Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.636
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 321-328, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38952321

ABSTRACT

More than 80% of the world's populations are at risk of vector-borne diseases, with mosquito-borne diseases as a significant global public health problem. Mosquito populations control is critical to interrupting the transmission of mosquito-borne diseases. This review summarizes the physical attributes, smell, vision, touch, and hearing of mosquitoes to unravel the preferences of female mosquitoes, and describes the mechanisms underlying the best male mating by female mosquitoes, so as to provide new insights into management of mosquito-borne diseases.


Subject(s)
Culicidae , Animals , Female , Male , Culicidae/physiology , Sexual Behavior, Animal/physiology , Mosquito Vectors/physiology
2.
Parasit Vectors ; 17(1): 282, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956638

ABSTRACT

BACKGROUND: Mosquitoes are carriers of tropical diseases, thus demanding a comprehensive understanding of their behaviour to devise effective disease control strategies. In this article we show that machine learning can provide a performance assessment of 2D and 3D machine vision techniques and thereby guide entomologists towards appropriate experimental approaches for behaviour assessment. Behaviours are best characterised via tracking-giving a full time series of information. However, tracking systems vary in complexity. Single-camera imaging yields two-component position data which generally are a function of all three orthogonal components due to perspective; however, a telecentric imaging setup gives constant magnification with respect to depth and thereby measures two orthogonal position components. Multi-camera or holographic techniques quantify all three components. METHODS: In this study a 3D mosquito mating swarm dataset was used to generate equivalent 2D data via telecentric imaging and a single camera at various imaging distances. The performance of the tracking systems was assessed through an established machine learning classifier that differentiates male and non-male mosquito tracks. SHAPs analysis has been used to explore the trajectory feature values for each model. RESULTS: The results reveal that both telecentric and single-camera models, when placed at large distances from the flying mosquitoes, can produce equivalent accuracy from a classifier as well as preserve characteristic features without resorting to more complex 3D tracking techniques. CONCLUSIONS: Caution should be exercised when employing a single camera at short distances as classifier balanced accuracy is reduced compared to that from 3D or telecentric imaging; the trajectory features also deviate compared to those from the other datasets. It is postulated that measurement of two orthogonal motion components is necessary to optimise the accuracy of machine learning classifiers based on trajectory data. The study increases the evidence base for using machine learning to determine behaviours from insect trajectory data.


Subject(s)
Machine Learning , Animals , Male , Culicidae/classification , Culicidae/physiology , Imaging, Three-Dimensional/methods , Mosquito Vectors/physiology , Mosquito Vectors/classification , Behavior, Animal , Female
3.
Open Biol ; 14(7): 230437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955221

ABSTRACT

Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.


Subject(s)
Culicidae , Animals , Culicidae/physiology , Culicidae/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Transcriptome , Gene Expression Profiling , Digestive System/metabolism , Digestion , Gastrointestinal Tract/metabolism , Phylogeny , Feeding Behavior
4.
PLoS One ; 19(6): e0305399, 2024.
Article in English | MEDLINE | ID: mdl-38917214

ABSTRACT

Mosquitoes (Diptera: Culicidae) are one of the most impactful pests to human society, both as a nuisance and a potential vector of human and animal pathogens. Mosquito larvae develop in still aquatic environments. Eliminating these habitats near high human density or managing them to reduce the suitability for mosquitoes will reduce mosquito populations in these human environments and decrease the overall negative impact of mosquitoes on humans. One common source of standing water in urban and suburban environments is the water that pools in stormwater control measures. Previous studies have shown that some stormwater control measures generate large numbers of mosquitoes while others harbor none, and the reason for this difference remains unclear. Our study focuses on elucidating the factors that cause a stormwater control measure to be more or less suitable for mosquitoes. During the summers of 2021 and 2022, we collected and identified mosquito larvae from thirty stormwater control measures across central Ohio to assess variation in mosquito abundance and diversity among sites. Our goal was to determine if specific types of stormwater control measures (retention ponds, detention ponds, or constructed wetlands) harbored different abundances of mosquitoes or different community structures. We also assessed environmental parameters of these sites to elucidate their effects on mosquito abundance and diversity. Overall, we recorded the highest number of mosquito larvae and species in constructed wetlands. However, these sites were dominated by the innocuous species, Culex territans. Conversely, detention ponds held fewer mosquitoes but a higher proportion of known vector species, including Culex pipiens and Aedes vexans. The total number of mosquitoes across all sites was correlated with higher vegetation, more shade, lower water temperatures, and lower pH, suggesting stormwater control measures with these features may also be hotspots for mosquito proliferation.


Subject(s)
Culicidae , Ponds , Wetlands , Animals , Culicidae/physiology , Ohio , Larva , Biodiversity , Mosquito Control/methods , Ecosystem , Humans , Mosquito Vectors/physiology
5.
Trends Parasitol ; 40(7): 591-603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853076

ABSTRACT

Mosquitoes are important vectors for human diseases, transmitting pathogens that cause a range of parasitic and viral infections. Mosquito blood-feeding is heterogeneous, meaning that some human hosts are at higher risk of receiving bites than others, and this heterogeneity is multifactorial. Mosquitoes integrate specific cues to locate their hosts, and mosquito attraction differs considerably between individual human hosts. Heterogeneous mosquito biting results from variations in both host attractiveness and availability and can impact transmission of vector-borne diseases. However, the extent and drivers of this heterogeneity and its importance for pathogen transmission remain incompletely understood. Here, we review methods and recent data describing human characteristics that affect host-seeking behavior and host preferences of mosquito disease vectors, and the implications for vector-borne disease transmission.


Subject(s)
Culicidae , Feeding Behavior , Mosquito Vectors , Animals , Humans , Feeding Behavior/physiology , Culicidae/physiology , Culicidae/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Vector Borne Diseases/transmission , Vector Borne Diseases/prevention & control
6.
Parasit Vectors ; 17(1): 273, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937756

ABSTRACT

BACKGROUND: Mosquitoes are important vectors of pathogens. They are usually collected with CO2-baited traps and subsequently identified by morphology. This procedure is very time-consuming. Automatic counting traps could facilitate timely evaluation of the local risk for mosquito-borne pathogen transmission or decision-making on vector control measures, but the counting accuracy of such devices has rarely been validated in the field. METHODS: The Biogents (BG)-Counter 2 automatically counts mosquitoes by discriminating the size of captured objects directly in the field and transmits the data to a cloud server. To assess the accuracy of this counting device, 27 traps were placed at 19 sampling sites across Germany and used in daily, weekly or bimonthly intervals from April until October 2021. The BG-Counter 2 was attached to a CO2-trap (BG-Pro trap = CO2-Pro) and the same trap was converted to also attract gravid mosquitoes (upside-down BG-Pro trap with a water container beneath = CO2-Pro-gravid). All captured mosquitoes were identified by morphology. The number of females (unfed and gravid), mosquito diversity and the number of identified specimens in relation to the counting data of the BG-Counter were compared between the two trapping devices to evaluate sampling success and counting accuracy. RESULTS: In total 26,714 mosquitoes were collected during 854 trap days. The CO2-Pro-gravid trap captured significantly more mosquitoes per trap day for all specimens, gravid females and non-gravid females, while there was no difference in the mosquito diversity. The linear model with the captured mosquitoes as a response and the counted specimens as a predictor explained only a small degree of the variation within the data (R2 = 0.16), but per individual trap the value could reach up to 0.62 (mean R2 = 0.23). The counting accuracy for the daily samples had a significant positive correlation with sample size, resulting in higher accuracy for the CO2-Pro-gravid trap and higher accuracy for sites and sampling months with high mosquito abundance. CONCLUSIONS: While the accuracy of the BG-Counter 2 is quite low, the device is able to depict mosquito phenology and provide information about local population dynamics.


Subject(s)
Culicidae , Mosquito Control , Mosquito Vectors , Animals , Mosquito Control/methods , Mosquito Control/instrumentation , Mosquito Vectors/physiology , Female , Culicidae/physiology , Germany
7.
Med Trop Sante Int ; 4(1)2024 03 31.
Article in French | MEDLINE | ID: mdl-38846112

ABSTRACT

Background and justification: The Republic of Djibouti is located in the Horn of Africa, on the Gulf of Aden and the Bab-el-Mandeb detroit, at the southern entrance to the Red Sea. Prior to its independence in 1977, the Republic of Djibouti was known by two names: "Côte française des Somalis" until 1967, then "Territoire Français de Afars et Issas". As part of our doctoral research on the ecology of mosquitoes in Djibouti, we noted a lack of information on the species encountered, and felt it essential to draw up a list of species before embarking on ecological monitoring. The aim of this work is to survey publications on mosquitoes in Djibouti and to synthesize data from this scientific literature in order to update the national inventory of Culicidae. Materials and methods: An exhaustive search of electronic bibliographic databases (PubMed, Scopus, HAL Open Archive, Science Direct and Google Scholar) was carried out. Reference lists were filtered to access additional articles in order to obtain more data. Two keywords were used: "Djibouti" and "French Territory of Afars and Issas". A selection of scientific publications on Djibouti mosquitoes and/or diseases transmitted by mosquito vectors was made. Researches were conducted in articles selected. The names of the species listed were checked and validated by referring to the site Mosquito Taxonomic Inventory. Results: A total of 13 studies, published between 1970 and 2023, were found. Over the years, the composition of the Culicidae fauna has become well known. In part, the movement of people traveling to and from neighboring countries has been linked to the detection of new species and the reappearance of mosquito species in Djibouti. Numerous studies have been carried out over the years, including purely taxonomic studies and others focusing on the incrimination of mosquito vectors and the characterization of the pathogens they transmit. A total of 37 species, belonging to two subfamilies (Anophelinae and Culicinae), of mosquitoes divided between 7 genera (Aedes, Anopheles, Culex, Culiseta, Lutzia, Mimomyia and Uranotaenia) have been mentioned across the country. The number of species per genus is distributed as follows: 5 species of Aedes including 1 subspecies, 14 species of Anopheles including two subspecies, 12 species of Culex including 1 subspecies, 1 species for each of the genera Culiseta and Lutzia and finally 2 species respectively for the genera Mimomiya and Uranotaenia. Five species have been incriminated as vectors of diseases such as malaria, dengue fever, yellow fever, West Nile virus and chikungunya. Others are known for their potential role in pathogen transmission, including Zika and Rift Valley virus. Discussion - Conclusion: The bibliographical research enabled us to summarize the research carried out over more than half a century in the history of Djibouti, and to update the inventory of the country's mosquitoes, which now includes 37 species. Species names were reviewed and updated, and the case of Anopheles gambiae was also addressed. Two species mentioned as part of the Culicidae fauna of Djibouti appeared to be doubtful and are up for discussion. These results provide a useful information base for defining vector control priorities in Djibouti. They will also inform, guide and facilitate future consultations of our database. In addition, this study will help to identify research ways on mosquitoes in Djibouti.


Subject(s)
Culicidae , Animals , Culicidae/classification , Culicidae/physiology , Djibouti , Mosquito Vectors/classification
8.
PLoS One ; 19(5): e0303330, 2024.
Article in English | MEDLINE | ID: mdl-38718075

ABSTRACT

INTRODUCTION: Workers in the construction industry frequently work in construction sites with numerous areas that can potentially accumulate water, such as tanks, wet cement surfaces, or water puddles. These water collection sites become ideal breeding grounds for mosquito infestation, which leads to a higher prevalence of mosquito-borne diseases, especially malaria and dengue among construction workers. Despite that numerous factors have been identified in controlling vector-borne diseases, the specific factors that influence mosquito control at construction sites have yet to be explored. AIMS: This systematic review aims to determine the factors associated with mosquito control among construction workers. METHODS: Primarily, articles related to factors associated with mosquito control among construction workers were collected from two different online databases (ScienceDirect and EBSCOhost). Two independent reviewers were assigned to screen the titles and abstracts of the collected data, stored in Microsoft Excel, against the inclusion and exclusion criteria. Afterwards, the quality of the included articles was critically assessed using the Mixed Method Appraisal Tool (MMAT). Of the 171 articles identified, 4 were included in the final review. RESULTS: Based on the thorough evaluation, mosquito-related knowledge, practical mosquito prevention measures, and Larval Source Management (LSM) were identified as vital factors associated with mosquito control among construction workers. The significant association between mosquito-related knowledge and control practices indicates higher knowledge linked to effective practices, particularly among female workers and those who were recently infected with malaria. Concurrently, there were notable challenges regarding sustainable preventive measures and larval control methods in construction settings. CONCLUSION: Implementing effective mosquito control, including knowledge and practice on mosquito control together with vector control, is highly required to suppress the expanding mosquito population. It is recommended that employers provide continuous mosquito control education and training to their employees and reward them with incentives, while employees should comply with the guidelines set by their employers to ensure successful mosquito control and reduce the spread of mosquito-borne diseases in the construction industry.


Subject(s)
Construction Industry , Mosquito Control , Mosquito Control/methods , Humans , Animals , Malaria/prevention & control , Malaria/epidemiology , Culicidae/physiology , Mosquito Vectors/physiology , Female , Health Knowledge, Attitudes, Practice
9.
J Wildl Dis ; 60(3): 621-633, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38769632

ABSTRACT

Although wild bird rehabilitation facilities are important for the conservation of wild species, individuals may be kept within the facilities for long periods, consequently posing a risk for the bird to be infected with pathogens to which they are not naturally exposed. In turn, novel pathogens may be introduced through rescued migratory species. Avian malaria and West Nile fever are important avian diseases transmitted by mosquitoes. To understand the transmission dynamics of such diseases at rehabilitation facilities, the ecology of vector mosquitoes, including species composition, seasonality, and feeding behaviors, were explored. Mosquitoes were collected at a wild bird rehabilitation facility and wildlife sanctuary in Japan from 2019 to 2020 using mouth aspirators, sweep nets, and light traps. A total of 2,819 mosquitoes of 6 species were captured, all of which are potential vectors of avian diseases. Culex pipiens pallens and Cx. pipiens form molestus were the dominant species (82.9% of all collected mosquitoes). Density and seasonality differed between sampling locations, presumably because of differences in mosquito behaviors including feeding preferences and responses to climatic factors. Blood-fed Culex mosquitoes fed solely on birds, and many mosquito species are thought to have fed on birds within the facility. Particularly, Cx. pipiens group probably fed on both rescued and free-living birds. The rehabilitation facility may be an important site for the introduction and spread of pathogens because 1) numerous mosquitoes inhabit the hospital and its surroundings; 2) blood-fed mosquitoes are caught within the hospital; 3) there is direct contact between birds and mosquitoes; 4) both birds within the hospital and wild birds are fed upon. Furthermore, blood-fed Cx. pipiens form molestus were observed in the winter, suggesting that pathogens might be transmitted even during the winter when other mosquito species are inactive.


Subject(s)
Animals, Wild , Bird Diseases , Birds , Feeding Behavior , Mosquito Vectors , Animals , Japan/epidemiology , Bird Diseases/epidemiology , Bird Diseases/transmission , Culicidae/physiology , Seasons , West Nile Fever/transmission , West Nile Fever/veterinary , West Nile Fever/epidemiology
10.
PLoS One ; 19(5): e0303405, 2024.
Article in English | MEDLINE | ID: mdl-38718006

ABSTRACT

Entomological research is vital for shaping strategies to control mosquito vectors. Its significance also reaches into environmental management, aiming to prevent inconveniences caused by non-vector mosquitoes like the Mansonia Blanchard, 1901 mosquito. In this study, we carried out a five-year (2019-2023) monitoring of these mosquitoes at ten sites in Porto Velho, Rondônia, using SkeeterVac SV3100 automatic traps positioned between the two hydroelectric complexes on the Madeira River. Throughout this period, we sampled 153,125 mosquitoes, of which the Mansonia genus accounted for 54% of the total, indicating its prevalence in the region. ARIMA analysis revealed seasonal patterns of Mansonia spp., highlighting periods of peak density. Notably, a significant decreasing trend in local abundance was observed from July 2021 (25th epidemiological week) until the end of the study. Wind speed was observed to be the most relevant meteorological factor influencing the abundance of Mansonia spp. especially in the Joana D'Arc settlement, although additional investigation is needed to comprehensively analyze other local events and gain a deeper understanding of the ecological patterns of this genus in the Amazon region.


Subject(s)
Culicidae , Seasons , Animals , Culicidae/physiology , Mosquito Vectors/physiology , Brazil , Meteorological Concepts
11.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711091

ABSTRACT

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Subject(s)
Biodiversity , Culicidae , Mosquito Vectors , Wetlands , Animals , Mosquito Vectors/physiology , Mosquito Vectors/virology , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Ecosystem , Larva/physiology , Seasons , United Kingdom , Culex/physiology , Culex/virology , Culex/classification , England
12.
Article in English | MEDLINE | ID: mdl-38791823

ABSTRACT

In the Americas, wild yellow fever (WYF) is an infectious disease that is highly lethal for some non-human primate species and non-vaccinated people. Specifically, in the Brazilian Atlantic Forest, Haemagogus leucocelaenus and Haemagogus janthinomys mosquitoes act as the major vectors. Despite transmission risk being related to vector densities, little is known about how landscape structure affects vector abundance and movement. To fill these gaps, we used vector abundance data and a model-selection approach to assess how landscape structure affects vector abundance, aiming to identify connecting elements for virus dispersion in the state of São Paulo, Brazil. Our findings show that Hg. leucocelaenus and Hg. janthinomys abundances, in highly degraded and fragmented landscapes, are mainly affected by increases in forest cover at scales of 2.0 and 2.5 km, respectively. Fragmented landscapes provide ecological corridors for vector dispersion, which, along with high vector abundance, promotes the creation of risk areas for WYF virus spread, especially along the border with Minas Gerais state, the upper edges of the Serra do Mar, in the Serra da Cantareira, and in areas of the metropolitan regions of São Paulo and Campinas.


Subject(s)
Mosquito Vectors , Yellow Fever , Brazil , Animals , Yellow Fever/transmission , Mosquito Vectors/virology , Ecosystem , Tropical Climate , Yellow fever virus , Population Density , Culicidae/virology , Culicidae/physiology
13.
J Am Mosq Control Assoc ; 40(2): 81-91, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38811013

ABSTRACT

Land use and land cover (LULC) gradients are associated with differences in mosquito species composition and the entomological risk of mosquito-borne disease. Here, we present results from a season-long study of mosquito species richness and abundance with samples collected at 9 locations from 2 plots with contrasting LULC, an urban farm and a forest preserve, in Bloomington, IN, a city in the midwestern USA. With a total sampling effort of 234 trap-nights, we collected 703 mosquitoes from 9 genera and 21 species. On the farm, we collected 15 species (285 mosquitoes). In the preserve, we collected 19 species (418 mosquitoes). Thirteen species were common in both study plots, 2 were exclusive to the farm, and 6 were exclusive to the forest preserve. In both plots, we collected Aedes albopictus and Ae. japonicus. In the farm, the most common mosquito species were Culex restuans/Cx. pipiens and Coquillettidia perturbans. In the preserve, Ae. japonicus and Ae. triseriatus were the 2 most common mosquito species. Time series analysis suggests that weather factors differentially affected mosquito species richness and mosquito abundance in the plots. Temperature, relative humidity (RH), and precipitation were positively associated with richness and abundance at the farm, while increases in the SD of RH decreased both richness and abundance at the preserve. Our results highlight the importance that LULC has for mosquito species diversity and abundance and confirm the presence of Ae. albopictus and Ae. japonicus in southwestern Indiana.


Subject(s)
Biodiversity , Culicidae , Population Density , Animals , Culicidae/physiology , Culicidae/classification , Indiana , Cities , Animal Distribution
14.
J Am Mosq Control Assoc ; 40(2): 112-116, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38697617

ABSTRACT

Among all living beings, mosquitoes account for the highest number of human fatalities. Our study aimed to determine mosquito egg abundance fluctuation from 2015 to 2020, in order to observe which years had the highest mosquito vector densities and whether they coincided with yellow fever virus outbreaks in both human and nonhuman primates. The study area included Atlantic Forest fragments in the state of Rio de Janeiro. Studies from the Diptera Laboratory at FIOCRUZ were selected and compared along a timeline period of the field collections. The highest peak in egg abundance from the analyzed studies was observed from 2016 to 2017 and from 2015 to 2016. The lowest egg abundance was during the collection periods from 2018 to 2019 and 2019 to 2020. The species with the highest abundance throughout all the periods of the studies analyzed was Haemagogus leucocelaenus, representing 87% of all epidemiological species identified. The species with the lowest abundance was Hg. Janthinomys, representing only 1%. Monitoring the population of mosquitoes is imperative for disease surveillance, as the rise in specimens of various vector species directly impacts the occurrence of yellow fever cases in both nonhuman primates and human populations.


Subject(s)
Culicidae , Disease Outbreaks , Forests , Mosquito Vectors , Yellow Fever , Animals , Brazil/epidemiology , Yellow Fever/epidemiology , Yellow Fever/transmission , Mosquito Vectors/physiology , Culicidae/physiology , Humans , Population Density , Population Dynamics , Yellow fever virus
15.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738868

ABSTRACT

Mosquitoes, notorious as the deadliest animals to humans due to their capacity to transmit diseases, pose a persistent challenge to public health. The primary prevention strategy currently in use involves chemical repellents, which often prove ineffective as mosquitoes rapidly develop resistance. Consequently, the invention of new preventive methods is crucial. Such development hinges on a thorough understanding of mosquito biting behaviors, necessitating an experimental setup that accurately replicates actual biting scenarios with controllable testing parameters and quantitative measurements. To bridge this gap, a bio-hybrid atomic force microscopy (AFM) probe was engineered, featuring a biological stinger - specifically, a mosquito labrum - as its tip. This bio-hybrid probe, compatible with standard AFM systems, enables a near-authentic simulation of mosquito penetration behaviors. This method marks a step forward in the quantitative study of biting mechanisms, potentially leading to the creation of effective barriers against vector-borne diseases (VBDs) and opening new avenues in the fight against mosquito-transmitted illnesses.


Subject(s)
Culicidae , Microscopy, Atomic Force , Animals , Microscopy, Atomic Force/methods , Culicidae/physiology , Insect Bites and Stings/prevention & control
16.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
17.
Parasitol Res ; 123(5): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777889

ABSTRACT

The most widely used attractant to capture adult female mosquitoes is CO2. However, there are also baits available on the market that emit a scent resembling human skin. These baits were specifically designed to attract highly anthropophilic species such as Aedes albopictus and Aedes aegypti. In this study, we compare the effectiveness of CDC traps baited either with CO2 or with a commercial blend simulating skin odor, BG-Sweetscent, for trapping female mosquitoes during daylight hours in an urban reserve in the City of Buenos Aires. We employed a hurdle generalized linear mixed model to analyze trap capture probability and the number of mosquitoes captured per hour, considering the effects of attractant, mosquito species, and their interaction. Traps baited with CO2 captured ten mosquito species, while those baited with BG-Sweetscent captured six in overall significantly lower abundance. The odds of capturing mosquitoes were 292% higher for the CO2-baited traps than for those baited with BG-Sweetscent. No evidence of a combined effect of attractant type and species on female mosquito captures per hour was found. Results indicated that CDC traps baited with CO2 were more effective than those baited with BG-Sweetscent in capturing more mosquito species and a higher number of mosquitoes within each species, even if the species captured with CO2 exhibited a certain level of anthropophilia. This result has practical implications for mosquito surveillance and control in urban natural reserves.


Subject(s)
Culicidae , Mosquito Control , Animals , Female , Mosquito Control/methods , Culicidae/physiology , Culicidae/classification , Culicidae/drug effects , Pheromones/pharmacology , Carbon Dioxide , Cities , Odorants/analysis , Argentina , Humans
18.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755646

ABSTRACT

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Subject(s)
Culicidae , Psychodidae , Ticks , Volatile Organic Compounds , Animals , Volatile Organic Compounds/metabolism , Psychodidae/physiology , Psychodidae/parasitology , Ticks/physiology , Humans , Culicidae/physiology , Behavior, Animal , Vector Borne Diseases/transmission , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology
19.
PLoS Negl Trop Dis ; 18(5): e0012162, 2024 May.
Article in English | MEDLINE | ID: mdl-38709836

ABSTRACT

West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.


Subject(s)
Mosquito Vectors , Seasons , Temperature , West Nile Fever , West Nile virus , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Animals , West Nile virus/physiology , West Nile virus/isolation & purification , Europe/epidemiology , Humans , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds/virology , Netherlands/epidemiology , Models, Theoretical , Culicidae/virology , Culicidae/physiology
20.
Curr Opin Insect Sci ; 63: 101199, 2024 06.
Article in English | MEDLINE | ID: mdl-38588943

ABSTRACT

Mosquitoes, males and females, rely on sugar-rich resources, including floral nectar as a primary source of sugar to meet their energy and nutritional needs. Despite advancements in understanding mosquito host-seeking and blood-feeding preferences, significant gaps in our knowledge of the chemical ecology mediating mosquito-nectar associations remain. The influence of such association with nectar on mosquito behavior and the resulting effects on their fitness are also not totally understood. It is significant that floral nectar frequently acts as a natural habitat for various microbes (e.g. bacteria and yeast), which substantially alter nectar characteristics, influencing the nutritional ecology of flower-visiting insects, such as mosquitoes. The role of nectar-inhabiting microbes in shaping the nectar-mosquito interactions remains, however, under-researched. This review explores recent advances in understanding the role of such multitrophic interactions on the fitness and life history traits of mosquitoes and outlines future directions for research toward their control as disease vectors.


Subject(s)
Culicidae , Plant Nectar , Plant Nectar/chemistry , Animals , Culicidae/physiology , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...