarthritis/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism
...