Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 977
Filter
1.
Astrobiology ; 24(7): 684-697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979614

ABSTRACT

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.


Subject(s)
Cyanobacteria , Dust , Exobiology , Extraterrestrial Environment , Mars , Dust/analysis , Spectroscopy, Fourier Transform Infrared/methods , Exobiology/methods , Cyanobacteria/isolation & purification , Museums
2.
Antonie Van Leeuwenhoek ; 117(1): 99, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985203

ABSTRACT

A novel Gram-negative, white-pigmented, and auxin-producing strain, 20NA77.5T, was isolated from fresh water during cyanobacterial bloom period. Pairwise comparison of the 16S rRNA gene sequences showed that strain 20NA77.5T belonged to the genus Undibacterium and exhibited the highest sequence similarity to the type strains of Undibacterium danionis (98.00%), Undibacterium baiyunense (97.93%), Undibacterium macrobrachii (97.92%), and Undibacterium fentianense (97.71%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 20NA77.5T and its related type strains were below 79.93 and 23.80%, respectively. The predominant fatty acids (> 10% of the total fatty acids) were C16:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The genomic DNA G + C content of strain 20NA77.5T was found to be 48.61%. Based on the phylogenetic distinctness, chemotaxonomic features, and phenotypic features, strain 20NA77.5T is considered to represent a novel species of the genus Undibacterium, for which the name Undibacterium cyanobacteriorum sp. nov is proposed. The type strain is 20NA77.5T (= KCTC 8005T = LMG 33136T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Cyanobacteria , DNA, Bacterial , Fatty Acids , Fresh Water , Indoleacetic Acids , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fresh Water/microbiology , Indoleacetic Acids/metabolism , Fatty Acids/analysis , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Nucleic Acid Hybridization , Sequence Analysis, DNA , Water Microbiology
3.
Arch Microbiol ; 206(8): 348, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990418

ABSTRACT

Anatoxin-a (ATX-a) is a neurotoxin produced by some species of cyanobacteria. Due to its water solubility and stability in natural water, it could pose health risks to human, animals, and plants. Conventional water treatment techniques are not only insufficient for the removal of ATX-a, but they also result in cell lysis and toxin release. The elimination of this toxin through biodegradation may be a promising strategy. This study examines for the first time the biodegradation of ATX-a to a non-toxic metabolite (Epoxy-ATX-a) by a strain of Bacillus that has a history of dealing with toxic cyanobacteria in a eutrophic lake. The Bacillus strain AMRI-03 thrived without lag phase in a lake water containing ATX-a. The strain displayed fast degradation of ATX-a, depending on initial toxin concentration. At the highest initial concentrations (50 & 100 µg L- 1), total ATX-a degradation took place in 4 days, but it took 6 & 7 days at lower concentrations (20, 10, and 1 µg L- 1, respectively). The ATX-a biodegradation rate was also influenced by the initial toxin concentration, reaching its maximum value (12.5 µg L- 1 day- 1) at the highest initial toxin concentrations (50 & 100 µg L- 1). Temperature and pH also had an impact on the rate of ATX-a biodegradation, with the highest rates occurring at 25 and 30 ºC and pH 7 and 8. This nontoxic bacterial strain could be immobilized within a biofilm on sand filters and/or sludge for the degradation and removal of ATX-a and other cyanotoxins during water treatment processes, following the establishment of mesocosm experiments to assess the potential effects of this bacterium on water quality.


Subject(s)
Bacillus subtilis , Biodegradation, Environmental , Cyanobacteria Toxins , Cyanobacteria , Eutrophication , Lakes , Tropanes , Lakes/microbiology , Tropanes/metabolism , Cyanobacteria/metabolism , Cyanobacteria/isolation & purification , Bacillus subtilis/metabolism , Bacillus subtilis/isolation & purification , Bacillus subtilis/genetics , Saudi Arabia , Bacterial Toxins/metabolism
4.
Environ Microbiol Rep ; 16(3): e13297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885952

ABSTRACT

The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.


Subject(s)
Bacterial Toxins , Cyanobacteria , Harmful Algal Bloom , Lakes , Lakes/microbiology , Lakes/chemistry , Kenya , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Bacterial Toxins/genetics , Microcystins/genetics , RNA, Ribosomal, 16S/genetics , Microbiota , Phytoplankton/genetics , Cyanobacteria Toxins , Alkaloids/analysis , Alkaloids/metabolism , RNA, Ribosomal, 18S/genetics , Phylogeny
5.
Environ Microbiol Rep ; 16(3): e13290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923208

ABSTRACT

Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.


Subject(s)
Cyanobacteria , Desert Climate , Microbiota , RNA, Ribosomal, 16S , Soil Microbiology , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/growth & development , Cyanobacteria/classification , Cyanobacteria/metabolism , RNA, Ribosomal, 16S/genetics , Namibia , Kinetics , Phylogeny , DNA, Bacterial/genetics , Soil/chemistry
6.
Curr Microbiol ; 81(8): 237, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907801

ABSTRACT

Toxic cyanobacterial blooms in various water bodies have been given much attention nowadays as they release hazardous substances in the surrounding areas. These toxic planktonic cyanobacteria in shrimp ponds greatly affect the survival of shrimps. Ecuador is the second highest shrimp producing country in the Americas after Brazil; and the shrimp-based economy is under threat due to toxic cyanobacterial blooms in Ecuador shrimp ponds. This study investigated the abundance of different cyanobacteria in the shrimp ponds at the Chone and Jama rivers (in Manabi province) at Ecuadorian pacific coast, focusing on different environmental factors, such as temperature, pH, salinity, and light. Temperature and pH were identified as key factors in influencing the abundance of cyanobacteria, with a significant positive correlation between Raphidiopsis raciborskii and pH. The highest and lowest abundance of cyanobacteria found during the dry season in the shrimp ponds near the Chone and Jama rivers were > 3 × 106 and 1 × 106 Cell.m-3, respectively. The Shannon-Wiener Diversity Index fluctuated between 0.41-1.15 and 0.31-1.15 for shrimp ponds of Chone and Jama rivers, respectively. This variation was linked to changes in salinity and the presence of harmful algal blooms, highlighting the importance of continuous monitoring. Additionally, the study areas showed eutrophic conditions with low diversity, underlining the need for additional spatiotemporal studies and expanded research in both rivers, to better understand these complex phenomena. The findings underscore the importance of continuous monitoring and expanded research in cyanobacteria ecology, with implications for public health and aquatic resource management.


Subject(s)
Aquaculture , Cyanobacteria , Ponds , Ecuador , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Animals , Ponds/microbiology , Humans , Penaeidae/microbiology , Salinity , Harmful Algal Bloom , Seasons , Temperature
7.
Nature ; 630(8018): 899-904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723661

ABSTRACT

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Subject(s)
Diatoms , Nitrogen Fixation , Nitrogen , Oceans and Seas , Rhizobium , Seawater , Symbiosis , Carbon/metabolism , Diatoms/metabolism , Diatoms/physiology , Nitrogen/metabolism , Photosynthesis , Phylogeny , Rhizobium/classification , Rhizobium/metabolism , Rhizobium/physiology , Seawater/microbiology , Seawater/chemistry , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Atlantic Ocean
8.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786590

ABSTRACT

The Drinking Water Directive (EU) 2020/2184 includes the parameter microcystin LR, a cyanotoxin, which drinking water producers need to analyze if the water source has potential for cyanobacterial blooms. In light of the increasing occurrences of cyanobacterial blooms worldwide and given that more than 50 percent of the drinking water in Sweden is produced from surface water, both fresh and brackish, the need for improved knowledge about cyanotoxin occurrence and cyanobacterial diversity has increased. In this study, a total of 98 cyanobacterial blooms were sampled in 2016-2017 and identified based on their toxin production and taxonomical compositions. The surface water samples from freshwater lakes throughout Sweden including brackish water from eight east coast locations along the Baltic Sea were analyzed for their toxin content with LC-MS/MS and taxonomic composition with 16S rRNA amplicon sequencing. Both the extracellular and the total toxin content were analyzed. Microcystin's prevalence was highest with presence in 82% of blooms, of which as a free toxin in 39% of blooms. Saxitoxins were found in 36% of blooms in which the congener decarbamoylsaxitoxin (dcSTX) was detected for the first time in Swedish surface waters at four sampling sites. Anatoxins were most rarely detected, followed by cylindrospermopsin, which were found in 6% and 10% of samples, respectively. As expected, nodularin was detected in samples collected from the Baltic Sea only. The cyanobacterial operational taxonomic units (OTUs) with the highest abundance and prevalence could be annotated to Aphanizomenon NIES-81 and the second most profuse cyanobacterial taxon to Microcystis PCC 7914. In addition, two correlations were found, one between Aphanizomenon NIES-81 and saxitoxins and another between Microcystis PCC 7914 and microcystins. This study is of value to drinking water management and scientists involved in recognizing and controlling toxic cyanobacteria blooms.


Subject(s)
Cyanobacteria , Lakes , Marine Toxins , Microcystins , Sweden , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Microcystins/analysis , Lakes/microbiology , Marine Toxins/analysis , Saxitoxin/analysis , Environmental Monitoring , RNA, Ribosomal, 16S/genetics , Bacterial Toxins/analysis , Cyanobacteria Toxins , Tandem Mass Spectrometry
9.
Methods Mol Biol ; 2788: 397-410, 2024.
Article in English | MEDLINE | ID: mdl-38656527

ABSTRACT

Early monitoring of Microcystis, a cyanobacterium that produces microcystin, is paramount in order to confirm the presence of Microcystis spp. Both phenotypic and genotypic methods have been used. The phenotypic methods provide the presence of the microcystis but do not confirm its species type and toxin produced. Additionally, phenotypic methods cannot differentiate toxigenic from non-toxigenic Microcystis. Therefore, the current protocol also describes genetic methods based on PCR to detect toxigenic Microcystis spp. based on microcystin synthetase E (mcy E) gene and 16-23S RNA genes for species-specific identification, which can effectively comprehend distinct lineages and discrimination of potential complexity of microcystin populations. The presence of these microcystin toxins in blood, in most cases, indicates contamination of drinking water by cyanobacteria. The methods presented herein are used to identify microcystin toxins in drinking water and blood.


Subject(s)
Cyanobacteria , Lakes , Microcystins , Lakes/microbiology , Microcystins/genetics , Microcystins/analysis , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Phenotype , Genotype , Polymerase Chain Reaction/methods , Water Microbiology , Microcystis/genetics , Microcystis/isolation & purification , Microcystis/classification , Genotyping Techniques/methods
10.
Toxins (Basel) ; 16(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668594

ABSTRACT

Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), ß-aminomethyl-L-alanine (BAMA), ß-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Manitoba , Harmful Algal Bloom , Amino Acids/analysis , Amino Acids/metabolism , Tandem Mass Spectrometry , Biodiversity , Microbiota , Cyanobacteria Toxins
11.
Microb Ecol ; 85(3): 892-903, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35916937

ABSTRACT

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


Subject(s)
Cyanobacteria , Lakes , Lakes/chemistry , Lakes/microbiology , Brazil , Eutrophication , Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , Metagenomics
12.
Oxid Med Cell Longev ; 2022: 5559151, 2022.
Article in English | MEDLINE | ID: mdl-35126816

ABSTRACT

BACKGROUND: The Caoguo-4 decoction, a classical Mongolian medicine formula, is widely used to treat spleen deficiency diarrhea (SDD) in Mongolian for decades. Previously, the Caoguo-4 decoction volatile oil has been confirmed to be effective in ameliorating symptoms of spleen deficiency diarrhea in an animal model. However, the underlying mechanism of the Caoguo-4 decoction volatile oil is yet to be established. The aim of the current study was to investigate the antidiarrheal effects and mechanism of the Caoguo-4 decoction volatile oil. METHOD: Wistar rats were randomly divided into 5 groups of 10 animals including control, model, positive, Caoguo-4 decoction, and Caoguo-4 decoction volatile oil groups (10 rats in each group). All the rats, besides those in the control group, were induced to develop SDD by a bitter-cold purgation method with Xiaochengqi decoction. The antidiarrheal effect of Caoguo-4 decoction volatile oil was evaluated by pathological section, serum D-xylose and AMS content, plasma MTL content, and gut microbiota analysis via 16S rRNA sequencing. RESULTS: The results showed that the developed SDD rat model (model group) had decreased food intake, increased weight loss, soft stool, and bad hair color. When compared with the control group, serum was significantly reduced serum D-xylose and AML but increased MTL levels in the model group (p < 0.05). However, after treatment with either the Caoguo-4 decoction (the decoction group) or Smecta (the positive group) or volatile oil from the Caoguo-4 decoction (the volatile oil group), a significant increase in the serum D-xylose levels was observed. Additionally, AML levels significantly increased in the positive and volatile oil groups, and MTL levels significantly decreased in the decoction and volatile oil groups, when compared with the model group (p < 0.05). The pathological changes of the intestinal mucosa showed that the structure of the epithelium in the villi of the small intestine was affected, deformed, and incomplete in the model group when compared with the control group. However, either the decoction group or the volatile oil group recovered the villous morphology. The results of OTU analysis and alpha diversity analysis of intestinal bacteria showed that the intestinal microbiota of the SDD model rats showed an obvious decrease in richness and diversity of intestinal microbiota. But the intervention treatment of decoction and volatile oil could significantly recover the richness and diversity of intestinal microbiota. CONCLUSION: The intestinal microbiota destroyed in SDD modelling could be significantly improved by the Caoguo-4 decoction volatile oils, which provides reference for clinical medication.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Oils, Volatile/pharmacology , Amylases/metabolism , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Diarrhea/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Feces/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Oils, Volatile/therapeutic use , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats , Rats, Wistar , Spleen/pathology , Xylose/blood
13.
PLoS One ; 17(1): e0261682, 2022.
Article in English | MEDLINE | ID: mdl-34995289

ABSTRACT

Simple trichal types constitute a group of cyanobacteria with an abundance of novel, often cryptic taxa. Here, we investigated material collected from wet surface-soil in a saline environment in Petchaburi Province, central Thailand. A morphological comparison of the isolated strain with similar known species, as well as its phylogenetic and species delimitation analyses based on the combined datasets of other related organisms, especially simple trichal cyanobacteria, revealed that the material of this study represented an independent taxon. Using a multifaceted method, we propose that this material represents a new genus, Thainema gen. nov., belonging to the family Leptolyngbyaceae, with the type species Thainema salinarum sp. nov. This novel taxon shares similar ecological habitats with strains previously placed in the same lineage.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/isolation & purification , Bacterial Typing Techniques , Cyanobacteria/genetics , Ecosystem , Thailand
14.
Cancer Epidemiol Biomarkers Prev ; 31(1): 221-229, 2022 01.
Article in English | MEDLINE | ID: mdl-34697061

ABSTRACT

BACKGROUND: Gut microbial alterations have been linked to chronic liver disease and hepatocellular carcinoma (HCC). The role of the oral microbiome in liver cancer development has not been widely investigated. METHODS: Bacterial 16S rRNA sequences were evaluated in oral samples from 90 HCC cases and 90 controls who were a part of a larger U.S. case-control study of HCC among patients diagnosed from 2011 to 2016. RESULTS: The oral microbiome of HCC cases showed significantly reduced alpha diversity compared with controls (Shannon P = 0.002; Simpson P = 0.049), and beta diversity significantly differed (weighted Unifrac P = 0.004). The relative abundance of 30 taxa significantly varied including Cyanobacteria, which was enriched in cases compared with controls (P = 0.018). Cyanobacteria was positively associated with HCC [OR, 8.71; 95% confidence interval (CI), 1.22-62.00; P = 0.031] after adjustment for age, race, birthplace, education, smoking, alcohol, obesity, type 2 diabetes, Hepatitis C virus (HCV), Hepatitis B virus (HBV), fatty liver disease, aspirin use, other NSAID use, laboratory batch, and other significant taxa. When stratified by HCC risk factors, significant associations of Cyanobacteria with HCC were exclusively observed among individuals with negative histories of established risk factors as well as females and college graduates. Cyanobacterial genes positively associated with HCC were specific to taxa producing microcystin, the hepatotoxic tumor promotor, and other genes known to be upregulated with microcystin exposure. CONCLUSIONS: Our study provides novel evidence that oral Cyanobacteria may be an independent risk factor for HCC. IMPACT: These findings support future studies to further examine the causal relationship between oral Cyanobacteria and HCC risk.


Subject(s)
Carcinoma, Hepatocellular/microbiology , Cyanobacteria/isolation & purification , Liver Neoplasms/microbiology , Mouth/microbiology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Risk Factors , United States
15.
mBio ; 12(5): e0223521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34700377

ABSTRACT

Harmful cyanobacterial bloom occurrences have increased worldwide due to climate change and eutrophication, causing nuisance and animal deaths. Species from the benthic cyanobacterial genus Microcoleus are ubiquitous and form thick mats in freshwater systems, such as rivers, that are sometimes toxic due to the production of potent neurotoxins (anatoxins). Anatoxin-producing (toxic) strains typically coexist with non-anatoxin-producing (nontoxic) strains in mats, although the reason for this is unclear. To determine the genetic mechanisms differentiating toxic and nontoxic Microcoleus, we sequenced and assembled genomes from 11 cultures and compared these to another 31 Microcoleus genomes. Average nucleotide identities (ANI) indicate that toxic and nontoxic strains are distinct species (ANI, <95%), and only 6% of genes are shared across all 42 genomes, suggesting a high level of genetic divergence among Microcoleus strains. Comparative genomics showed substantial genome streamlining in toxic strains and a potential dependency on external sources for thiamine and sucrose. Toxic and nontoxic strains are further differentiated by an additional set of putative nitrate transporter (nitrogen uptake) and cyanophycin (carbon and nitrogen storage) genes, respectively. These genes likely confer distinct competitive advantages based on nutrient availability and suggest nontoxic strains are more robust to nutrient fluctuations. Nontoxic strains also possess twice as many transposable elements, potentially facilitating greater genetic adaptation to environmental changes. Our results offer insights into the divergent evolution of Microcoleus strains and the potential for cooperative and competitive interactions that contribute to the co-occurrence of toxic and nontoxic species within mats. IMPORTANCE Microcoleus autumnalis, and closely related Microcoleus species, compose a geographically widespread group of freshwater benthic cyanobacteria. Canine deaths due to anatoxin-a poisoning, following exposure to toxic proliferations, have been reported globally. While Microcoleus proliferations are on the rise, the mechanisms underpinning competition between, or coexistence of, toxic and nontoxic strains are unknown. This study identifies substantial genetic differences between anatoxin-producing and non-anatoxin-producing strains, pointing to reduced metabolic flexibility in toxic strains, and potential dependence on cohabiting nontoxic strains. Results provide insights into the metabolic and evolutionary differences between toxic and nontoxic Microcoleus, which may assist in predicting and managing aquatic proliferations.


Subject(s)
Bacterial Toxins/metabolism , Cyanobacteria/metabolism , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA Transposable Elements , Genome Size , Nitrate Transporters/genetics , Nitrate Transporters/metabolism , Nitrogen/metabolism , Phylogeny , Rivers/microbiology
16.
Microbiologyopen ; 10(4): e1228, 2021 08.
Article in English | MEDLINE | ID: mdl-34459548

ABSTRACT

The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.


Subject(s)
Chlorobi/isolation & purification , Chromatiaceae/isolation & purification , Cyanobacteria/isolation & purification , Lakes/microbiology , Sulfur/metabolism , Chlorobi/classification , Chlorobi/genetics , Chromatiaceae/classification , Chromatiaceae/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , High-Throughput Nucleotide Sequencing , Microbiota/genetics , New York , RNA, Ribosomal, 16S/genetics , Water Microbiology
17.
mSphere ; 6(4): e0006121, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34287010

ABSTRACT

Photosynthetic Cyanobacteria and their descendants are the only known organisms capable of oxygenic photosynthesis. Their metabolism permanently changed the Earth's surface and the evolutionary trajectory of life, but little is known about their evolutionary history. Genomes of the Gloeobacterales, an order of deeply divergent photosynthetic Cyanobacteria, may hold clues about the evolutionary process. However, there are only three published genomes within this order, and it is difficult to make broad inferences based on such little data. Here, I describe five species within the Gloeobacterales retrieved from publicly available databases and examine their photosynthetic gene content and the environments in which Gloeobacterales genomes and 16S rRNA gene sequences are found. The Gloeobacterales contain reduced photosystems and inhabit cold, wet-rock, and low-light environments. They are likely present in low abundances due to their low growth rate. Future searches for Gloeobacterales should target these environments, and samples should be deeply sequenced to capture the low-abundance taxa. Publicly available databases contain undescribed taxa within the Gloeobacterales. However, searching through all available data with current methods is computationally expensive. Therefore, new methods must be developed to search for these and other evolutionarily important taxa. Once identified, these novel photosynthetic Cyanobacteria will help illuminate the origin and evolution of oxygenic photosynthesis. IMPORTANCE Early branching photosynthetic Cyanobacteria such as the Gloeobacterales may provide clues into the evolutionary history of oxygenic photosynthesis, but there are few genomes or cultured taxa from this order. Five new metagenome-assembled genomes suggest that members of the Gloeobacterales all contain reduced photosystems and lack genes associated with thylakoids and circadian rhythms. Their distribution suggests that they may thrive in environments that are marginal for other species, including wet-rock and cold environments. These traits may aid in the discovery and cultivation of novel species in this clade.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Photosynthesis/genetics , Cyanobacteria/metabolism , Databases, Nucleic Acid , Oxygen/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics
18.
Mol Biol Rep ; 48(7): 5393-5397, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34283333

ABSTRACT

Cyanobacteria and their pollution are being increasingly commonly reported worldwide that cause a serious hazard to environmental and human health. Cyanotoxin was the most algal toxin reported to be produced by several orders of cyanobacteria. This study aimed to provide a technique to detect cylindrosprmopsin and saxitoxin biosynthesis genes in the river. In November, December 2019, and January 2020. Cyanobacteria were isolated from freshwater of Tigris River and identified by compound microscope also conventional PCR. Five isolates of cyanobacteria that successfully amplified a gene fragment from the phycocyanin were found in all cyanobacteria (Microcystis flosaquae, Microcystis sp, anabaena circinalis, nostoc commune and westiellopsis prolifica) and all isolates successfully amplified aoaC gene to detecting the cylidrospemopsin and the saxitoxin. Our results concluded that PCR assay can be used for early detection of cylidrospemopsin and the saxitoxin producing cyanobacteria in river water that useful to stations responsible for the preparation of drinking water to public.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/genetics , Rivers/microbiology , Water Microbiology , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Cyanobacteria Toxins/biosynthesis , Cyanobacteria Toxins/genetics , Iraq , Polymerase Chain Reaction , Saxitoxin/biosynthesis , Saxitoxin/genetics , Sequence Analysis, DNA
19.
Article in English | MEDLINE | ID: mdl-34097598

ABSTRACT

In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S-23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus, but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola. The D1-D1', Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).


Subject(s)
Cyanobacteria/classification , Fresh Water/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , Bayes Theorem , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Iran , Oryza , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
J Microbiol Methods ; 186: 106256, 2021 07.
Article in English | MEDLINE | ID: mdl-34082050

ABSTRACT

Since the removal of contaminations in microalgal cultures is extremely laborious and time-consuming, we developed a rapid workflow to obtain axenicity by a combination of fluorescence-activated cell sorting (FACS) and plate spreading. During method development, several cyanobacteria and green algae strains were successfully made axenic. At the end, method transferability to another FACS device was demonstrated. Our workflow offers great time-savings with less hands-on laboratory work compared to conventional isolation techniques.


Subject(s)
Axenic Culture/methods , Flow Cytometry/methods , Microalgae/growth & development , Axenic Culture/instrumentation , Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , Microalgae/cytology , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL