Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Bioorg Med Chem ; 111: 117863, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39096786

ABSTRACT

We designed and synthesized two novel photocaged peroxide compounds, N5TBHP and N6TBHP, featuring nitrogen-containing fused ring coumarin skeletons. Notably, a tetrahydroquinoline fused coumarin derivative, N6TBHP demonstrated significantly higher photocleavage efficiency under visible light at 455 nm compared to N5TBHP, which contains an indoline fused coumarin. This process effectively releases the oxidative stress inducer tert-butylhydroperoxide (TBHP). Additionally, N6TBHP exhibits high resistance to glutathione (GSH), and its UV spectral analysis suggests enhanced intracellular stability due to reduced reactivity with GSH through self-assembly. Furthermore, N6TBHP can release an optimal amount of TBHP into cells under visible light irradiation with minimal cell damage. These properties position N6TBHP as a promising tool for advancing research in intracellular redox signaling.


Subject(s)
Drug Design , Light , Peroxides , Reactive Oxygen Species , Signal Transduction , Reactive Oxygen Species/metabolism , Humans , Signal Transduction/drug effects , Peroxides/chemistry , Peroxides/pharmacology , Peroxides/chemical synthesis , Molecular Structure , Structure-Activity Relationship , tert-Butylhydroperoxide/pharmacology , tert-Butylhydroperoxide/chemistry , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Dose-Response Relationship, Drug , Oxidative Stress/drug effects , Photochemical Processes
2.
Nat Commun ; 15(1): 6864, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127760

ABSTRACT

Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.


Subject(s)
Apiaceae , Biosynthetic Pathways , Coumarins , Phylogeny , Coumarins/metabolism , Biosynthetic Pathways/genetics , Apiaceae/genetics , Apiaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Gene Duplication
3.
PLoS One ; 19(8): e0306124, 2024.
Article in English | MEDLINE | ID: mdl-39141629

ABSTRACT

Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 µΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.


Subject(s)
Coumarins , Glutathione S-Transferase pi , Molecular Docking Simulation , Sulfonamides , Humans , Coumarins/chemistry , Coumarins/pharmacology , Glutathione S-Transferase pi/antagonists & inhibitors , Glutathione S-Transferase pi/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Cell Line, Tumor , Chalcone/chemistry , Chalcone/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chalcones/chemistry , Chalcones/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , MCF-7 Cells
4.
Biomed Mater ; 19(5)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39121891

ABSTRACT

Polymer nanomicelles have the advantages of small particle size, improved drug solubility, retention effect and enhanced permeability, so they can be used in the treatment of tumour diseases. The aim of this study was to prepare and optimise a nanomicelle which can improve the solubility of insoluble drugs. Firstly, the carboxyl group of cholesterol succinic acid monoester was grafted with the side chain amino group of O-carboxymethyl chitosan-g-cholesterol succinic acid monoester (CCMC), and its structure was characterized by fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Particle size has an important impact on tissue distribution, cell uptake, permeability and inhibition of tumour tissue. In this study, particle size and polydispersity index (PDI) were selected as indexes to optimise the preparation process of CCMC nanomicelles through single factor experiment, Plackett-Burman experiment, the steepest climbing experiment and response surface design experiment. The optimised CCMC nanomicelles showed an average particle size of 173.9 ± 2.3 nm and a PDI of 0.170 ± 0.053. The Cell Counting Kit-8 assay showed no significant effect on cell viability in the range of 0-1000 µg ml-1concentration. Coumarin-6 (C6) was used as a fluorescent probe to investigate the drug-carrying ability of CCMC nanomicelles. C6-CCMC showed 86.35 ± 0.56% encapsulation efficiency with a drug loading of 9.18 ± 0.32%. Both CCMC and C6-CCMC demonstrated excellent stability in different media. Moreover, under the same conditions, the absorption effect of C6 in C6-CCMC nanomicelles was significantly higher than that of free C6 while also exhibiting good sustained-release properties. Therefore, this study demonstrates CCMC nanomicelles as a promising new drug carrier that can significantly improve insoluble drug absorption.


Subject(s)
Chitosan , Cholesterol , Micelles , Particle Size , Chitosan/chemistry , Chitosan/analogs & derivatives , Humans , Cholesterol/chemistry , Cholesterol/analogs & derivatives , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Solubility , Polymers/chemistry , Drug Carriers/chemistry , Cell Survival/drug effects , Coumarins/chemistry , Cell Line, Tumor , Thiazoles/chemistry , Thiazoles/pharmacology
5.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125817

ABSTRACT

Recent studies confirmed that pyroptosis is involved in the progression of pulmonary hypertension (PH), which could promote pulmonary artery remodeling. Urolithin A (UA), an intestinal flora metabolite of ellagitannins (ETs) and ellagic acid (EA), has been proven to possess inhibitory effects on pyroptosis under various pathological conditions. However, its role on PH remained undetermined. To investigate the potential of UA in mitigating PH, mice were exposed to hypoxia (10% oxygen, 4 weeks) to induce PH, with or without UA treatment. Moreover, in vitro experiments were carried out to further uncover the underlying mechanisms. The in vivo treatment of UA suppressed the progression of PH via alleviating pulmonary remodeling. Pyroptosis-related genes were markedly upregulated in mice models of PH and reversed after the administration of UA. In accordance with that, UA treatment significantly inhibited hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) pyroptosis via the AMPK/NF-κB/NLRP3 pathway. Our results revealed that UA treatment effectively mitigated PH progression through inhibiting PASMC pyroptosis, which represents an innovative therapeutic approach for PH.


Subject(s)
AMP-Activated Protein Kinases , Coumarins , Hypertension, Pulmonary , Hypoxia , Myocytes, Smooth Muscle , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pulmonary Artery , Pyroptosis , Signal Transduction , Animals , Coumarins/pharmacology , Coumarins/therapeutic use , Pyroptosis/drug effects , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Male , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Disease Models, Animal
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125898

ABSTRACT

The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure-activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0-89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Peptidomimetics , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Staphylococcus aureus/drug effects , Aldehydes/chemistry , Aldehydes/pharmacology , Cross Infection/microbiology , Cross Infection/drug therapy
7.
Ecotoxicol Environ Saf ; 282: 116836, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39097417

ABSTRACT

Since the onset of the SARS-CoV-2 pandemic in early 2020, there has been a notable rise in sodium hypochlorite disinfectants. Sodium hypochlorite undergoes hydrolysis to generate hypochlorous acid for virus eradication. This chlorine-based disinfectant is widely utilized for public disinfection due to its effectiveness. Although sodium hypochlorite disinfection is convenient, its excessive and indiscriminate use can harm the water environment and pose a risk to human health. Hypochlorous acid, a reactive oxygen species, plays a crucial role in the troposphere, stratospheric chemistry, and oxidizing capacity. Additionally, hypochlorous acid is vital as a reactive oxygen species in biological systems, and its irregular metabolism and level is associated with several illnesses. Thus, it is crucial to identify hypochlorous acid to comprehend its environmental and biological functions precisely. Here, we constructed a new fluorescent probe, utilizing the twisted intramolecular charge transfer mechanism to quickly and accurately detect hypochlorous acid in environmental water and biosystems. The probe showed a notable increase in fluorescence when exposed to hypochlorous acid, demonstrating its excellent selectivity, fast response time (less than 10 seconds), a large Stokes shift (∼ 102 nm), and a low detection limit of 15.5 nM.


Subject(s)
Coumarins , Fluorescent Dyes , Hypochlorous Acid , Water Pollutants, Chemical , Hypochlorous Acid/chemistry , Fluorescent Dyes/chemistry , Coumarins/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Animals , Disinfectants/chemistry , Disinfectants/analysis , Disinfectants/toxicity , Limit of Detection
8.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124919

ABSTRACT

The main feature of neurodegenerative diseases, including Alzheimer's disease, is the network of complex and not fully recognized neuronal pathways and targets involved in their onset and progression. The therapeutic treatment, at present mainly symptomatic, could benefit from a polypharmacological approach based on the development of a single molecular entity designed to simultaneously modulate different validated biological targets. This strategy is principally based on molecular hybridization, obtained by linking or merging different chemical moieties acting with synergistic and/or complementary mechanisms. The coumarin core, widely found in nature, endowed with a recognized broad spectrum of pharmacological activities, large synthetic accessibility and favourable pharmacokinetic properties, appears as a valuable, privileged scaffold to be properly modified in order to obtain compounds able to engage different selected targets. The scientific literature has long been interested in the multifaceted profiles of coumarin derivatives, and in this review, a survey of the most important results of the last four years, on both natural and synthetic coumarin-based compounds, regarding the development of anti-Alzheimer's compounds is reported.


Subject(s)
Alzheimer Disease , Coumarins , Drug Discovery , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Coumarins/chemistry , Coumarins/therapeutic use , Coumarins/pharmacology , Humans , Animals , Biological Products/chemistry , Biological Products/therapeutic use , Biological Products/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
9.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3693-3705, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099344

ABSTRACT

Coumarins are natural products with benzopyran ring as the parent nucleus. Numerous coumarin derivatives exhibit a variety of pharmacological activities, including antibacterial, anti-inflammatory, antitumor, anti-coagulant, anti-osteoporotic, and insecticidal activities. Therefore, they play an important role in both medicine and agriculture. The development and utilization of coumarin derivatives have attracted increasing attention. The advancement of gene sequencing technology and the rapid progress in synthetic bio-logy have led to significant advancement in the biosynthesis of coumarin derivatives, and has received increasing attention from global researchers. This paper presents a comprehensive overview of the key biosynthesis-related enzymes of coumarin derivatives, such as cytochrome P450 enzyme(CYP450), prenyltransferase(PT), UDP-glucosyltransferase(UGT). Additionally, the pharmacological activities of these enzymes, including anti-tumor, anti-inflammatory, antioxidant, and antibacterial activities, are systematically summarized. This review aims to provide a valuable reference for the biosynthesis of coumarin derivatives and further exploration of their medicinal potential.


Subject(s)
Coumarins , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/metabolism , Humans , Animals , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
10.
J Mass Spectrom ; 59(8): e5069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989730

ABSTRACT

Cinnamomi ramulus (CR) is a common Chinese herbal medicine with a long history. It is often used to treat exogenous wind-cold diseases in clinic, but its chemical compositions remain to be studied. In this study, CR was extracted with 75% ethanol, and UPLC-Q-Orbitrap-MS combined with data post-processing method was used to identify the chemical components in the extract. Through this technology, the components in CR can be separated and accurately identified. A total of 61 compounds were identified, including 14 simple phenylpropanoids, 3 coumarins, 5 lignans, 14 flavonoids, 10 benzoic acids, 8 organic acids, and 7 others. This study confirmed the existence of these compounds in CR and speculated the cleavage pathways of each compound, which enriched the mass spectrometry data and cleavage rules. This study can provide a reference for CR and other research.


Subject(s)
Coumarins , Drugs, Chinese Herbal , Flavonoids , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Coumarins/chemistry , Coumarins/analysis , Flavonoids/analysis , Flavonoids/chemistry , Lignans/analysis , Lignans/chemistry , Mass Spectrometry/methods , Cinnamomum/chemistry , Tandem Mass Spectrometry/methods
11.
Eur J Pharmacol ; 979: 176829, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39053867

ABSTRACT

Alzheimer's disease (AD) and osteoporosis (OP) are both serious degenerative diseases, with the potential for concurrent occurrence in clinical settings, and they share certain pathological correlations. Osthole (OST) and notopterol (NOT) are the main active ingredients in traditional Chinese medicine, Angelica pubescens and Notopterygium incisum, respectively, and they exhibit neuroprotective and osteoprotective effects. However, whether the combination of OST and NOT produces a synergistic effect against AD and/or OP remains unclear. The aim of this study was to investigate whether the combination of OST and NOT could produce synergistic anti-AD and/or OP effects using the previously constructed zebrafish AD/OP comorbidity model. Active compounds with anti-AD and OP effects were screened from Angelica pubescens and Notopterygium incisum through network pharmacology, identifying OST and NOT, respectively. Then, the AlCl3-induced (Aluminum chloride, AlCl3) AD combined with OP zebrafish model, in conjunction with the Chou-Talalay synergy evaluation model, was employed to assess whether the OST and NOT combination produced synergistic effects against AD and/or OP. Furthermore, a CuSO4-induced (Copper sulfate, CuSO4) inflammation zebrafish model was used to investigate whether the combination of OST and NOT produced synergistic anti-inflammatory effects, thereby resulting in synergistic anti-AD and/or OP effects. The results demonstrated that the OST-NOT combined treatment produced a synergistic anti-AD and OP effect. Moreover, the combined treatment of OST and NOT significantly inhibited nitric oxide (NO) and reactive oxygen species (ROS) release more effectively than OST or NOT alone, indicating a synergistic anti-inflammatory effect of the OST and NOT combined treatment.


Subject(s)
Alzheimer Disease , Coumarins , Disease Models, Animal , Drug Synergism , Osteoporosis , Zebrafish , Animals , Coumarins/pharmacology , Coumarins/therapeutic use , Alzheimer Disease/drug therapy , Osteoporosis/drug therapy , Drug Therapy, Combination , Comorbidity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nitric Oxide/metabolism
12.
Nutrients ; 16(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064706

ABSTRACT

Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.


Subject(s)
Circadian Rhythm , Colitis , Coumarins , Intestinal Mucosa , Mice, Inbred C57BL , Animals , Circadian Rhythm/drug effects , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Coumarins/pharmacology , Gastrointestinal Microbiome/drug effects , Inflammation , NF-E2-Related Factor 2/metabolism , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Tight Junctions/metabolism , Tight Junctions/drug effects , Signal Transduction/drug effects , Disease Models, Animal , Humans , Dextran Sulfate , Gene Expression Regulation/drug effects , Immunoglobulin A/metabolism , Sirtuin 1
13.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064924

ABSTRACT

Peucedanum decursivum (Miq.) Maxim (P. decursivum) is a traditional Chinese medicinal plant with pharmacological effects such as anti-inflammatory and anti-tumor effects, the root of which is widely used as medicine. Determining the spatial distribution and pharmacological mechanisms of metabolites is necessary when studying the effective substances of medicinal plants. As a means of obtaining spatial distribution information of metabolites, mass spectrometry imaging has high sensitivity and allows for molecule visualization. In this study, matrix-assisted laser desorption mass spectrometry (MALDI-TOF-MSI) and network pharmacology were used for the first time to visually study the spatial distribution and anti-inflammatory mechanism of coumarins, which are metabolites of P. decursivum, to determine their tissue localization and mechanism of action. A total of 27 coumarins were identified by MALDI-TOF-MSI, which mainly concentrated in the cortex, periderm, and phloem of the root of P. decursivum. Network pharmacology studies have identified key targets for the anti-inflammatory effect of P. decursivum, such as TNF, PTGS2, and PRAKA. GO enrichment and KEGG pathway analyses indicated that coumarins in P. decursivum mainly participated in biological processes such as inflammatory response, positive regulation of protein kinase B signaling, chemical carcinogenesis receptor activation, pathways in cancer, and other biological pathways. The molecular docking results indicated that there was good binding between components and targets. This study provides a basis for understanding the spatial distribution and anti-inflammatory mechanism of coumarins in P. decursivum.


Subject(s)
Anti-Inflammatory Agents , Apiaceae , Coumarins , Metabolomics , Network Pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Coumarins/pharmacology , Coumarins/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Apiaceae/chemistry , Metabolomics/methods , Molecular Docking Simulation , Plant Roots/chemistry
14.
Chin J Nat Med ; 22(7): 643-653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39059833

ABSTRACT

The resin of Ferula sinkiangensis has been traditionally utilized for treating gastrointestinal disorders, inflammation, tumors, various cancers, and alopecia areata. The primary bioactive constituents, sesquiterpene coumarins, have demonstrated notable therapeutic potential against neuroinflammation. In this study, a structure-guided fractionation method was used to isolate nine novel sesquiterpene coumarins from the resin of F. sinkiangensis. These compounds were characterized and structurally elucidated using comprehensive physicochemical and spectroscopic techniques, including calculated electronic circular dichroism (ECD). Anti-neuroinflammatory assays revealed that compounds 2, 3, and 6 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values ranging from 1.63 to 12.25 µmol·L-1.


Subject(s)
Anti-Inflammatory Agents , Coumarins , Ferula , Microglia , Nitric Oxide , Sesquiterpenes , Ferula/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Coumarins/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Microglia/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Animals , Mice , Cell Line , Lipopolysaccharides/pharmacology , Resins, Plant/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
15.
Toxicon ; 247: 107838, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38971473

ABSTRACT

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.


Subject(s)
Molecular Docking Simulation , Pentacyclic Triterpenes , Phospholipases A2 , Phytochemicals , Plant Leaves , Vernonia , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Leaves/chemistry , Animals , Vernonia/chemistry , Phospholipases A2/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Naja , Coumarins/pharmacology , Coumarins/chemistry , Phospholipase A2 Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Computer Simulation , Lupanes
16.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062947

ABSTRACT

The synergetic strategy has created tremendous advantages in drug-resistance bacterial infection treatment, whereas challenges related to novel compound discovery and identifying drug-binding targets still remain. The mechanisms of antimicrobial resistance involving ß-lactamase catalysis and the degradation of ß-lactam antibiotics are being revealed, with relevant therapies promising to improve the efficacy of existing major classes of antibiotics in the foreseeable future. In this study, it is demonstrated that nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, efficiently potentiated the activities of ß-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by suppressing ß-lactamase performance and improving the bacterial biofilm susceptibility to antibiotics. Nordalbergin was found to destabilize the cell membrane and promote its permeabilization. Moreover, nordalbergin efficiently improved the therapeutic efficacy of amoxicillin against MRSA pneumonia in mice, as supported by the lower bacterial load, attenuated pathological damage, and decreased inflammation level. These results demonstrate that nordalbergin might be a promising synergist of amoxicillin against MRSA infections. This study provided a new approach for developing potentiators for ß-lactam antibiotics against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , beta-Lactams , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Biofilms/drug effects , Coumarins/pharmacology , Coumarins/chemistry , beta-Lactamases/metabolism , Amoxicillin/pharmacology , beta Lactam Antibiotics
17.
ACS Appl Bio Mater ; 7(8): 5437-5451, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38995885

ABSTRACT

Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.


Subject(s)
Biocompatible Materials , Coumarins , Fluorescent Dyes , Coumarins/chemistry , Coumarins/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Molecular Structure , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , NADP/metabolism , Materials Testing , Particle Size , Optical Imaging , HeLa Cells , Animals
18.
Cell Commun Signal ; 22(1): 361, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010083

ABSTRACT

BACKGROUND: Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS: A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS: We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS: Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms , Coumarins , Histone Deacetylase 1 , Hydroxamic Acids , Signal Transduction , Coumarins/chemistry , Coumarins/pharmacology , Humans , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Animals , Signal Transduction/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/therapeutic use , Sp1 Transcription Factor/metabolism , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation/drug effects , Mice, Nude , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred BALB C , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drug Discovery
19.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063240

ABSTRACT

Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.


Subject(s)
Angelica , Coumarins , Gene Expression Regulation, Plant , Lignin , Plant Roots , Lignin/biosynthesis , Coumarins/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Angelica/genetics , Angelica/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Phylogeny
20.
J Med Chem ; 67(15): 12601-12617, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39077891

ABSTRACT

In our previous study, coumarin-containing CYP51 inhibitor A32 demonstrated potent antiresistance activity. However, compound A32 demonstrated unsatisfied metabolic stability, necessitating modifications to overcome these limitations. In this study, α,ß-unsaturated amides were used to replace the unstable coumarin ring, which increased metabolic stability by four times while maintaining antifungal activity, including activity against resistant strains. Subsequently, the sterol composition analysis and morphological observation experiments indicated that the target of these novel compounds is lanosterol 14α-demethylase (CYP51). Meanwhile, biofilm growth was inhibited and resistance genes (ERG11, CDR1, CDR2, and MDR1) expression was downregulated to find out how the antiresistance works. Importantly, compound C07 demonstrated the capacity to stimulate reactive oxygen species, thus displaying potent fungicidal activity. Moreover, C07 exhibited encouraging effectiveness in vivo following intraperitoneal administration. Additionally, the most potent compound C07 showed satisfactory pharmacokinetic properties and low toxicity. These α,ß-unsaturated amide derivatives, particularly C07, are potential candidates for treating azole-resistant candidiasis.


Subject(s)
Amides , Antifungal Agents , Drug Resistance, Fungal , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Drug Resistance, Fungal/drug effects , Amides/pharmacology , Amides/chemistry , Amides/chemical synthesis , Animals , Biofilms/drug effects , Candida albicans/drug effects , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/chemistry , Mice , Drug Discovery , Structure-Activity Relationship , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , 14-alpha Demethylase Inhibitors/therapeutic use , Candidiasis/drug therapy , Candidiasis/microbiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL