Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 619
Filter
1.
Food Res Int ; 191: 114720, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059916

ABSTRACT

Mangosteen (Garcinia mangostana L.) is a tasty, polyphenol-rich tropical fruit. The edible part is highly appreciated by its aroma, taste and texture. The non-edible part, rich in polyphenols, has been traditionally used in Thai medicine. In this work, flavonoids and phenolic acid/derivatives were identified in mangosteen extracts (ME) from edible and non-edible portions. We first studied the effects of MEs on the growth, metabolism, antioxidant capacity, biofilm formation and antimicrobial capacity of eight bifidobacteria and lactobacilli strains from intestinal origin and two commercial probiotic strains (BB536 and GG). ME concentrations higher than 10-20 % were inhibitory for all strains. However, ME concentrations of 5 % significantly (P < 0.01) increased all strains antioxidant capacity, reduced biofilm-formation, and enhanced inhibition against Gram-positive pathogens. To apply these knowledge, bifunctional fermented milk products were elaborated with 5 % ME and individual strains, which were selected taking into account their growth with ME, and the widest range of values on antioxidant capacity, biofilm formation and antimicrobial activity (bifidobacteria INIA P2 and INIA P467, lactobacilli INIA P459 and INIA P708, and reference strain GG). Most strains survived well manufacture, refrigerated storage and an in vitro simulation of major conditions encountered in the gastrointestinal tract. As expected, products supplemented with ME showed higher polyphenol content and antioxidant capacity levels than control. After sensory evaluation, products containing strains INIA P2, INIA P708 and GG outstood as best.


Subject(s)
Antioxidants , Biofilms , Cultured Milk Products , Garcinia mangostana , Lactobacillus , Plant Extracts , Plant Extracts/pharmacology , Garcinia mangostana/chemistry , Biofilms/drug effects , Biofilms/growth & development , Antioxidants/pharmacology , Lactobacillus/drug effects , Lactobacillus/metabolism , Cultured Milk Products/microbiology , Bifidobacterium/drug effects , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Probiotics , Flavonoids/pharmacology , Flavonoids/analysis , Humans , Fruit/chemistry , Fruit/microbiology , Fermentation , Hydroxybenzoates/pharmacology , Gastrointestinal Microbiome/drug effects , Polyphenols/pharmacology
2.
Food Funct ; 15(15): 8087-8103, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38989729

ABSTRACT

The probiotic properties of twenty-five lactic acid bacteria (LAB) isolated from human breast milk were investigated considering their resistance to gastrointestinal conditions and proteolytic activity. Seven LAB were identified and assessed for auto- and co-aggregation capacity, antibiotic resistance, and behavior during in vitro gastrointestinal digestion. Three Lacticaseibacillus strains were further evaluated for antifungal activity, metabolite production (HPLC-Q-TOF-MS/MS and GC-MS/MS) and proteolytic profiles (SDS-PAGE and HPLC-DAD) in fermented milk, whey, and soy beverage. All strains resisted in vitro gastrointestinal digestion with viable counts higher than 7.9 log10 CFU mL-1 after the colonic phase. Remarkable proteolytic activity was observed for 18/25 strains. Bacterial auto- and co-aggregation of 7 selected strains reached values up to 23 and 20%, respectively. L. rhamnosus B5H2, L. rhamnosus B9H2 and L. paracasei B10L2 inhibited P. verrucosum, F. verticillioides and F. graminearum fungal growth, highlighting L. rhamnosus B5H2. Several metabolites were identified, including antifungal compounds such as phenylacetic acid and 3-phenyllactic acid, and volatile organic compounds produced in fermented milk, whey, and soy beverage. SDS-PAGE demonstrated bacterial hydrolysis of the main milk (caseins) and soy (glycines and beta-conglycines) proteins, with no apparent hydrolysis of whey proteins. However, HPLC-DAD revealed alpha-lactoglobulin reduction up to 82% and 54% in milk and whey, respectively, with L. rhamnosus B5H2 showing the highest proteolytic activity. Overall, the three selected Lacticaseibacillus strains demonstrated probiotic capacity highlighting L. rhamnosus B5H2 with remarkable potential for generating bioactive metabolites and peptides which are capable of promoting human health.


Subject(s)
Dietary Supplements , Lactobacillales , Milk, Human , Probiotics , Humans , Milk, Human/chemistry , Female , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermentation , Whey/microbiology , Whey/chemistry , Phenylacetates/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Cultured Milk Products/microbiology , Lactates
3.
J Ethnopharmacol ; 334: 118560, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39004193

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fermented milk and palm wine are regularly used by several ethnic groups in Cameroon in traditional treatment rituals for infections, inflammatory, cardiovascular disorders, and even metabolic diseases such as diabetes, hypercholesterolemia etc. Reports from many studies have demonstrated that fermented milk and palm wine are potential sources of probiotic bacteria. However, the capacity of probiotics isolated from these natural sources to alleviate neuropathic pain has not been experimentally tested. AIM OF THE STUDY: This study aimed at investigating the ameliorative potential of lactic acid bacteria isolated from palm wine and traditional fermented cow milk on the chronic constriction injury (CCI) induced neuropathic pain in mice. MATERIALS AND METHODS: Pour plating technique on De Man Rogasa (MRS) agar was utilised for isolation of lactic acid bacteria from fermented cow milk and palm wine, and identified using the 16S r RNA gene sequencing. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve. These bacteria were orally administered at different concentrations to Balb/c mice by gavage for 14 consecutive days. Cold allodynia, mechanical hyperalgesia and exploratory behaviour were evaluated on day 0, 7th and 14th respectively. The total level of calcium, oxidative stress markers and myeloperoxidase were also quantified in the sciatic nerve homogenate. Cyclooxygenase-2(COX-2) and cytokine profile were determined from serum. RESULTS: Lactic acid bacteria were isolated from fermented cow milk and palm wine and two isolates were chosen according to their probiotic potentials and identified as strain of Limolactobacillus fermentum and Enterococcus lactis. Their 16 S rRNA gene sequences were deposited in NCBI genbank with accession number of OP896078 and OR619545, respectively. Pretreatment with Limosilactobacillus fermentum and Enterococcus lactis significantly alleviated mechanical hyperalgesia and cold allodynia with similar effect to the reference drug, morphine. These two isolates ameliorated CCI induced neuropathic pain by increasing antioxida776nts (GSH, CAT and SOD, P < 0.01) and decreasing pro-oxidants (MDA and NO, P < 0.01). Also, they inhibited the release of proinflammatory cytokines (IL-1ß, TNF-α, IFN-γ, and IL-6; P < 0.01) and IL-10 level was significantly (P < 0.01) increased when compared to the negative control. Treatment with these bacteria significantly dropped the level of total calcium (P < 0.01), COX-2 (P < 0.01) and MPO (P < 0.01) when compared with the negative control. CONCLUSION: The neuroprotective potentials of these selected lactic acid bacteria against CCI induced neuropathic pain may be attributed to their anti-oxidant, anti-inflammatory properties and reduced calcium deposition in sciatic nerve.


Subject(s)
Limosilactobacillus fermentum , Mice, Inbred BALB C , Neuralgia , Probiotics , Animals , Probiotics/pharmacology , Neuralgia/drug therapy , Neuralgia/microbiology , Male , Mice , Cameroon , Hyperalgesia/drug therapy , Cultured Milk Products/microbiology , Cytokines/metabolism , Enterococcus , Milk/microbiology , Disease Models, Animal
4.
Int J Food Microbiol ; 423: 110832, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39053039

ABSTRACT

In this study, we conducted sensory evaluation and gas chromatography-mass spectrometry analysis on fermented goat milk samples prepared by 12 strains of lactic acid bacteria (LAB) isolated from goat milk to screen for strains with the ability to reduce the goaty flavor. The bacterial counts of fermented goat milk was 7.07-9.01 log CFU/mL. The electronic nose distinguished fresh goat milk (FGM) and fermented goat milk, and the electronic tongue results showed that Leuconostoc citreum 1, 4, 20, 22, 32, and 57, Latilactobacillus curvatus 144 and 147 imparted fermented goat milk a taste different from FGM. Overall, Leuconostoc citreum 57, Leuconostoc citreum 126, Latilactobacillus curvatus 142, Latilactobacillus curvatus 143, and Latilactobacillus curvatus 147 were screened with the ability to improve the flavor of goat milk. They gave fermented goat milk a goat flavor score lower than or equal to FGM. And the fermented goat milk samples 57, 126, 142, 143, and 147 contained 25, 22, 15, 24, and 17 volatile flavor compounds, respectively, with a greater variety and content of ketones and aldehydes and lower levels of hexanoic acid, octanoic acid, and decanoic acid than FGM. However, the pH and WHC results indicated that the application of these strains as secondary cultures is necessary. Our finding provides basic research data to improve the flavor of goat milk products.


Subject(s)
Goats , Lactobacillales , Milk , Taste , Animals , Milk/microbiology , Milk/chemistry , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fatty Acids/analysis , Fermentation , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Food Microbiology , Cultured Milk Products/microbiology , Humans , Flavoring Agents/analysis , Leuconostoc/metabolism , Leuconostoc/isolation & purification
5.
Int J Food Microbiol ; 423: 110844, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39068860

ABSTRACT

Lactic acid bacteria are probiotics in the intestines and have been widely used as natural antioxidants in the food industry. In this study, Enterococcus italicus FM5 with strong antioxidant ability was isolated from fresh milk. The safety evaluation showed that E. italicus FM5 was sensitive to ampicillin, chloramphenicol, erythromycin, vancomycin, rifampicin, and tetracycline, and was not hemolytic. Meanwhile, the whole genome information and biofunctional attributes of this strain were determined and analyzed. Subsequently, E. italicus FM5 was co-cultured with traditional yogurt starters (Streptococcus thermophilus and Lactobacillus bulgaricus) to make fermented milk. The results showed that the addition of E. italicus FM5 could improve the oxygen free radical scavenging ability of the fermented milk, and the scavenging rates of DPPH, ABTS, OH-, and O2- radicals reaching up to 95.54 %, 88.35 %, 93.65 %, and 60.29 %, respectively. Furthermore, the addition of E. italicus FM5 reduced the curd time and improved the water holding capacity of the fermented milk. Besides, the growth of Lb. bulgaricus was significantly promoted when co-cultured with E. italicus FM5, thus the survival cells were increased compared with the traditional fermentation processes. Therefore, this study emphasized the potential to manufacture fermented milk by the co-cultivation of E. italicus with traditional yogurt starters.


Subject(s)
Antioxidants , Enterococcus , Fermentation , Milk , Enterococcus/metabolism , Enterococcus/growth & development , Animals , Milk/microbiology , Antioxidants/pharmacology , Probiotics , Yogurt/microbiology , Cultured Milk Products/microbiology , Food Microbiology , Food Storage , Streptococcus thermophilus/metabolism , Streptococcus thermophilus/growth & development , Coculture Techniques , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/growth & development , Anti-Bacterial Agents/pharmacology
6.
Nutrients ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064634

ABSTRACT

Probiotic-fermented milk is commonly used to maintain intestinal health. However, the effects of heat-treated fermented milk, which does not contain live microorganisms, on intestinal function are not yet fully understood. This study aimed to investigate whether heat-treated Lactobacillus helveticus CP790-fermented milk affects fecal microbiota and gut health as a "postbiotic". A randomized, double-blind, placebo-controlled trial was conducted in healthy Japanese individuals aged 20-59 years with a tendency toward constipation. Participants consumed 100 mL of either the test beverage (n = 60) or placebo beverage (n = 60) for four weeks. The test beverages were prepared with heat-treated CP790-fermented milk, while the placebo beverages were prepared with nonfermented milk flavored with lactic acid. Fecal samples were analyzed using 16S rRNA gene sequencing. Constipation symptoms were assessed using defecation logs and the Patient Assessment of Constipation Symptoms (PAC-SYM) questionnaire. Mood state was also assessed using the Profile of Mood States 2 (POMS2) questionnaire to explore its potential as a "psychobiotic". Desulfobacterota were significantly decreased by CP790-fermented milk intake. PICRUSt2 analysis predicted a decrease in the proportion of genes involved in the sulfate reduction pathway following the consumption of CP790-fermented milk. The CP790-fermented milk intervention significantly improved stool consistency and straining during defecation. These improvements were correlated with a decrease in Desulfobacterota. After the intervention, overall mood, expressed as total mood disturbance, and depression-dejection were significantly better in the CP790 group than in the placebo group. These results suggest that the intake of CP790-fermented milk could be effective in modulating gut microbiota and improving constipation symptoms and mood states.


Subject(s)
Constipation , Cultured Milk Products , Feces , Gastrointestinal Microbiome , Hot Temperature , Lactobacillus helveticus , Probiotics , Humans , Double-Blind Method , Adult , Female , Male , Middle Aged , Probiotics/administration & dosage , Young Adult , Feces/microbiology , Constipation/microbiology , Constipation/therapy , Cultured Milk Products/microbiology , Animals , Milk/microbiology , Fermentation
7.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955370

ABSTRACT

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Subject(s)
Food Packaging , Freeze Drying , Lactococcus lactis , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Food Packaging/methods , Animals , Vacuum , Powders , Cultured Milk Products/microbiology , Fermentation , Milk/chemistry , Genes, ras/genetics , Food Storage
8.
Food Res Int ; 188: 114309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823823

ABSTRACT

Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.


Subject(s)
Cultured Milk Products , Fermentation , Ligilactobacillus salivarius , Metabolomics , Metabolomics/methods , Ligilactobacillus salivarius/metabolism , Cultured Milk Products/microbiology , Niacin/metabolism , Food Microbiology , Dairy Products/microbiology , Taste , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Animals
9.
J Food Sci ; 89(7): 4480-4492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847765

ABSTRACT

Depression is a prevalent psychiatric disease with the characteristic of persistently gloomy mood. The treatment of depression with traditional therapeutic medications suffers from low efficacy and adverse side effects due to the extremely unpredictable courses and uneven responses to treatment. The goal of this paper was to investigate the preparation of selenium-enriched fermented goat milk and the potential mechanism of its intervention on the chronic unpredictable stress-induced depression mice model. The results showed that Se-Lactobacillus paracasei 20241 (Se-20241) significantly alleviated depressive behavior, reversed the upregulation of inflammatory factors, and attenuated glucocorticoid resistance. Meanwhile, the results showed a modulatory function on oxidative stress dysfunction in the liver, hippocampus, and prefrontal cortex. The change in abundance of Ileibacterium, Muribaculaceae, Turicibacter, Dubosiella, and Bifidobacterium was also modified. These results provided the theoretical groundwork for the development of psychoactive probiotic supplements for depressed patients and clarified the probable mechanism of Se-20241 for antidepressant impact on the CUMS model.


Subject(s)
Depression , Disease Models, Animal , Goats , Lacticaseibacillus paracasei , Milk , Probiotics , Selenium , Animals , Selenium/pharmacology , Depression/therapy , Mice , Probiotics/pharmacology , Male , Lacticaseibacillus paracasei/physiology , Oxidative Stress/drug effects , Cultured Milk Products/microbiology , Fermentation , Antidepressive Agents/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Stress, Psychological , Behavior, Animal/drug effects , Gastrointestinal Microbiome/drug effects
10.
Front Biosci (Elite Ed) ; 16(2): 11, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38939910

ABSTRACT

BACKGROUND: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. METHODS: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. RESULTS: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. CONCLUSIONS: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.


Subject(s)
Flax , Lactobacillus delbrueckii , Plant Mucilage , Flax/chemistry , Lactobacillus delbrueckii/metabolism , Plant Mucilage/chemistry , Lactobacillus plantarum/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Cultured Milk Products/microbiology , Cultured Milk Products/analysis , Animals , Milk/chemistry , Fermentation
11.
J Dairy Sci ; 107(9): 6643-6657, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825144

ABSTRACT

Probiotics are increasingly used as starter cultures to produce fermented dairy products; however, few studies have investigated the role of probiotics in milk fermentation metabolism. The current study aimed to investigate whether adding Bifidobacterium animalis ssp. lactis Probio-M8 (Probio-M8) as a starter culture strain could improve milk fermentation by comparing the physicochemical characteristics and metabolomes of fermented milks produced by a commercial starter culture with and without Probio-M8. Our results showed that adding Probio-M8 shortened the milk fermentation time and improved the fermented milk texture and stability. Metabolomics analyses revealed that adding Probio-M8 affected mostly organic acid, AA, and fatty acid metabolism in milk fermentation. Targeted quantitative analyses revealed significant increases in various metabolites related to the sensory quality, nutritive value, and health benefits of the probiotic fermented milk, including 5 organic acids (acetic acid, lactic acid, citric acid, succinic acid, and tartaric acid), 5 EAA (valine, arginine, leucine, isoleucine, and lysine), glutamic acid, and 2 essential fatty acids (α-linolenic acid and docosahexaenoic acid). Thus, applying probiotics in milk fermentation is desirable. This study has generated useful information for developing novel functional dairy products.


Subject(s)
Bifidobacterium animalis , Fermentation , Milk , Probiotics , Bifidobacterium animalis/metabolism , Animals , Milk/chemistry , Cultured Milk Products/microbiology
12.
Food Res Int ; 186: 114322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729712

ABSTRACT

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
13.
J Food Sci ; 89(7): 4505-4521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778560

ABSTRACT

Cow milk allergy is one of the common food allergies. Our previous study showed that the allergenicity of fermented milk is lower than that of unfermented skimmed milk in vitro, and the antigenicity of ß-lactoglobulin and α-lactalbumin in fermented milk was decreased by 67.54% and 80.49%, respectively. To confirm its effects in vivo, allergic BALB/C mice model was used to further study the allergenicity of fermented milk. It was found that compared with the skim milk (SM) group, the intragastrically sensitization with fermented milk had no obvious allergic symptoms and the fingers were more stable: lower levels of IgE, IgG, and IgA in serum, lower levels of plasma histamine and mast cell protein-1, and immune balance of Th1/Th2 and Treg/Th17. At the same time, intragastrically sensitization with fermented milk increased the α diversity of intestinal microbiota and changed the microbiota abundance: the relative abundance of norank-f-Muribaculaceae and Staphylococcus significantly decreased, and the abundance of Lachnospiraceae NK4A136 group, Bacteroides, and Turicibacter increased. In addition, fermented milk can also increase the level of short-chain fatty acids in the intestines of mice. It turns out that fermented milk is much less allergenicity than SM. PRACTICAL APPLICATION: Fermentation provides a theoretical foundation for reducing the allergenicity of milk and dairy products, thereby facilitating the production of low-allergenic dairy products suitable for individuals with milk allergies.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Immunoglobulin E , Lactobacillales , Mice, Inbred BALB C , Milk Hypersensitivity , Milk , Animals , Milk Hypersensitivity/immunology , Mice , Immunoglobulin E/immunology , Immunoglobulin E/blood , Milk/immunology , Female , Lactobacillales/immunology , Cattle , Cultured Milk Products/microbiology , Lactoglobulins/immunology , Immunoglobulin A , Lactalbumin/immunology , Immunoglobulin G/blood , Fatty Acids, Volatile/metabolism , Histamine/metabolism
14.
J Microbiol Biotechnol ; 34(6): 1299-1306, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38755001

ABSTRACT

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.


Subject(s)
Anti-Bacterial Agents , Cultured Milk Products , Gastrointestinal Microbiome , Interleukin-10 , Lacticaseibacillus rhamnosus , Mice, Inbred BALB C , Probiotics , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Probiotics/administration & dosage , Anti-Bacterial Agents/pharmacology , Interleukin-10/metabolism , Cultured Milk Products/microbiology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Interferon-gamma/metabolism , Colon/microbiology , Fermentation , Cytokines/metabolism , Cytokines/blood , Feces/microbiology
15.
Sci Rep ; 14(1): 9478, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38658619

ABSTRACT

Irritable bowel syndrome (IBS) is frequently linked with coexisting mental illnesses. Our previous study discovered that 32.1% of IBS patients had subthreshold depression (SD), placing them at higher risk of developing major depression. Gut microbiota modulation through psychobiotics was found to influence depression via the gut-brain axis. However, the efficacy of lessening depression among IBS patients remains ambiguous. The study's aim was to investigate the roles of cultured milk drinks containing 109 cfu Lactobacillus acidophilus LA-5 and Lactobacillus paracasei L. CASEI-01 on depression and related variables among IBS participants with SD. A total of 110 IBS participants with normal mood (NM) and SD, were randomly assigned to one of four intervention groups: IBS-NM with placebo, IBS-NM with probiotic, IBS-SD with placebo, and IBS-SD with probiotic. Each participant was required to consume two bottles of cultured milk every day for a duration of 12 weeks. The following outcomes were assessed: depression risk, quality of life, the severity of IBS, and hormonal changes. The depression scores were significantly reduced in IBS-SD with probiotic and placebo from baseline (p < 0.001). Only IBS-SD with probiotic showed a significant rise in serotonin serum levels (p < 0.05). A significantly higher life quality measures were seen in IBS-SD with probiotic, IBS-SD with placebo, and IBS-NM with placebo (p < 0.05). All groups, both placebo and probiotic, reported significant improvement in IBS severity post-intervention with a higher prevalence of remission and mild IBS (p < 0.05). Dual strains lactobacillus-containing cultured milk drink via its regulation of relevant biomarkers, is a potential anti-depressive prophylactic agent for IBS patients at risk.


Subject(s)
Depression , Irritable Bowel Syndrome , Probiotics , Humans , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/psychology , Female , Male , Adult , Probiotics/therapeutic use , Probiotics/administration & dosage , Double-Blind Method , Depression/therapy , Depression/microbiology , Middle Aged , Cultured Milk Products/microbiology , Quality of Life , Animals , Milk , Lactobacillus acidophilus/physiology , Lactobacillus , Treatment Outcome , Lacticaseibacillus paracasei
16.
Int J Biol Macromol ; 260(Pt 1): 129480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237823

ABSTRACT

Exopolysaccharides (EPS) yield and added concentration of lactic acid bacteria can greatly affect the processing characteristics of fermented milk. In order to investigate the effects and mechanisms of EPS yield and added concentration on fermented milk, researchers extracted EPS from 50 strains of Lactobacillus helvedicus (L. helvedicus) and selected the two strains with the largest difference in EPS yield (L. helvedicus LH18 and L. helvetigus LH33) for subsequent experiments. The physicochemical properties of EPS-LH18 and EPS-LH33 were analyzed. The gel characteristics and protein conformation of fermented milk were studied by means of texture analyzer, rheometer, scanning electron microscopy, nuclear magnetic resonance machine, fluorescence spectrophotometer and circular dichroism. The results indicate that the monosaccharide compositions of EPS-LH18 and EPS-LH33 are the same and have good thermal stability. The texture and rheological properties of L. helveticus LH18 fermented milk are significantly superior to other fermented milk. The reason is that L. helveticus LH18 EPS has the highest yield, which leads to a denser gel structure, lower surface hydrophobicity and free sulfhydryl content of its fermented milk. According to circular dichroism analysis, ß- sheet and random coil are the internal factors leading to the difference in fermented milk gel. In addition, the fermented milk improved even more favorably as the concentration of the two EPS additions increased. As described above, L. helveticus LH18 has the potential to be an excellent yogurt starter, and both of the above EPS can be used as probiotic stabilizer alternatives for fermented dairy products.


Subject(s)
Cultured Milk Products , Lactobacillus helveticus , Probiotics , Animals , Milk/chemistry , Lactobacillus helveticus/metabolism , Fermentation , Cultured Milk Products/microbiology , Yogurt/microbiology
17.
Food Microbiol ; 119: 104454, 2024 May.
Article in English | MEDLINE | ID: mdl-38225054

ABSTRACT

Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.


Subject(s)
Cultured Milk Products , Kefir , Selenium , Humans , Cultured Milk Products/microbiology , Tibet , Bacteria/genetics
18.
Sci Rep ; 13(1): 20638, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001129

ABSTRACT

The aim of this research was to produce Rayeb milk, a bio-fermented milk product that has important benefits for health and nutrition. The Rayeb milk was divided into five different treatments: T1 from cow milk, T2 from quinoa milk, T3 from a mixture of cow and quinoa milk (50%:50%), T4 from a mixture of cow and quinoa milk (75%:25%), and T5 from a mixture of cow and quinoa milk (25%:75%). As a starting culture, ABT-5 culture was used. The results demonstrated that blending quinoa milk with cow milk increased the total solids, fat, total protein, pH, acetaldehyde, and diacetyl values of the resulting Rayeb milk. Additionally, the total phenolic content, antioxidant activity, minerals, and amino acids-particularly important amino acids-in Rayeb milk with quinoa milk were higher. In Rayeb milk prepared from a cow and quinoa milk mixture, Lactobacillus acidophilus and Bifidobacterium bifidum were highly stimulated. All Rayeb milk samples, particularly those that contained quinoa milk, possessed more bifidobacteria than the recommended count of 106 cfu g-1 for use as a probiotic. Based on the sensory evaluation results, it is possible to manufacture a bio-Rayeb milk acceptable to the consumer and has a high nutritional and health values using a mixture of cow milk and quinoa milk (75%:25% or 50%:50%) and ABT-5 culture.


Subject(s)
Chenopodium quinoa , Cultured Milk Products , Probiotics , Animals , Female , Cattle , Milk/chemistry , Antioxidants/metabolism , Chenopodium quinoa/metabolism , Amino Acids, Essential/metabolism , Fermentation , Cultured Milk Products/microbiology , Lactobacillus acidophilus/metabolism
19.
Cells ; 12(15)2023 08 04.
Article in English | MEDLINE | ID: mdl-37566077

ABSTRACT

Multi-omics has the promise to provide a detailed molecular picture of biological systems. Although obtaining multi-omics data is relatively easy, methods that analyze such data have been lagging. In this paper, we present an algorithm that uses probabilistic graph representations and external knowledge to perform optimal structure learning and deduce a multifarious interaction network for multi-omics data from a bacterial community. Kefir grain, a microbial community that ferments milk and creates kefir, represents a self-renewing, stable, natural microbial community. Kefir has been shown to have a wide range of health benefits. We obtained a controlled bacterial community using the two most abundant and well-studied species in kefir grains: Lentilactobacillus kefiri and Lactobacillus kefiranofaciens. We applied growth temperatures of 30 °C and 37 °C and obtained transcriptomic, metabolomic, and proteomic data for the same 20 samples (10 samples per temperature). We obtained a multi-omics interaction network, which generated insights that would not have been possible with single-omics analysis. We identified interactions among transcripts, proteins, and metabolites, suggesting active toxin/antitoxin systems. We also observed multifarious interactions that involved the shikimate pathway. These observations helped explain bacterial adaptation to different stress conditions, co-aggregation, and increased activation of L. kefiranofaciens at 37 °C.


Subject(s)
Cultured Milk Products , Cultured Milk Products/microbiology , Multiomics , Proteomics , Bacteria/genetics
20.
J Agric Food Chem ; 71(28): 10729-10741, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37421368

ABSTRACT

Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) is increasingly used as a co-fermentation culture in fermented milk production. Recently, a capsular polysaccharide (CPS)- and exopolysaccharide (EPS)-producing mutant of Probio-M9, HG-R7970-3, was generated by space mutagenesis. This study compared the performance of cow and goat milk fermentation between the non-CPS/-EPS-producing parental strain (Probio-M9) and the CPS/EPS producer (HG-R7970-3), and the stability of products fermented by the two bacteria. Our results showed that using HG-R7970-3 as the fermentative culture could improve the probiotic viable counts, physico-chemical, texture, and rheological properties in both cow and goat milk fermentation. Substantial differences were also observed in the metabolomics profiles between fermented cow and goat milks produced by the two bacteria. Comparing with Probio-M9-fermented cow and goat milks, those fermented by HG-R7970-3 were enriched in a number of flavor compounds and potential functional components, particularly acids, esters, peptides, and intermediate metabolites. Moreover, HG-R7970-3 could improve the post-fermentation flavor retention capacity. These new and added features are of potential to improve the techno-functional qualities of conventional fermented milks produced by Probio-M9, and these differences are likely imparted by the acquired CPS-/EPS-producing ability of the mutant. It merits further investigation into the sensory quality and in vivo function of HG-R7970-3-fermented milks.


Subject(s)
Cultured Milk Products , Lacticaseibacillus rhamnosus , Probiotics , Animals , Female , Cattle , Milk/chemistry , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus , Probiotics/chemistry , Fermentation , Bacteria , Goats , Cultured Milk Products/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL