ABSTRACT
Propolis is a natural resinous mixture produced by honeybees with numerous biological activities. Considering the recently reported potential of propolis as an adjuvant in COVID-19 treatment, a methodology for the fractionation of the hexane extract of Brazilian green propolis (HEGP) was developed for the obtention of prenylated biomarkers by countercurrent chromatography. The inhibition of the interaction between the receptor binding domain (RBD) of spike and ACE2 receptor was evaluated by the Lumitáµá´¹ immunoassay. Fractionation of HEGP was performed by both normal (CCC1 and CCC2, with extended elution) and reversed (CCC3) phase elution-extrusion modes with the solvent system hexane-ethanol-water 4:3:1. The normal elution mode of CCC1 (471 mg HEGP in a 80 mL column volume, 1.6 mm id) was scaled-up (CCC5, 1211 mg HEGP in a 112 mL column volume, 2.1 mm id), leading to the isolation of 89.9 mg of artepillin C, 1; 52.7 mg of baccharin, 2; and 26.6 mg of chromene, with purities of 93 %, 83 % and 88 %, respectively, by HPLC-PDA. Among the isolated compounds, artepillin C, 1, and baccharin, 2, presented the best results in the Lumitáµá´¹ immunoassay, showing 67% and 51% inhibition, respectively, at the concentration of 10 µM. This technique proved to be of low operational cost and excellent reproducibility.
Subject(s)
Angiotensin-Converting Enzyme 2 , Countercurrent Distribution , Propolis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Propolis/chemistry , Countercurrent Distribution/methods , SARS-CoV-2/drug effects , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Biomarkers/metabolism , COVID-19 , Protein Binding , COVID-19 Drug Treatment , Phenylpropionates/chemistry , Phenylpropionates/isolation & purificationABSTRACT
Propolis is a resinous bee product with a very complex composition, which is dependent upon the plant sources that bees visit. Due to the promising antimicrobial activities of red Brazilian propolis, it is paramount to identify the compounds responsible for it, which, in most of the cases, are not commercially available. The aim of this study was to develop a quick and clean preparative-scale methodology for preparing fractions of red propolis directly from a complex crude ethanol extract by combining the extractive capacity of counter-current chromatography (CCC) with preparative HPLC. The CCC method development included step gradient elution for the removal of waxes (which can bind to and block HPLC columns), sample injection in a single solvent to improve stationary phase stability, and a change in the mobile phase flow pattern, resulting in the loading of 2.5 g of the Brazilian red propolis crude extract on a 912.5 mL Midi CCC column. Three compounds were subsequently isolated from the concentrated fractions by preparative HPLC and identified by NMR and high-resolution MS: red pigment, retusapurpurin A; the isoflavan 3(R)-7-O-methylvestitol; and the prenylated benzophenone isomers xanthochymol/isoxanthochymol. These compounds are markers of red propolis that contribute to its therapeutic properties, and the amount isolated allows for further biological activities testing and for their use as chromatographic standards.
Subject(s)
Countercurrent Distribution , Propolis , Propolis/chemistry , Countercurrent Distribution/methods , Chromatography, High Pressure Liquid , Brazil , Animals , Chemical Fractionation/methods , Bees/chemistryABSTRACT
INTRODUCTION: Many secondary metabolites isolated from plants have been described in the literature owing to their important biological properties and possible pharmacological applications. However, the identification of compounds present in complex plant extracts has remained a great scientific challenge, is often laborious, and requires a long research time with high financial cost. OBJECTIVES: The aim of this study was to develop a method that allows the identification of secondary metabolites in plant extracts with a high degree of confidence in a short period of time. MATERIAL AND METHODS: In this study, an ethanolic extract of Coffea arabica leaves was used to validate the proposed method. Countercurrent chromatography was chosen as the initial step for extraction fractionation using gradient elution. Resulting fractions presented a variation of compounds concentrations, allowing for statistical total correlation spectroscopy (STOCSY) calculations between liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and NMR across fractions. RESULTS: The proposed method allowed the identification of 57 compounds. Of the annotated compounds, 20 were previously described in the literature for the species and 37 were reported for the first time. Among the inedited compounds, we identified flavonoids, alkaloids, phenolic acids, coumarins, and terpenes. CONCLUSION: The proposed method presents itself as a valid alternative for the study of complex extracts in an effective, fast, and reliable way that can be reproduced in the study of other extracts.
Subject(s)
Coffea , Countercurrent Distribution , Countercurrent Distribution/methods , Spectrometry, Mass, Electrospray Ionization/methods , Coffea/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Chromatography, High Pressure Liquid/methodsABSTRACT
Syzygium malaccense (L.) Merr. & L.M. Perry is a native tree to Malaysia, but also occurs in other tropical regions of the world, including Brazil. The increasing interest in the consumption of its leaves motivated the investigation of compounds of the plant. Metabolite profiling of S. malaccense leaves was achieved by high-speed countercurrent chromatography (HSCCC) fractionation coupled off-line to electrospray mass-spectrometry (ESI-MS) detection and nuclear magnetic resonance (NMR) analysis. The ethanolic leaf extract was submitted to HSCCC using a three-phase solvent system (TPSS) composed by n-hexane - ethyl acetate - acetonitrile - H2O (2:1:1:1, v/v). The stepwise gradient elution was employed due to the extract's chemical complexity. HSCCC fractions were further analyzed by ESI-MS/MS using a flow injection experiment and by NMR acquiring 1H, HSQC and HMBC spectra. MS based dereplication was achieved by comparing acquired data to those available in public and commercial databases. Results were also correlated to previously isolated compounds described for the Syzygium genus. This process led to the annotation of 90 compounds. The NMR data provided structural confirmation and substitution patterns for some of them. Extract chemical composition is characterized by having flavonoids, benzoic acids, hydroxycinnamic acids, quinic acids, hydrolizable tannins, fatty acids, anacardic acids and others primary metabolites. Most of these compounds were described for the first time in the plant. This approach greatly facilitates phytochemical analysis and could be applied to improve metabolite discovery in other studies.
Subject(s)
Countercurrent Distribution , Syzygium , Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plants, Edible , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methodsABSTRACT
The detailed metabolite profiling of Laguncularia racemosa was accomplished by high-performance countercurrent chromatography (HPCCC) using the three-phase system n-hexane-tert-butyl methyl ether-acetonitrile-water 2:3:3:2 (v/v/v/v) in step-gradient elution mode. The gradient elution was adjusted to the chemical complexity of the L. racemosa ethyl acetate partition and strongly improved the polarity range of chromatography. The three-phase solvent system was chosen for the gradient to avoid equilibrium problems when changing mobile phase compositions encountered between the gradient steps. The tentative recognition of metabolites including the identification of novel ones was possible due to the off-line injection of fractions to electrospray ionization mass spectrometry (ESI-MS/MS) in the sequence of recovery. The off-line hyphenation profiling experiment of HPCCC and ESI-MS projected the preparative elution by selected single ion traces in the negative ionization mode. Co-elution effects were monitored and MS/MS fragmentation data of more than 100 substances were used for structural characterization and identification. The metabolite profile in the L. racemosa extract comprised flavonoids, hydrolysable tannins, condensed tannins and low molecular weight polyphenols.
Subject(s)
Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Chemical Fractionation/methods , Countercurrent Distribution/methods , Flavonoids/analysis , Polyphenols/analysis , Solvents/chemistryABSTRACT
The biological properties of Achyrocline satureioides have been mostly ascribed to its major flavonoids quercetin (QCT), luteolin (LUT), and 3-O-methylquercetin (3OMQ). The present study aimed to optimize the extraction by dynamic maceration of the major phenolic compounds in order to obtain in a subsequent step a flavonoid-enriched fraction (FEF) using high performance countercurrent chromatography (HPCCC). A 3-level Box-Behnken design (BBD) was applied to maximize the extraction of the substances, using the plantâ:âsolvent ratio (X1 ), extraction time (X2 ), and ethanol concentration (X3 ) as factors. One-step HPCCC semipreparative separation with a solvent system composed of hexaneâ:âethyl acetateâ:âmethanolâ:âwater (0.9â:â0.9â:â0.8â:â1.0, v/v) was employed to obtain the FEF. The second-order polynomial model was able to fit the experimental data adequately. The linear and quadratic terms of X3 were the most significant factors that affected all the responses. The positive linear term of X3 indicated a substantial increase in extraction yield, while the negative quadratic term showed a nonlinear tendency. Linear terms of X1 suggested a tendency to solvent saturation, except for QCT. The terms of X2 did not affect the responses substantially. The HPCCC method was found to be efficient and rapid for separating the FEF with 71% (w/w) flavonoid content. Overall, the developed extraction procedure coupled with HPCCC proved to be efficient for obtaining an enriched fraction with a very high content of flavonoids from A. satureioides.
Subject(s)
Achyrocline/chemistry , Countercurrent Distribution/methods , Flavonoids/isolation & purification , Plant Extracts/isolation & purificationABSTRACT
Nectandra leucantha (Lauraceae) is a tree indigenous to the tropical Atlantic forests of Brazil, one of the most biodiverse flora hotspots worldwide. This plant species contains high concentrations of neolignan and dehydrodieugenol derivatives that express significant in-vitro activities against various parasite strains. These activities are however responsible for severe tropical human infections, such as Leishmaniasis (Leishmania spp.) and Chagas disease (Trypanosoma cruzi), which have been classified by the World Health Organization (WHO) as Neglected Tropical Diseases (NTDs). In order to optimize the isolation process for these target metabolites, n-hexane extract of the leaves was separated by means of semi-preparative high performance countercurrent chromatography (HPCCC) and scale-up spiral-coil countercurrent chromatography (sp-CCC) systems. Several biphasic solvent mixtures were evaluated for their partitioning effects on neolignans, resulting in the selection of an optimized system n-hexane - ethylacetate - methanol - water (7:3:7:3, v/v/v/v). The chromatographic experiments on the HPCCC and sp-CCC were run in the head-to-tail mode with 500â¯mg and 16â¯g injections, respectively. For specific and multiple metabolite detection, the recovered CCC-fractions were off-line injected, in the sequence of recovery, to an electrospray mass-spectrometry (ESI-MS/MS) device. A projection of the single ion traces of the target compounds, in the positive ionization mode at a scan range of m/z 100-1500, located chromatographic areas where the co-elution effects occurred and pure target metabolites were present. Five major target neolignans were specifically detected, which enabled the accurate pooling of CCC-fractions for an optimum recovery of the metabolites. The direct comparison of the performance characteristics of the two CCC-devices, with very different mechanical designs was achieved by the conversion of the time axis into a partition ratio (KD) separation scale. As a result, the compound specific KD-elution values of the target neolignan were determined in high precision, while the comparison of the calculated separation factor (α) and resolution factor (RS) values revealed a superior separation performance for the HPCCC system. Also, the reproducibility of detected metabolites in the two CCC experiments was confirmed by small variations (ΔKD⯱0.1). Neolignan target compounds with anti-parasite activities were successfully isolated in the 100â¯mg to 4â¯g range in a single lab-scale countercurrent chromatographic process step.
Subject(s)
Countercurrent Distribution/methods , Lauraceae/chemistry , Lignans/isolation & purification , Plant Extracts/isolation & purification , Tandem Mass Spectrometry/methods , Brazil , Chromatography, High Pressure Liquid/methods , Eugenol/analogs & derivatives , Eugenol/analysis , Eugenol/isolation & purification , Lignans/analysis , Plant Extracts/analysis , Plant Leaves/chemistryABSTRACT
Salicornia species have just been introduced to the European market as a vegetable named 'samphire', 'green asparagus', or 'sea asparagus'. Due to its increasing attention, and associated value, minor compounds of Salicornia gaudichaudiana Moq were investigated. The use of countercurrent chromatography and mass spectrometry enabled the search for known, as well as potentially novel natural products. Their identification was achieved based on molecular weights and mass-spectrometric fragmentation data. Low detection limits enabled the visualization of all compounds with their identification in almost real time close to the preparative countercurrent chromatography experiment. A list of known natural products from Salicornia genus guided the identification process of compounds occurring in Salicornia gaudichaudiana Moq by tandem mass spectrometry fragment comparison. The natural product classes were divided into four groups: chlorogenic acid derivatives; flavonoid derivatives; pentacyclic triterpenoid saponins; and other compounds.
Subject(s)
Chenopodiaceae/chemistry , Countercurrent Distribution/methods , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods , Chenopodiaceae/metabolism , Drugs, Chinese Herbal/metabolism , Limit of Detection , Molecular WeightABSTRACT
INTRODUCTION: Phenolic compounds present in Achyrocline satureioides are known to have therapeutic benefits like antioxidant, anti-inflammatory, and antitumour properties. The main polyphenols present in the plant are quercetin (QCT), luteolin (LUT), 3-O-methylquercetin (3OMQ), and achyrobichalcone (ACB). However, the effective isolation and purification of these compounds from A. satureioides inflorescences are not an easy task. OBJECTIVE: To develop an efficient high-performance counter-current chromatography (HPCCC) method for quick separation and purification of naturally occurring phenolic compounds from the extract of A. satureioides. METHODOLOGY: A two-step HPCCC semi-preparative isolation method was developed using a solvent system composed of n-hexane/ethyl acetate/methanol/water (0.8:1.0:0.8:1.0) and dichloromethane/methanol/water (3.5:3.5:2.5). RESULTS: The HPCCC method was used to obtain two fractions. The first fraction (F1 ) contained high levels of ACB, among other constituents, while the second fraction (F2 ) contained mostly QCT, LUT, and 3OMQ. Besides the high ACB content, F1 contained three other flavonoid-aglycones (kaempferol, 97.3%; isokaempferide, 92.4%; and 3,3'-di-O-methylquercetin, 95.2%) identified by an ultra-performance liquid chromatography system coupled to a quadrupole time-of-flight with high-definition mass spectrometry (UPLC-QTOF/HDMS) and nuclear magnetic resonance (NMR) analysis. Purity levels of ACB, 3OMQ, QCT, and LUT were 98.0, 97.0, 97.5, and 90.2%, respectively. CONCLUSION: This is the first time that high purity ACB and six other flavonoids were obtained from A. satureioides inflorescences by HPCCC. These excellent results reveal the potential and versatility of HPCCC as a technique to produce different types of products from this plant species on a semi-preparative scale: enriched fractions, new metabolites, or high purity compounds.
Subject(s)
Achyrocline/chemistry , Countercurrent Distribution/methods , Polyphenols/isolation & purification , Biflavonoids/analysis , Carbon-13 Magnetic Resonance Spectroscopy/methods , Luteolin/analysis , Plant Extracts/chemistry , Polyphenols/standards , Proton Magnetic Resonance Spectroscopy/methods , Quercetin/analogs & derivatives , Quercetin/analysis , Reference Standards , Spectrophotometry, Ultraviolet/methodsABSTRACT
High Speed Countercurrent Chromatography (HSCCC) technique was used for the preparative isolation of the major leishmanicidal compounds from the essential oils of Piper claussenianum species in Brazil. The essential oils from inflorescences of P. claussenianum were analyzed by GC-FID and GC-MS. The enantiomeric ratio of the major constituents of the P. claussenianum essential oils were determined using a Rt-DEXsm chiral capillary column by GC-FID analysis. It was found an enantiomeric excess of (+)-(E)-nerolidol in the leaves, and (+)-linalool and (+)-(E)-nerolidol in the inflorescences essential oil. The major volatile terpenes alcohols were isolated in preparative scale from inflorescences: linalool (320.0 mg) and nerolidol (95.0 mg) in high purity level. The HSCCC, a support-free liquid-liquid partition chromatographic technique, proved to be an effective and useful method for fast isolation and purification of hydrophobic and similarly structured bioactive components from essential oils of Piper species.
Subject(s)
Countercurrent Distribution/methods , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Piper/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Brazil , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , StereoisomerismABSTRACT
Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MSn. Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form.
Subject(s)
Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods , Mass Spectrometry/methods , Rhamnaceae/chemistry , Saponins/chemistry , Saponins/isolation & purification , Butanols/chemistry , Glycosides/chemistry , Hexanes/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Saponins/analysis , Solvents/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , DammaranesABSTRACT
Tropane alkaloids are bioactive metabolites with great importance in the pharmaceutical industry and the most important class of natural products found in the Erythroxylum genus. However, these compounds are usually separated by traditional chromatographic techniques, in which the sample is progressively purified in multiple chromatographic steps, resulting in a time- and solvent-consuming procedure. In this work we present the isolation of a novel alkaloid, 6ß,7ß-dibenzoyloxytropan-3α-ol, together with the two known 3α-benzoyloxynortropan-6ß-ol and 3α,6ß-dibenzoyloxytropane alkaloids, directly from the crude alkaloid fraction from the leaves of Erythroxylum subsessile, by using a single run pH-zone-refining counter-current chromatography method. The ethyl acetate/water (1:1, v/v) biphasic solvent system with triethylamine and HCl as retention and eluter agents, respectively, was used to isolate tropane alkaloids for the first time. The structures of the isolated alkaloids were elucidated by spectroscopic methods.
Subject(s)
Countercurrent Distribution/methods , Erythroxylaceae/chemistry , Plant Leaves/chemistry , Tropanes/isolation & purification , Hydrogen-Ion Concentration , Molecular Structure , Tropanes/chemistryABSTRACT
Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute <0.1% to the fatty acid content of food samples. Their biological role still remains unclear as authentic furan fatty acid standards are not readily available and thorough experimental studies verifying the relevance of furan fatty acids are thus virtually impossible. An efficient protocol for the isolation of the furan fatty acid 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from hydrolyzed and centrifuged latex of Hevea brasiliensis was developed using countercurrent chromatography. A first run using pH-zone-refining countercurrent chromatography provided 48.4 mg of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid were determined by gas chromatography coupled to mass spectrometry and (1)H and (13)C NMR spectroscopy.
Subject(s)
Countercurrent Distribution/methods , Fatty Acids/isolation & purification , Furans/chemistry , Hevea/chemistry , Latex/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Proton Magnetic Resonance SpectroscopyABSTRACT
BACKGROUND: Azorella compacta (Apiaceae) is a native Chilean cushion shrub which produces a resin containing mulinane and azorellane diterpenoids. This plant has been used since pre-Colombian times to treat inflammation and dental neuralgias. In this work the first preparative fractionation of diterpenoids present in this plant by means of high-speed counter-current chromatography (HSCCC) was applied, and cytotoxic effects of the isolated compounds were evaluated for the first time against a panel of MCF7 cells. RESULTS: The major compounds isolated were identified by means of spectroscopy as azorellanol, 13α, 14α-dihydroxymulin-11-en-20-oic acid, mulinolic acid, mulin-11,13-dien-20-oic acid, 17-acetoxy-mulin-11,13-dien-20 oic acid, and 17-acetoxy-mulinic acid (compounds 7, 9-11 and 13, respectively), and four minor diterpenoids [7-deacetyl-azorellanol (6), 13-epi-azorellanol, 7-acetoxy-mulin-9,12-diene, and 17-acetoxy-mulin-11,13-dien-20-oic acid (compounds 4, 8 and 12)], together with three new minor diterpenoids: 13ß,14ß-dihydroxymulin-11-en-20-oic acid (1), 13-epiazorellanone (2) and 13-epi-7-deacetyl-azorellanol (3) were identified. Besides, compounds 4, 6, 7, 8 and 11 displayed good cytotoxic activity (less than 50% cell viability at 100 µM). Among them, compound 7, an acetylated azorellane, was the most active. CONCLUSIONS: HSCCC allowed the isolation of 13 diterpenoids present in A. compacta. Three compounds are reported for the first time. Isolated azorellanes are more potent cytotoxic agents than are mulinanes. © 2015 Society of Chemical Industry.
Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apiaceae/chemistry , Countercurrent Distribution/methods , Diterpenes/chemistry , Diterpenes/pharmacology , Plants, Medicinal/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms , Chile , Diterpenes/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Molecular StructureABSTRACT
Countercurrent chromatography is a form of liquid-liquid partition chromatography in which the stationary liquid phase is retained in the apparatus without the use of a solid support. Gradient elution in countercurrent chromatography can be used in many different ways, such as linear gradients, stepwise elution gradients, pH gradients, etc. The main goal of using the gradient approach is to shorten the duration of the separation and improve resolution, especially when the retention range of the sample to be purified is broadening and, thus, the compounds cannot be purified by only one solvent system. The principle is based on modifying the mobile phase to increase the elution strength with no or minimum changes in the stationary phase, which can be a difficult task since both phases are in intimate contact all the time. The most common ways to perform gradients in countercurrent chromatography are changing the mobile's phase polarity, flow rate, and pH, what is called linear or step gradient, flow rate gradient, pH gradient, respectively.
Subject(s)
Countercurrent Distribution , Countercurrent Distribution/methods , Hydrogen-Ion ConcentrationABSTRACT
A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%.
Subject(s)
Alkaloids/isolation & purification , Argemone/chemistry , Cholinesterase Inhibitors/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Thin Layer/methods , Countercurrent Distribution/methods , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Alkaloids/chemistry , Chemical Fractionation/methods , Cholinesterase Inhibitors/isolation & purification , Plant Extracts/isolation & purification , Plant Roots/chemistry , Spectrometry, Mass, Electrospray Ionization/methodsABSTRACT
The polar constituents of peels from Citrus limetta variety Risso (Rutaceae) were investigated by a combination of two complementary chromatographic techniques consisting of preparative high-speed countercurrent chromatography (HSCCC), and off-line LC-ESI-MS/MS analysis to design a two-dimensional metabolite profile. Countercurrent chromatography (CCC) using solely immiscible solvent systems allowed the fractionation of principal components and an enrichment of minor concentrated metabolites from a crude polar solvent partition of C. limetta peels for subsequent structural identification by LC-ESI-MS/MS analysis. The combination of two very different chromatographic techniques resulted in lower detection limits for electrospray mass-spectrometry and revealed eighty-five compounds, including three abscisic acid derivatives, five limonoid glycosides, twenty-six dihydro-cinnamic and cinnamic acid glycosides, eleven flavanone glycosides, seven flavone glycosides, seventeen flavonol glycosides, including limocitrol and limocitrin derivatives. As a chemocharacteristic for C. limetta metabolites, many of the detected structures were linked to single and multiple 3-hydroxy-3-methyl-glutaryl (HMG) substitutions. C. limetta peels are a by-product of juice production, and not only the antioxidant fractions but also some of the fortified compounds could be used for food and pharmaceutical purposes.
Subject(s)
Chromatography, Liquid/methods , Citrus/chemistry , Countercurrent Distribution/methods , Mass Spectrometry/methods , Flavonols/analysis , Glycosides/chemistry , PolyphenolsABSTRACT
This paper describes the isolation of flavonoids and other aromatic compounds from an ethyl acetate extract of leaves of Siparuna glycycarpa using stepwise elution counter-current chromatography (CCC). The elution profile yielded the following compounds: diglycosylated flavonoids, quercetin 3-O-rutinoside and quercetin 7-O-rutinoside, followed by monoglycosylated flavonoids, kaempferol-3-O-ß-glucopyranoside, kaempferol-3-O-ß-rhamnopiranoside, kaempferol-3-O-ß-6''(p-coumaroyl) glucopyranoside, and quercetin-3-O-ß-glucopyranoside, and then free phenolics, protocatechuic acid, and 2',6'-dihydroxy-4, 4'-dimethoxydihydrochalcone, which shows that this type of elution covers a broader range of polarity than the traditional isocratic mode. This makes it more suitable to perform separations of mixtures containing large differences in hydrophobicity. A GC analysis of a blank CCC run was performed to determine if changes in the mobile phase composition affect the chromatographic process. Results showed a gradual variation of the composition of the mobile phase emerging after the step gradient, favoring the selectivity of the solvent system.
Subject(s)
Countercurrent Distribution/methods , Flavonoids/isolation & purification , Magnoliopsida/chemistry , Plant Extracts/isolation & purification , Countercurrent Distribution/instrumentation , Flavonoids/chemistry , Molecular Structure , Plant Extracts/chemistry , Plant Leaves/chemistryABSTRACT
The banana passion fruit (Passiflora tripartita Breiter, Passifloraceae) known as "tumbo" is very appreciated in tropical and subtropical countries of South America. Methanolic extracts from peel and the fruit juice of P. tripartita growing in Chile were analyzed for antioxidant capacity as well as for flavonoid and phenolic content. A chromatographic method was developed for the rapid identification of the main phenolics in the samples by HPLC-DAD and HPLC-MS. The fast fingerprint analysis allowed the detection of eighteen flavonoid C-glycosides and four flavonoid O-glycoside derivatives which were characterized by UV spectra and ESI-MS-MS analysis. Several of the C-glycosides detected are structurally related to the orientin derivative 4'-methoxy-luteolin-8-C-(6"acetyl)-b-D-glucopyranoside (31), fully elucidated by spectroscopic methods. The antioxidant derivative 31 along with schaftoside, vicenin II, orientin and vitexin were isolated from the fruit extract by high-speed countercurrent chromatography (HSCCC). A suitable method for the preparative isolation of flavonol C-glycosides from "tumbo" extracts by HSCCC is reported. The pulp of the fruits showed good antioxidant capacity (12.89 ± 0.02 mg/mL in the DPPH assay). The peel presented the highest content of flavonoids (56.03 ± 4.34 mg quercetin/100 g dry weight) which is related to the highest antioxidant power (10.41 ± 0.01 mg/mL in the DPPH assay).
Subject(s)
Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods , Flavonoids/isolation & purification , Fruit/chemistry , Glycosides/isolation & purification , Passiflora/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Antioxidants/metabolism , Apigenin/chemistry , Apigenin/isolation & purification , Biphenyl Compounds , Flavonoids/analysis , Flavonoids/chemistry , Glycosides/analysis , Glycosides/chemistry , Luteolin/chemistry , Luteolin/isolation & purification , Phenols/isolation & purification , PicratesABSTRACT
The methanolic extract of Tabernaemontana catharinensis (Apocynaceae) roots, which contains alkaloids with several biological activities, was separated on a preparative scale using high-speed counter-current chromatography. The optimum solvent system was found to be a mixture of CHCl(3)-MeOH-H(2)O [5:10:6 (v/v/v)] and led to a successful separation of two monoterpenic indole alkaloids, voachalotine (1) and 12-methoxy-N(b)-methylvoachalotine (2) in approximately 4.0 hours. The alkaloids were all isolated at purities over 95%, and their structures were established on the basis of spectroscopic methods, including 1D and 2D NMR and EI/MS.