Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.492
Filter
1.
Aging (Albany NY) ; 16(10): 8843-8865, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38775721

ABSTRACT

BACKGROUND: Danxiong Tongmai Granules (DXTMG) are widely utilized in treating coronary heart disease (CHD) in China. This study aims to explore the molecular mechanisms underlying the therapeutic effects of DXTMG on CHD by employing a network pharmacology approach, complemented with experimental validation. METHODS: Traditional Chinese Medicine (TCM) compounds and targets were identified via searches in the BATMAN-TCM database, and the GeneCards database was used to obtain the main target genes involved in CHD. We combined disease targets with the drug targets to identify common targets. The "TCM-compound-target" network was plotted using Cytoscape 3.7.2 software and a protein-protein interaction (PPI) network was constructed using the STRING database from which core targets were obtained. Gene ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for common drug-disease targets using R Version 4.0.4 (64 bit) software. Molecular docking of core protein-small molecule ligand interaction was modeled using AutoDock software. A molecular dynamics simulation was conducted on the optimal protein-small molecule complex identified through molecular docking, using Amber18 software. The rat model for myocardial ischemia was established through pre-gavage administration of DXTMG, followed by dorsal hypodermic injection of isoprenaline. Myocardial tissues from the rats were analyzed using hematoxylin and eosin (HE) staining and Masson's trichrome staining. Relevant targets were validated by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. RESULTS: 162 potential targets of DXTMG involved in CHD were identified. These included INS, ALB, IL-6 and TNF according to PPI network studies. GO enrichment analysis identified a total of 3365 GO pathways, including 3049 biological process pathways (BP) concerned with the heart and circulatory system; 109 cellular component (CC) pathways, including cation channels and membrane rafts and 207 molecular function (MF) pathways related to receptor ligands and activators. KEGG analysis revealed a total of 137 pathways (P < 0.05), including those related to AGE-RAGE signaling associated with diabetic complications, fluid shear stress and atherosclerosis. The results of molecular docking and molecular dynamics simulations demonstrated the robust binding affinity between the compounds and target proteins. Animal experiment findings indicated that, compared with the model group, the DXTMG group effectively ameliorated inflammation and fibrosis in rat myocardial tissues, reduced LDH, cTn-I, and MDA levels (P < 0.05, P < 0.01), elevated SOD and GSH-PX levels (P < 0.05), and reduced the percentage of positive area for IL-6 and TNF-α (P < 0.05). CONCLUSION: This study preliminarily suggests that DXTMG can modulate oxidative stress, inflammation response, and cardiomyocyte regulation, thereby mitigating the onset and progression of CHD.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal , Molecular Docking Simulation , Protein Interaction Maps , Animals , Drugs, Chinese Herbal/pharmacology , Rats , Coronary Disease/drug therapy , Coronary Disease/metabolism , Male , Rats, Sprague-Dawley , Medicine, Chinese Traditional , Molecular Dynamics Simulation , Disease Models, Animal
2.
Clinics (Sao Paulo) ; 79: 100386, 2024.
Article in English | MEDLINE | ID: mdl-38815541

ABSTRACT

OBJECTIVE: To investigate the influence of aerobic exercise on myocardial injury, NF-B expression, glucolipid metabolism and inflammatory factors in rats with Coronary Heart Disease (CHD) and explore the possible causative role. METHODS: 45 Sprague Dawley® rats were randomized into model, control and experimental groups. A high-fat diet was adopted for generating a rat CHD model, and the experimental group was given a 4-week aerobic exercise intervention. ECG was utilized to evaluate the cardiac function of the rats; HE staining to evaluate the damage of myocardial tissue; TUNEL staining to evaluate cardiomyocyte apoptosis level; ELISA to assay the contents of inflammatory factors and glucolipid metabolism in cardiomyocytes; qPCR to assay IB- and NF-B mRNA expression; Western-blot to assay the apoptosis-related proteins and NF-B signaling pathway-related proteins expressions in myocardial tissue. RESULTS: In contrast to the model group, aerobic exercise strongly improved the rat's cardiac function and glucolipid metabolism (p < 0.01), enhanced IL-10 content, Bcl-2/Bax level as well as IB- protein and mRNA expression (p < 0.01), and reduced myocardial injury and cardiomyocyte apoptosis, the contents of IL-6, IL-1 and TNF-, Caspase 3 level, NF-B mRNA and protein expression and p-p38 and p-STAT3 expressions (p < 0.01). CONCLUSION: Aerobic exercise can not only effectively reduce myocardial injury, the release of inflammatory factors and NF-B expression in CHD rats, but also improve cardiac function and glucolipid metabolism. Its mechanism is likely to be related to the inhibition of the NF-B signaling pathway.


Subject(s)
Apoptosis , Coronary Disease , Disease Models, Animal , NF-kappa B , Physical Conditioning, Animal , Random Allocation , Rats, Sprague-Dawley , Animals , Physical Conditioning, Animal/physiology , NF-kappa B/metabolism , Male , Coronary Disease/metabolism , Apoptosis/physiology , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Lipid Metabolism/physiology , Rats , Blotting, Western , Signal Transduction/physiology , Enzyme-Linked Immunosorbent Assay , Diet, High-Fat/adverse effects , In Situ Nick-End Labeling
3.
Vopr Pitan ; 93(2): 63-72, 2024.
Article in Russian | MEDLINE | ID: mdl-38809800

ABSTRACT

Chronic systemic inflammation is one of the leading pathogenetic pathways for the development of atherosclerosis in obese patients. In this regard, it seems promising to evaluate the effect of the diet and physical exertion on the proinflammatory activity of monocytes. The purpose of this research was to evaluate the effect of the diet and regular physical trainings on the secretion of monocyte chemotactic factor 1 (MCP-1) by monocytes in obese patients with coronary artery disease. Material and methods. 27 obese participants (body mass index >30 kg/m2) with a confirmed diagnosis of coronary heart disease were recruited. All participants were prescribed with 12 weeks of a specialized diet with a restriction of simple carbohydrates and salt, a 500-kcal daily energy deficit, and with inclusion of cruciferous (200 g per day), seasonal dark berries (70 g per day) and green tea (200 ml per day). The regular assisted physical trainings were also administered. The body composition, blood biochemical parameters and MCP-1 secretion rates in the primary culture of monocytes isolated from blood samples via the immunomagnetic separation method were assessed before and after the intervention. Results. As a result, after the 12-weeks intervention the reliable body weight loss (-4.0%), waist circumference (-4.2%), visceral fat (-5.4%), total cholesterol (-9.8%), LDL-cholesterol (-16.6%) and triglycerides (-26.0%), an improvement in the results of the 6-minute walk test (+10.33%) was achieved, as well as an LPS-stimulated monocytes secretion of MCP-1 decreased by 2.8 times (p=0.005). Conclusion. Overall, the results suggest that diet and regular physical activity in patients with obesity and coronary heart disease may decrease the functional "proinflammatory" activity of monocytes.


Subject(s)
Chemokine CCL2 , Coronary Disease , Monocytes , Obesity , Humans , Monocytes/metabolism , Obesity/diet therapy , Obesity/blood , Obesity/metabolism , Obesity/therapy , Male , Chemokine CCL2/blood , Chemokine CCL2/metabolism , Middle Aged , Female , Coronary Disease/diet therapy , Coronary Disease/metabolism , Coronary Disease/blood , Aged
4.
J Am Heart Assoc ; 13(9): e032643, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686877

ABSTRACT

BACKGROUND: Sex disparities exist in cardiometabolic diseases. Metabolomic profiling offers insight into disease mechanisms, as the metabolome is influenced by environmental and genetic factors. We identified metabolites associated with sex and determined if sex-associated metabolites are associated with incident stoke, incident coronary heart disease, prevalent hypertension, and prevalent chronic kidney disease. METHODS AND RESULTS: Targeted metabolomics was conducted for 357 metabolites in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) case-cohort substudy for incident stroke. Weighted logistic regression models were used to identify metabolites associated with sex in REGARDS. Sex-associated metabolites were replicated in the HyperGEN (Hypertension Genetic Epidemiology Network) and using the literature. Weighted Cox proportional hazard models were used to evaluate associations between metabolites and incident stroke. Cox proportional hazard models were used to evaluate associations between metabolites and incident coronary heart disease. Weighted logistic regression models were used to evaluate associations between metabolites and hypertension and chronic kidney disease. Fifty-one replicated metabolites were associated with sex. Higher levels of 6 phosphatidylethanolamines were associated with incident stroke. No metabolites were associated with incident coronary heart disease. Higher levels of uric acid and leucine and lower levels of a lysophosphatidylcholine were associated with hypertension. Higher levels of indole-3-lactic acid, 7 phosphatidylethanolamines, and uric acid, and lower levels of betaine and bilirubin were associated with chronic kidney disease. CONCLUSIONS: These findings suggest that the sexual dimorphism of the metabolome may contribute to sex differences in stroke, hypertension, and chronic kidney disease.


Subject(s)
Coronary Disease , Hypertension , Metabolomics , Renal Insufficiency, Chronic , Stroke , Humans , Male , Female , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/diagnosis , Middle Aged , Hypertension/epidemiology , Coronary Disease/epidemiology , Coronary Disease/metabolism , Stroke/epidemiology , Incidence , Aged , Metabolomics/methods , Sex Factors , United States/epidemiology , Risk Factors , Risk Assessment
5.
J Sep Sci ; 47(8): e2300848, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682821

ABSTRACT

Disorders of lipid metabolism are a common cause of coronary heart disease (CHD) and its comorbidities. In this study, ultra-performance liquid chromatography-high-resolution mass spectrometry in data-independent acquisition (DIA) mode was applied to collect abundant tandem mass spectrometry data, which provided valuable information for lipid annotation. For the lipid isomers that could not be completely separated by chromatography, parallel reaction monitoring (PRM) mode was used for quantification. A total of 223 plasma lipid metabolites were annotated, and 116 of them were identified for their fatty acyl chain composition and location. In addition, 152 plasma lipids in patients with CHD and its comorbidities were quantitatively analyzed. Multivariate statistical analysis and metabolic pathway analysis demonstrated that glycerophospholipid and sphingolipid metabolism deserved more attention for CHD. This study proposed a method combining DIA and PRM for high-throughput characterization of plasma lipids. The results also improved our understanding of metabolic disorders of CHD and its comorbidities, which can provide valuable suggestions for medical intervention.


Subject(s)
Biomarkers , Coronary Disease , Lipid Metabolism , Humans , Coronary Disease/blood , Coronary Disease/metabolism , Biomarkers/blood , Biomarkers/analysis , Chromatography, High Pressure Liquid , Lipids/blood , Tandem Mass Spectrometry , Comorbidity , Male , Middle Aged , Female
6.
Cell Signal ; 119: 111150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552892

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) and coronary heart disease (CHD) stand as two of the foremost causes of mortality. However, the comprehensive comprehension of the regulatory mechanisms governing DCM and CHD remains limited, particularly from the vantage point of single-cell transcriptional analysis. METHOD: We used the GSE121893 dataset from the GEO database, analyzing single-cell expressions with tools like DropletUtils, Seurat, and Monocle. We also utilized the GSVA package for comparing gene roles in DCM and CHD, Finally, we conducted qRT-PCR and Western blot analyses to measure the expression levels of SMARCA4, Col1A1, Col3A1 and α-SMA, and the role of SMARCA4 on fibroblasts were explored by EdU and Transwell assay. RESULTS: Our analysis identified six cell types in heart tissue, with fibroblasts showing the most interaction with other cells. DEGs in fibroblasts were linked to muscle development and morphogenesis. Pseudotime analysis revealed the dynamics of fibroblast changes in both the normal and disease groups and many transcription factors (TFs) potentially involved in this process. Among these TFs, SMARCA4 which was translated into protein BRG1, showed the most significantly difference. In vivo experiments have demonstrated that SMARCA4 indeed promoted fibroblasts proliferation and migration. CONCLUSION: This study provides a clearer understanding of cell-type dynamics in heart diseases, emphasizing the role of fibroblasts and the significance of SMARCA4 in their function. Our results offer insights into the cellular mechanisms underlying DCM and CHD, potentially guiding future therapeutic strategies.


Subject(s)
Cardiomyopathy, Dilated , DNA Helicases , Single-Cell Analysis , Transcription Factors , Animals , Humans , Mice , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cell Proliferation , Coronary Disease/metabolism , Coronary Disease/genetics , Coronary Disease/pathology , DNA Helicases/metabolism , DNA Helicases/genetics , Fibroblasts/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Transcription Factors/metabolism
7.
Chem Phys Lipids ; 255: 105325, 2023 09.
Article in English | MEDLINE | ID: mdl-37414117

ABSTRACT

The pathogenesis of coronary heart disease is a highly complex process, with lipid metabolism disorders being closely linked to its development. Therefore, this paper analyzes the various factors that influence lipid metabolism, including obesity, genes, intestinal microflora, and ferroptosis, through a comprehensive review of basic and clinical studies. Additionally, this paper delves deeply into the pathways and patterns of coronary heart disease. Based on these findings, it proposes various intervention pathways and therapeutic methods, such as the regulation of lipoprotein enzymes, lipid metabolites, and lipoprotein regulatory factors, as well as the modulation of intestinal microflora and the inhibition of ferroptosis. Ultimately, this paper aims to offer new ideas for the prevention and treatment of coronary heart disease.


Subject(s)
Coronary Disease , Lipid Metabolism , Humans , Coronary Disease/prevention & control , Coronary Disease/etiology , Coronary Disease/metabolism , Obesity , Lipoproteins/metabolism
8.
Front Endocrinol (Lausanne) ; 14: 1080938, 2023.
Article in English | MEDLINE | ID: mdl-36967749

ABSTRACT

Background: Coronary heart disease (CHD) and its major risk factor hypertension have both been associated with altered activity of the hypothalamus-pituitary-adrenal (HPA)-axis but the biological mechanisms underlying prospective associations with adverse disease outcomes are unclear. We investigated diurnal HPA-axis activity in CHD-patients, hypertensive (HT) and healthy normotensive men (NT) and tested for prospective associations with biological CHD risk factors. Methods: Eighty-three male CHD-patients, 54 HT and 54 NT men repeatedly measured salivary cortisol over two consecutive days. Prospective CHD risk was assessed by changes between baseline and follow-up in the prothrombotic factors D-dimer and fibrinogen, the pro-inflammatory measures interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and acute phase protein C-reactive protein (CRP), as well as blood lipids in terms of total cholesterol (tChol)/high-density-lipoprotein cholesterol (HDL)-ratio. We aggregated coagulation and inflammatory measures to respective indices. Results: The groups differed in repeated daytime cortisol (dayCort) secretion (p=.005,η2 p=.03,f=0.18) and cortisol awakening response (CAR) (p=.006,η2 p=.03,f=0.18), with similarly lower overall dayCort and CAR in CHD-patients and HT, as compared to NT. The groups differed further in cortisol at awakening (p=.015,η2 p=.04,f=0.20) with highest levels in HT (p´s≤.050), and in diurnal slope between waking and evening cortisol (p=.033,η2 p=.04,f=0.20) with steepest slopes in HT (p´s≤.039), although in part not independent of confounders. Lower aggregated dayCort and CAR in terms of area-under-the-curve (AUC) independently predicted increases in future overall CHD risk (AUCdayCort: p=.021,η2 p=.10,f=0.33;AUCCAR: p=.028,η2 p=.09,f=0.31) 3.00 ± 0.06(SEM) years later, with risk prediction most pronounced in fibrinogen (AUCdayCort: p=.017,ΔR 2= 0.12;AUCCAR: p=.082). Conclusion: We found evidence for an HPA-axis hypoactivity in CHD and HT with lower diurnal HPA-axis activity predicting increases in cardiovascular risk as evidenced by increases in circulating levels of biomarkers of atherothrombotic risk. Down-regulation of basal HPA-axis activity may contribute to the pathogenesis of atherosclerosis and thrombosis in CHD via effects on coagulation.


Subject(s)
Coronary Disease , Hypertension , Humans , Male , Hydrocortisone/metabolism , Saliva/metabolism , Hypothalamo-Hypophyseal System/metabolism , Coronary Disease/etiology , Coronary Disease/metabolism
10.
Article in English | MEDLINE | ID: mdl-35917776

ABSTRACT

Metabolomics can discover the biomarkers and metabolic pathways, provides the possibility for insights into the pharmacological action and mechanism of natural products. The therapeutic effect and mechanism of danshensu (DSS) on total metabolic pathways has not been well investigated. The aim of this study was to explore the disturbed endogenous biomarkers and metabolic pathways reflecting the pharmacological activity of DSS, and mechanism of action of DSS using comprehensive metabolome analysis based on high-throughput metabolomics technology combined with ultra-high performance liquid chromatography (UPLC) coupled with quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS) and pattern recognition method. Through the changes of the overall metabolic profile and the related biomarkers, the intervention effect of natural product danshensu (DSS) treatment on CHD model rats was revealed. The results showed that after the model replication was established, the metabolic profile was clearly separated, and a total of 26 potential biomarkers were screened out, and involving 8 metabolic pathways. After different doses of DSS solution were given, a total of 20 biomarkers could be significantly regulated, mainly involving primary bile acid biosynthesis, glycerophospholipid metabolism, and lipid metabolism. It showed UPLC-MS-based metabolomics can be used for discovering potential biomarkers and metabolic pathways of CHD, and to further understand and dissecting pharmacological effects and mechanisms of natural products via metabolomics techniques.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal , Animals , Biomarkers/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Coronary Disease/drug therapy , Coronary Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lactates , Metabolome , Metabolomics/methods , Rats , Tandem Mass Spectrometry/methods
11.
J Ethnopharmacol ; 298: 115631, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35987411

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) and depression are very common and often co-existing disorders. Xiong-Pi-Fang (XPF), a therapeutic classical traditional Chinese medicine (TCM) formula, has shown satisfactory efficacy in treating CHD associated with depression. However, its mechanism of action is still unknown. PURPOSE: To employ a systematic pharmacology approach for identifying the action mechanisms of XPF in treating CHD associated with depression. METHODS: We used a systematic pharmacology approach to identify the potential active mechanisms of XPF in treating CHD with depression. Potential active compounds in XPF and the diseases targets were screened using relevant databases to build corresponding pathways, following the experiments that were conducted to confirm whether the presumptive results of systemic pharmacology were correct. RESULTS: Network pharmacology predicted 42 key targets and 20 signaling pathways involved in XPF-mediated treatment, with IL-6/JAK2/STAT3/HIF-1α/VEGF-A pathway significantly affected. The common influences were hypothalamic-pituitary-adrenal axis (HPA axis) and glucocorticoid signaling, validated through chronic unexpected mild stress (CUMS) with isoprenaline (ISO) for inducing CHD within the depression model in rats. In addition, XPF intake reduced depressive-like behaviors and improved ECG ischemic changes. Furthermore, XPF exerted some anti-inflammatory effects by inhibiting the interleukin-6 (IL-6) induced phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), ultimately downregulating hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) activation. The dysfunctional HPA axis feedback loop was also regulated, which enhanced the glucocorticoid receptor (GR) expression. In contrast, it improved glucocorticoid resistance by reducing the mineralocorticoid receptor expression. CONCLUSIONS: Suppressing IL-6 release and maintaining the HPA feedback loop balance could be the primary mechanism of XPF against CHD with depression. The significance of the IL-6 and HPA axis identified indicates their potential as essential targets for CHD therapy with depression.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal , Animals , Coronary Disease/drug therapy , Coronary Disease/metabolism , Depression/drug therapy , Depression/metabolism , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hypothalamo-Hypophyseal System , Interleukin-6/metabolism , Network Pharmacology , Pituitary-Adrenal System , Rats , Vascular Endothelial Growth Factor A/metabolism
12.
Comput Intell Neurosci ; 2022: 8970860, 2022.
Article in English | MEDLINE | ID: mdl-35720930

ABSTRACT

Objective: To investigate the correlation between CML, sRAGE, and esRAGE and the measure of atherosclerosis of coronary heart disease. Methods: From June 2019 to December 2021, there were 100 patients in all suffering from coronary heart disease (CHD) selected as the observation group. On the basis of Gensini score, they were divided into mild group (Gensini score < 12 points), moderate group (12 points ≤ Gensini score ≤60 points), and severe group (Gensini score > 60). Apart from that, 50 normal people staying in our hospital for physical examination were chosen as the control group in the meantime. N in each group was detected and compared ε-Carboxymethyl lysine (CML), soluble advanced glycation end product receptor (sRAGE), and endogenous secretory advanced glycation end product receptor (esRAGE). Pearson correlation coefficient was adapted to assay the relevance between CML, sRAGE, and esRAGE, as well as the degree of atherosclerosis in CHD. Receiver operator characteristic (ROC) curve was applied to during the evaluation of the diagnosis of CML, sRAGE, and esRAGE, as well as their combined detection of severe atherosclerosis in CHD. Results: In contrast with the control group, the level of serum CML together with sRAGE in the observation group was considerably elevated, while the level of esRAGE appeared in a downward trend (P < 0.05). The level of serum CML and sRAGE was directly proportional to the measure of atherosclerosis in CHD, while the level of esRAGE was inversely proportional to the measure of atherosclerosis in CHD (P < 0.05). That is to say that serum CML and sRAGE were positive in matter of the measure of atherosclerosis in CHD, while esRAGE negatively appertains to the measure of atherosclerosis in CHD (P < 0.05). Serum CML, sRAGE, and esRAGE could effectively diagnose severe atherosclerosis in CHD, and the combined detection sensitivity (89.79%), specificity (77.16%), accuracy (86.12%), positive predictive value (86.63%), negative predictive value (88.59%), and area under ROC curve (AUC) (0.924) were higher (P < 0.05). Conclusion: CML and sRAGE, as well as esRAGE, are bound up with the degree of atherosclerosis in CHD, which is conducive to clinical diagnosis and treatment.


Subject(s)
Atherosclerosis , Coronary Disease , Lysine/analogs & derivatives , Receptor for Advanced Glycation End Products , Atherosclerosis/diagnosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers , Coronary Disease/diagnosis , Coronary Disease/metabolism , Coronary Disease/pathology , Glycation End Products, Advanced , Humans , Lysine/metabolism , Receptor for Advanced Glycation End Products/blood , Receptor for Advanced Glycation End Products/metabolism
13.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209166

ABSTRACT

(1) Background: Apolipoprotein E(ApoE) plays a critical role in lipid transport. The specific allele of APOE being expressed is associated with the development of coronary heart disease (CHD), however the specific mechanisms by which ApoE drives disease are unclear. In this study, we investigated the relationship between APOE allele, lipoprotein metabolome, and CHD severity to provide evidence for the efficacy of clinical cholesterol-lowering therapy; (2) Methods: Blood samples were collected from 360 patients with CHD that were actively being treated with statins. The lipoprotein profile, including particle numbers, particle size, and lipoprotein composition concentrates, was measured by nuclear magnetic resonance (NMR) spectroscopy. The severity of CHD was determined by quantifying coronary angiography results using the Gensini scoring system; (3) Results: We found there was no significant difference in low-density lipoprotein cholesterol (LDL-C) levels among ε2+ (ε2 allele carriers, consisting of ε2/ε2 and ε2/ε3 genotypes), ε3 (consisting of ε3/ε3 and ε2/ε4 genotypes), and ε4+ (ε4 allele carriers, consisting of ε3/ε4 and ε4/ε4 genotypes) participants receiving statin treatment. Compared with the ε3 group, patients with the ε2+ genotype showed lower concentrations of total low-density lipoprotein (LDL), small-LDL, and middle-LDL particles, as well as a larger LDL size, higher very low-density lipoprotein (VLDL) composition concentrates, and higher intermediate density lipoprotein (IDL) composition concentrates. The ε4+ group showed higher concentrations of total LDL, small LDL particles, and LDL compositions with smaller LDL size. The higher level of small LDL concentration was associated with a high Gensini score (B = 0.058, p = 0.024). Compared with the ε3 group, the risk of increased branch lesions in the ε2+ group was lower (OR = 0.416, p = 0.027); (4) Conclusions: The specific allele of APOE being expressed can affect the severity of CHD by altering components of the lipoprotein profile, such as the concentration of small LDL and LDL size.


Subject(s)
Apolipoproteins E/genetics , Coronary Disease/etiology , Coronary Disease/metabolism , Genotype , Lipoproteins/metabolism , Proteome , Proteomics , Aged , Biomarkers , Coronary Disease/diagnosis , Disease Susceptibility , Female , Genetic Predisposition to Disease , Humans , Lipoproteins/blood , Male , Middle Aged , Proteomics/methods , Severity of Illness Index
14.
Dis Markers ; 2022: 7480199, 2022.
Article in English | MEDLINE | ID: mdl-35027983

ABSTRACT

OBJECTIVE: To elucidate the role of metformin in influencing VSMCs via the involvement of lncRNA-ATB. METHODS: qRT-PCR was conducted to detect serum levels of lncRNA-ATB and p53 in CHD patients (n = 50) and healthy subjects (n = 50). Correlation in serum levels of lncRNA-ATB and p53 in CHD patients was assessed by Pearson correlation test. ROC curves were depicted for analyzing the predictive potential of lncRNA-ATB in the occurrence of CHD. After metformin induction in VSMCs overexpressing lncRNA-ATB, relative levels of lncRNA-ATB and p53 were detected. Meanwhile, proliferative, migratory, and invasive abilities in VSMCs were, respectively, examined by CCK-8 and transwell assay. The interaction between lncRNA-ATB and p53 was tested by RIP. In addition, the coregulation of lncRNA-ATB and p53 in cell functions of VSMCs was finally determined. RESULTS: Increased serum level of lncRNA-ATB and decreased p53 level were detected in CHD patients than those of healthy subjects. LncRNA-ATB could interact with p53 and negatively regulate its level. In addition, lncRNA-ATB could serve as a potential biomarker for predicting the occurrence of CHD. The overexpression of lncRNA-ATB triggered viability, migratory, and invasive abilities in VSMCs, and the above trends were abolished by metformin induction. The overexpression of p53 partially abolished the promotive effects of lncRNA-ATB on proliferative, migratory, and invasive abilities in VSMCs. CONCLUSIONS: Metformin induction inhibits proliferative, migratory, and invasive abilities in VSMCs by downregulating lncRNA-ATB, which may be related to p53 activation.


Subject(s)
Metformin/pharmacology , Muscle, Smooth, Vascular , RNA, Long Noncoding/genetics , Coronary Disease/metabolism , Down-Regulation , Genes, p53 , Humans , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , RNA, Long Noncoding/blood
15.
JAMA Cardiol ; 7(2): 184-194, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34851361

ABSTRACT

Importance: African American individuals have disproportionate rates of coronary heart disease (CHD) but lower levels of coronary artery calcium (CAC), a marker of subclinical CHD, than non-Hispanic White individuals. African American individuals may have distinct metabolite profiles associated with incident CHD risk compared with non-Hispanic White individuals, and examination of these differences could highlight important processes that differ between them. Objectives: To identify novel biomarkers of incident CHD and CAC among African American individuals and to replicate incident CHD findings in a multiethnic cohort. Design, Setting, and Participants: This analysis targeted plasma metabolomic profiling of 2346 participants in the Jackson Heart Study (JHS), a prospective population-based cohort study that included 5306 African American participants who were examined at baseline (2000-2004) and 2 follow-up visits. Replication of CHD-associated metabolites was sought among 1588 multiethnic participants from the Women's Health Initiative (WHI), a prospective population-based multiethnic cohort study of 161 808 postmenopausal women who were examined at baseline (1991-1995) and ongoing follow-up visits. Regression analyses were performed for each metabolite to examine the associations with incident CHD and CAC scores. Data were collected from the WHI between 1994 and 2009 and from the JHS between 2000 and 2015. All data were analyzed from November 2020 to August 2021. Exposures: Plasma metabolites. Main Outcomes and Measures: Incident CHD was defined as definite or probable myocardial infarction or definite fatal CHD in both the JHS and WHI cohorts. In the JHS cohort, silent myocardial infarction between examinations (as determined by electrocardiography) and coronary revascularization were included in the incident CHD analysis. Coronary artery calcium was measured using a 16-channel computed tomographic system and reported as an Agatston score. Results: Among 2346 African American individuals in the JHS cohort, the mean (SD) age was 56 (13) years, and 1468 individuals (62.6%) were female. Among 1588 postmenopausal women in the WHI cohort, the mean (SD) age was 67 (7) years; 217 individuals (13.7%) self-identified as African American, 1219 (76.8%) as non-Hispanic White, and 152 (9.6%) as other races or ethnicities. In the fully adjusted model including 1876 individuals, 46 of 303 targeted metabolites were associated with incident CHD (false discovery rate q <0.100). Data for 32 of the 46 metabolites were available in the WHI cohort, and 13 incident CHD-associated metabolites from the JHS cohort were replicated in the WHI cohort. A total of 1439 participants from the JHS cohort with available CAC scores received metabolomic profiling. Nine metabolites were associated with CAC scores. Minimal overlap was found between the results from the incident CHD and CAC analyses, with only 3 metabolites shared between the 2 analyses. Conclusions and Relevance: This cohort study identified metabolites that were associated with incident CHD among African American individuals, including 13 incident CHD-associated metabolites that were replicated in a multiethnic population and 9 novel metabolites that included N-acylamides, leucine, and lipid species. These findings may help to elucidate common and distinct metabolic processes that may be associated with CHD among individuals with different self-identified race.


Subject(s)
Black or African American , Coronary Artery Disease/metabolism , Coronary Disease/metabolism , Metabolomics , Vascular Calcification/metabolism , Adult , Aged , Cohort Studies , Coronary Artery Disease/epidemiology , Coronary Disease/epidemiology , Female , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Proportional Hazards Models , United States/epidemiology , Vascular Calcification/epidemiology , White People
16.
Comput Math Methods Med ; 2021: 6942699, 2021.
Article in English | MEDLINE | ID: mdl-34873417

ABSTRACT

This study is aimed at exploring the role and potential molecular mechanism of microRNA-21 (miR-21) in coronary heart disease (CHD). RT-qPCR analysis was conducted to detect the expression of miR-21, Sprouty 1 (SPRY1), and connexin 43 (CX43). The protein expression of SPRY1 and CX43 was measured by western blot. ELISA was performed for measuring inflammatory factors, including intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 beta (IL-1ß). The target relationship between miR-21 and SPRY1 was determined by dual-luciferase reporter assay. Cell multiplication and apoptosis were detected using CCK-8 assay and flow cytometry analysis, respectively. Our results indicated that miR-21, CX43, and the level of inflammatory cytokines including ICAM-1 and IL-1ß were upregulated, while SPRY1 was downregulated in blood samples from CHD patients compared with the controls. Besides, miR-21 directly targeted SRPY-1. miR-21 could suppress SPRY1 expression and enhance CX43 expression in VSMCs. Moreover, miR-21 accelerated cell multiplication and attenuated cell apoptosis in VSMCs. Collectively, these findings suggested that miR-21 could effectively elevate VSMC multiplication and repress apoptosis by targeting SPRY1 in CHD, providing a potential target for therapeutic strategy of CHD.


Subject(s)
Coronary Disease/genetics , Coronary Disease/pathology , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Adult , Aged , Apoptosis/genetics , Case-Control Studies , Cell Proliferation/genetics , Cells, Cultured , Computational Biology , Connexin 43/genetics , Connexin 43/metabolism , Coronary Disease/metabolism , Female , Gene Expression , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/therapy , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/metabolism , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/metabolism
17.
Bull Exp Biol Med ; 172(2): 117-120, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34855078

ABSTRACT

We compared the expression of Са2+-ATPase (SERCA2a), calsequestrin (CASQ2), ryanodine receptors (RyR2) proteins and their genes (ATP2A2, CASQ2, and RYR2) in coronary heart disease (CHD) patients with and without comorbid type 2 diabetes mellitus. All studies were performed on the right atrial appendages resected during coronary bypass surgeries. Expression of SERCA2a and RyR2 proteins and their ATP2A2 (p=0.046) and RYR2 genes in comorbid pathology was significantly (p=0.042) higher (by 1.2 and 2 times; p=0.025). The expression of CASQ2 protein and its gene did not differ significantly between the groups (p=0.82 and p=0.066, respectively). It was concluded that the expression of SERCA2a and RyR2 proteins and their genes (but not CASQ2 and its gene) is elevated in CHD associated with type 2 diabetes mellitus. Expression of the studied proteins correlated with the expression of their genes. Increased expression of CASQ2 protein and its gene can probably prevent imbalance of the Ca2+-transporting systems in cardiomyocytes and contractile dysfunction of the myocardium, even in CHD associated with type 2 diabetes mellitus.


Subject(s)
Calcium Signaling/genetics , Coronary Disease , Diabetes Mellitus, Type 2 , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Aged , Biological Transport/genetics , Biopsy , Calcium/metabolism , Calsequestrin/genetics , Calsequestrin/metabolism , Case-Control Studies , Coronary Disease/complications , Coronary Disease/genetics , Coronary Disease/metabolism , Coronary Disease/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Gene Expression , Humans , Middle Aged , Myocardium/metabolism , Myocytes, Cardiac/pathology , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
18.
DNA Cell Biol ; 40(12): 1495-1502, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34931866

ABSTRACT

The cytoskeleton is a biopolymer network composed of intermediate filaments, actin, and microtubules, which is the main mechanical structure of cells. Vimentin is an intermediate filament protein that regulates the mechanical and contractile properties of cells, thereby reflecting their mechanical properties. In recent years, the "nonmechanical function" of vimentin inside and outside of cells has attracted extensive attention. The content of vimentin in atherosclerotic plaques is increased, and the serum secretion of vimentin in patients with coronary heart disease is remarkably increased. In this review, the mechanistic and nonmechanistic roles of vimentin in atherosclerosis progression were summarized on the basis of current studies.


Subject(s)
Atherosclerosis/metabolism , Vimentin/metabolism , Animals , Coronary Disease/metabolism , Cytoskeleton/metabolism , Humans
19.
Biomed Res Int ; 2021: 3440498, 2021.
Article in English | MEDLINE | ID: mdl-34692829

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) is the most prevalent disease with an unelucidated pathogenetic mechanism and is mediated by complex molecular interactions of exosomes. Here, we aimed to identify differentially expressed exosome genes for the disease development and prognosis of CHD. METHOD: Six CHD samples and 32 normal samples were downloaded from the exoRbase database to identify the candidate genes in the CHD. The differentially expressed genes (DEGs) were identified. And then, weighted gene correlation network analysis (WGCNA) was used to investigate the modules in coexpressed genes between CHD samples and normal samples. DEGs and the module of the WGCNA were intersected to obtain the most relevant exosome genes. After that, the function enrichment analyses and protein-protein interaction network (PPI) were performed for the particular module using STRING and Cytoscape software. Finally, the CIBERSORT algorithm was used to analyze the immune infiltration of exosome genes between CHD samples and normal samples. RESULT: We obtain a total of 715 overlapping exosome genes located at the intersection of the DEGs and key modules. The Gene Ontology enrichment of DEGs in the blue module included inflammatory response, neutrophil degranulation, and activation of CHD. In addition, protein-protein networks were constructed, and hub genes were identified, such as LYZ, CAMP, HP, ORM1, and LTF. The immune infiltration profiles varied significantly between normal controls and CHD. Finally, we found that mast cells activated and eosinophils had a positive correlation. B cell memory had a significant negative correlation with B cell naive. Besides, neutrophils and mast cells were significantly increased in CHD patients. CONCLUSION: The underlying mechanism may be related to neutrophil degranulation and the immune response. The hub genes and the difference in immune infiltration identified in the present study may provide new insights into the diagnostic and provide candidate targets for CHD.


Subject(s)
Coronary Disease/genetics , Exosomes/genetics , Gene Regulatory Networks , Computational Biology/methods , Coronary Disease/immunology , Coronary Disease/metabolism , Coronary Disease/pathology , Exosomes/immunology , Exosomes/metabolism , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Neutrophils/immunology , Protein Interaction Maps , Transcriptome
20.
Sci Rep ; 11(1): 20301, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645870

ABSTRACT

Endothelial dysfunction is a key player in both the onset and development of atherosclerosis. No study has examined whether healthy dietary patterns can improve microvascular endothelial function in patients with coronary heart disease (CHD) in the long-term and whether this relationship can affect patient's risk of CHD recurrence. In the CORDIOPREV study, a randomized, double-blind, controlled trial, dietary intervention with either the Mediterranean diet or a low-fat diet was implemented in 1,002 CHD patients. A laser-doppler flowmetry was performed at baseline and after 6 years of follow up in 664 patients, evaluating the effects of this dietary intervention on microvascular basal flow and reactive hyperaemia area, as well as on the risk of CHD recurrence, based on the TRS2P risk score. Basal flow (97.78 ± 2.79 vs. 179.31 ± 5.06 arbitrary perfusion units, 83.38% increase, p < 0.001) and reactive hyperaemia area (4233.3 ± 127.73 vs. 9695.9 ± 205.23 arbitrary perfusion units per time, 129.04% increase, p < 0.001) improved after the dietary intervention in the cohort, without finding differences due to the diet (p > 0.05 for the diet-effect). When patients were stratified to low, moderate or high-risk of recurrence, basal flow was similarly increased in all three groups. However, reactive hyperaemia area was improved to a greater extent in patients at the low-risk group compared with those at moderate or high-risk. No differences were observed between diets. Healthy dietary patterns can improve microvascular endothelial function and this improvement persists in the long-term. Patients with a low-risk of CHD recurrence show a greater improvement in reactive vasodilation to ischemia than patients in the moderate or high-risk groups.


Subject(s)
Atherosclerosis/diet therapy , Atherosclerosis/metabolism , Coronary Disease/metabolism , Diet, Fat-Restricted , Diet, Mediterranean , Diet , Endothelium, Vascular/metabolism , Thrombosis/diet therapy , Thrombosis/metabolism , Aged , Double-Blind Method , Female , Humans , Hyperemia/metabolism , Laser-Doppler Flowmetry , Male , Microcirculation , Middle Aged , Perfusion , Recurrence , Risk , Risk Assessment/methods , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...